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Abstract
We present the design and evaluation of two forms of
power management schemes that reduce the energy
consumption of networks. The first is based on putting
network components to sleep during idle times, reducing
energy consumed in the absence of packets. The second
is based on adapting the rate of network operation to the
offered workload, reducing the energy consumed when
actively processing packets.

For real-world traffic workloads and topologies and us-
ing power constants drawn from existing network equip-
ment, we show that even simple schemes for sleeping
or rate-adaptation can offer substantial savings. For in-
stance, our practical algorithms stand to halve energy
consumption for lightly utilized networks (10-20%). We
show that these savings approach the maximum achiev-
able by any algorithms using the same power manage-
ment primitives. Moreover this energy can be saved with-
out noticeably increasing loss and with a small and con-
trolled increase in latency (<10ms). Finally, we show
that both sleeping and rate adaptation are valuable de-
pending (primarily) on the power profile of network
equipment and the utilization of the network itself.

1 Introduction
In this paper, we consider power management for
networks from a perspective that has recently begun
to receive attention: the conservation of energy for
operating and environmental reasons. Energy consump-
tion in network exchanges is rising as higher capacity
network equipment becomes more power-hungry and
requires greater amounts of cooling. Combined with
rising energy costs, this has made the cost of powering
network exchanges a substantial and growing fraction
of the total cost of ownership – up to half by some
estimates[23]. Various studies now estimate the power
usage of the US network infrastructure at between 5
and 24 TWh/year[25, 26], or $0.5-2.4B/year at a rate
of $0.10/KWh, depending on what is included. Public
concern about carbon footprints is also rising, and stands
to affect network equipment much as it has computers
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via standards such as EnergyStar. In fact, EnergyStar
standard proposals for 2009 discuss slower operation
of network links to conserve energy when idle. A new
IEEE 802.3az Task Force was launched in early 2007 to
focus on this issue for Ethernet [15].

Fortunately, there is an opportunity for substantial re-
ductions in the energy consumption of existing networks
due to two factors. First, networks are provisioned for
worst-case or busy-hour load, and this load typically
exceeds their long-term utilization by a wide margin.
For example, measurements reveal backbone utilizations
under 30% [16] and up to hour-long idle times at access
points in enterprise wireless networks [17]. Second, the
energy consumption of network equipment remains sub-
stantial even when the network is idle. The implication
of these factors is that most of the energy consumed in
networks is wasted.

Our work is an initial exploration of how overall
network energy consumption might be reduced without
adversely affecting network performance. This will
require two steps. First, network equipment ranging
from routers to switches and NICs will need power man-
agement primitives at the hardware level. By analogy,
power management in computers has evolved around
hardware support for sleep and performance states. The
former (e.g.,C-states in Intel processors) reduce idle con-
sumption by powering off sub-components to different
extents, while the latter (e.g.,SpeedStep, P-states in Intel
processors) tradeoff performance for power via operating
frequency. Second, network protocols will need to make
use of the hardware primitives to best effect. Again, by
analogy with computers, power management preferences
control how the system switches between the available
states to save energy with minimal impact on users.

Of these two steps, our focus is on the network
protocols. Admittedly, these protocols build on hardware
support for power management that is in its infancy
for networking equipment. Yet the necessary support
will readily be deployed in networks where it proves
valuable, with forms such as sleeping and rapid rate
selection for Ethernet [15] already under development.
For comparison, computer power management compat-
ible with the ACPI standard has gone from scarce to
widely deployed over the past five to ten years and is
now expanding into the server market. Thus our goal is
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to learn: what magnitude of energy savings a protocol
using feasible hardware primitives might offer; what per-
formance tradeoff comes with these savings; and which
of the feasible kinds of hardware primitives would max-
imize benefits. We hope that our research can positively
influence the hardware support offered by industry.

The hardware support we assume from network equip-
ment is in the form of performance and sleep states.
Performance states help to save power when routers
are active, while sleep states help to save power when
routers are idle. The performance states we assume
dynamically change the rate of links and their associated
interfaces. The sleep states we assume quickly power
off network interfaces when they are idle. We develop
two approaches to save energy with these primitives.
The first puts network interfaces to sleep during short
idle periods. To make this effective we introduce small
amounts of buffering, much as 802.11 APs do for
sleeping clients; this collects packets into small bursts
and thereby creates gaps long enough to profitably
sleep. Potential concerns are that buffering will add
too much delay across the network and that bursts will
exacerbate loss. Our algorithms arrange for routers and
switches to sleep in a manner that ensures the buffering
delay penalty is paid only once (not per link) and that
routers clear bursts so as to not amplify loss noticeably.
The result is a novel scheme that differs from 802.11
schemes in that all network elements are able to sleep
when not utilized yet added delay is bounded. The
second approach adapts the rate of individual links based
on the utilization and queuing delay of the link.

We then evaluate these approaches using real-world
network topologies and traffic workloads from Abilene
and Intel. We find that: (1) rate-adaptation and sleeping
have the potential to deliver substantial energy savings
for typical networks; (2) the simple schemes we develop
are able to capture most of this energy-saving potential;
(3) our schemes do not noticeably degrade network
performance; and (4) both sleeping and rate-adaptation
are valuable depending primarily on the utilization of
the network and equipment power profiles.

2 Approach

This section describes the high-level model for power
consumption that motivates our rate adaptation and
sleeping solutions, as well as the methodology by which
we evaluate these solutions.

2.1 Power Model Overview

Active and idle power A network element is active
when it is actively processing incoming or outgoing traf-
fic, and idle when it is powered on but does not process
traffic. Given these modes, the energy consumption for

a network element is:

E = paTa + piTi (1)

where pa, pi denote the power consumption in active
and idle modes respectively and Ta, Ti the times spent
in each mode.

Reducing power through sleep and performance
states Sleep states lower power consumption by
putting sub-components of the overall system to sleep
when there is no work to process. Thus sleeping reduces
the power consumed when idle, i.e.,it reduces the piTi

term of Eqn. (2) by reducing the pi to some sleep-mode
power draw ps where ps < pi.

Performance states reduce power consumption by
lowering the rate at which work is processed. As we
elaborate on in later sections, some portion of both
active and idle power consumption depends on the
frequency and voltage at which work is processed.
Hence performance states that scale frequency and/or
voltage reduce both the pa and pi power draws resulting
in an overall reduction in energy consumption.

We also assume a penalty for transitioning between
power states. For simplicity, we measure this penalty
in time, typically milliseconds, treating it as a period in
which the router can do no useful work. We use this as a
simple switching model that lumps all penalties, ignor-
ing other effects that may be associated with switches
such as a transient increase in power consumption. Thus
there is also a cost for switching between states.

Networks with rate adaptation and sleeping support
In a network context, the sleeping and rate adaptation
decisions one router makes fundamentally impacts –
and is impacted by – the decisions of its neighboring
routers. Moreover, as we see later in the paper, the
strategies by which each is best exploited are very
different (Intuitively this is because sleep-mode savings
are best exploited by maximizing idle times, which
implies processing work as quickly as possible, while
performance-scaling is best exploited by processing
work as slowly as possible, which reduces idle times).
Hence, to avoid complex interactions, we consider that
the whole network, or at least well-defined components
of it, run in either rate adaptation or sleep mode.

We develop the specifics of our sleeping schemes in
Section 3, and our rate adaptation schemes in Section 4.
Note that our solutions are deliberately constructed to
apply broadly to the networking infrastructure – from
end-host NICs, to switches, and IP routers, etc. – so that
they may be applied wherever they prove to be the most
valuable. They are not tied to IP-layer protocols.
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2.2 Methodology

The overall energy savings we can expect will depend on
the extent to which our power-management algorithms
can successful exploit opportunities to sleep or rate
adapt as well as the power profile of network equipment
(i.e.,, relative magnitudes of pa, pi and ps). To clearly
separate the effect of each, we evaluate sleep solutions in
terms of the fraction of time for which network elements
can sleep and rate-adaptation solutions in terms of the
reduction in the average rate at which the network
operates. 1 In this way we assess each solution with
the appropriate baseline. We then evaluate how these
metrics translate into overall network energy savings for
different equipment power profiles and hence compare
the relative merits of sleeping and rate-adaptation
(Section 5). For both sleep and rate-adaptation, we
calibrate the savings achieved by our practical solutions
by comparing to the maximum savings achievable by
optimal, but not necessarily practical, solutions.

In network environments where packet arrival rates
can be highly non-uniform, allowing network elements
to transition between operating rates or sleep/active
modes with corresponding transition times can introduce
additional packet delay, or even loss, that would have not
otherwise occurred. Our goal is to explore solutions that
usefully navigate the tradeoff between potential energy
savings and performance. In terms of performance,
we measure the average and 98th percentile of the
end-to-end packet delay and loss.

In the absence of network equipment with hardware
support for power management, we base our evaluations
on packet-level simulation with real-world network
topologies and traffic workloads. The key factors on
which power savings then depend, beyond the details of
the solutions themselves, are the technology constants of
the sleep and performance states and the characteristics
of the network. In particular, the utilization of links
determines the relative magnitudes of Tactive and Tidle

as well as the opportunities for profitably exploiting
sleep and performance states. We give simple models for
technology constants in the following sections. To cap-
ture the effect of the network on power savings, we drive
our simulation with two realistic network topologies and
traffic workloads (Abilene and Intel) that are summa-
rized below. We use ns2 as our packet-level simulator.

Abilene We use Abilene as a test case because of the
ready availability of detailed topology and traffic infor-
mation. The information from [27] provides us with the
link connectivity, weights (to compute routes), latencies
and capacities for Abilene’s router-level topology. We
use measured Abilene traffic matrices (TMs) available
in the community [29] to generate realistic workloads
over this topology. Unless otherwise stated, we use as

our default a traffic matrix whose link utilization levels
reflect the average link utilization over the entire day –
this corresponds to a 5% link utilization on average with
bottleneck links experiencing about 15% utilization.

We linearly scale TMs to study performance with
increasing utilization up to a maximum average network
utilization of 31% as beyond this some links reach very
high utilizations. Finally, while the TMs specify the
5-minute average rate observed for each ingress-egress
pair, we still require a packet-level traffic generation
model that creates this rate. In keeping with previous
studies [18, 31] we generate traffic as a mix of Pareto
flows, and for some results we use constant bit-rate
(CBR) traffic. As per standard practice, we set router
queue sizes equal to the bandwidth-delay product in the
network; we use the bandwidth of the bottleneck link,
and a delay of 100ms.

Intel As an additional real-world dataset, we collected
topology and traffic information for the global Intel
enterprise network. This network connects Intel sites
worldwide, from small remote offices to large multi-
building sites with thousands of users. It comprises
approximately 300 routers and over 600 links with
capacities ranging from 1.5Mbps to 1Gbps.

To simulate realistic traffic, we collected unsampled
Netflow records [7] from the core routers. The records,
exported by each router every minute, contain per flow
information that allows us to recreate the traffic sourced
by ingress nodes.

3 Putting Network Elements to Sleep
In this section we discuss power management algorithms
that exploit sleep states to reduce power consumption
during idle times.

3.1 Model and Assumptions

Background A well established technique, as used by
microprocessors and mobiles, is to reduce idle power by
putting hardware sub-components to sleep. For example,
modern Intel processors such as the Core Duo [1] have
a succession of sleep states (called C-states) that offer
increasingly reduced power at the cost of increasingly
high latencies to enter and exit these states. We assume
similar sleep states made available for network equip-
ment. For the purpose of this study we ignore the options
afforded by multiple sleep states and assume as an initial
simplification that we have a single sleep state.

Model We model a network sleep state as character-
ized by three features or parameters. The first is the
power draw in sleep mode ps which we assume to be a
small fraction of the idle mode power draw pi.

The second characterizing parameter of a sleep state is
the time δ it takes to transition in and out of sleep states.
Higher values of δ raise the bar on when the network
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element can profitably enter sleep mode and hence
δ critically affects potential savings. While network
interface cards can make physical-layer transitions in as
low as 10µs, transition times that involve restoring state
at higher layers (memory, operating system) are likely
to be higher [13]. We thus evaluate our solutions over a
wide range values of transition times.

Finally, network equipment must support a mechanism
for invoking and exiting sleep states. The option that
makes the fewest assumptions about the sophistication of
hardware support is timer-driven sleeping, in which the
network element enters and exits sleep at well-defined
times. Prior to entering sleep the network element
specifies the time in the future at which it will exit sleep
and all packets that arrive at a sleeping interface are lost.
The second possibility, described in [12], is for routers
to wake up automatically on sensing incoming traffic
on their input ports. To achieve this “wake-on-arrival”
(WoA), the circuitry that senses packets on a line is left
powered on even in sleep mode. While support for WoA
is not common in either computers or interfaces today,
this is a form of hardware support that might prove
desirable for future network equipment and is currently
under discussion in the IEEE 802.3az Task Force [13].
Note that even with wake-on-arrival, bits arriving during
the transition period δ are effectively lost. To handle this,
the authors in [6] propose the use of “dummy” packets
to rouse a sleeping neighbor. A node A that wishes to
wake B first sends B a dummy packet, and then waits
for time δ before transmitting the actual data traffic. The
solutions we develop in this paper apply seamlessly to
either timer-driven or WoA-based hardware.

Measuring savings and performance In this section,
we measure savings in terms of the percentage of time
network elements spend asleep and performance in terms
of the average and 98th percentile of the end-to-end
packet delay and loss. We assume that individual line
cards in a network element can be independently put to
sleep. This allows for more opportunities to sleep than if
one were to require that a router sleep in its entirety (as
the latter is only possible when there is no incoming traf-
fic at any of the incoming interfaces). Correspondingly
our energy savings are with respect to interface cards
which typically represent a major portion of the overall
consumption of a network device. That said, one could
in addition put the route processor and switch fabric to
sleep at times when all line cards are asleep.

3.2 Approaches and Potential savings

For interfaces that support wake-on-arrival, one ap-
proach to exploiting sleep states is that of opportunistic
sleeping in which link interfaces sleep when idle – i.e.,a
router is awakened by an incoming (dummy) packet and,
after forwarding it on, returns to sleep if no subsequent

RS

RS

Figure 1: Packets within a burst are organized by destination.

packet arrives for some time. While very simple, such
an approach can result in frequent transitions which
limits savings for higher transition times and/or higher
link speeds. For example, with a 10Gbps link, even
under low utilization (5%) and packet sizes of 1KB, the
average packet inter-arrival time is very small – 15µs.
Thus while opportunistic sleeping might be effective in
LANs [11, 21] with high idle times, for fast links this
technique is only effective for very low transition times
δ (we quantify this shortly). In addition, opportunistic
sleep is only possible with the more sophisticated
hardware support of wake-on-arrival.

To create greater opportunities for sleep, we consider
a novel approach that allows us to explicitly control
the tradeoff between network performance and energy
savings. Our approach is to shape traffic into small
bursts at the edges of the network – edge devices then
transmit packets in bunches and routers within the
network wake up to process a burst of packets, and then
sleep until the next burst arrives. The intent is to provide
sufficient bunching to create opportunities for sleep if
the load is low, yet not add excessive delay. This is
a radical approach in the sense that much other work
seeks to avoid bursts rather than create them (e.g., token
buckets for QOS, congestion avoidance, buffering at
routers). As our measurements of loss and delay show,
our schemes avoid the pitfalls associated with bursts
because we introduce only a bounded and small amount
of burstiness and a router never enters sleep until it has
cleared all bursts it has built up. More precisely, we
introduce a buffer interval “B” that controls the tradeoff
between savings and performance. An ingress router
buffers incoming traffic for up to B ms and, once every
B ms, forwards buffered traffic in a burst.

To ensure that bursts created at the ingress are retained
as they traverse through the network, an ingress router
arranges packets within the burst such that all packets
destined for the same egress router are contiguous within
the burst (see figure 1).

The above “buffer-and-burst” approach (B&B) creates
alternating periods of contiguous activity and sleep
leading to fewer transitions and amortizing the transition
penalty δ over multiple packets. This improvement
comes at the cost of an added end-to-end delay of up
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Figure 2: Examples of burst synchronization.

to B ms. Note that because only ingress routers buffer
traffic, the additional delay due to buffering is only
incurred once along the entire ingress-to-egress path. As
importantly, this approach – unlike opportunistic sleep –
can be used by interfaces that support only timer-driven
sleep. A router R1 that receives a burst from upstream
router R2 at time t1 knows that the next start-of-burst will
arrive at time t1+B and can hence sleep between bursts.

The question then is how significant are the savings
this approach enables for reasonable additional delay?
We note that the best possible savings would occur if
a router received the incoming bursts from all ingress
routers close in time such that it processes all incoming
bursts and returns to sleep thus incurring exactly one
sleep/wake transition per B ms. This might appear pos-
sible by having ingress routers coordinate the times at
which they transmit bursts such that bursts from different
ingresses arrive close in time at intermediate routers.
For example, consider the scenario in Figure 2(a) where
ingress routers R0 and R1 are scheduled to transmit
traffic at times 2 and 1 respectively. If instead R1 were
to schedule its burst for time 7 instead, then bursts from
R0 and R2 would align in time at R2 thus reducing
the number of distinct burst times - and sleep-to-wake
transitions - at downstream routers R3 and R4.

Unfortunately, the example in Figure 2(b) suggests this
is unachievable for general topologies. Here, Si and Sj

represent the arrival times of incoming bursts to nodes R3
and R1 respectively and we see that the topology makes
it impossible to find times Si and Sj that could simulta-
neously align the bursts downstream from R2 and R4.

We thus use a brute-force strategy to evaluate the
maximum achievable coordination. For a given topology
and traffic workload, we consider the start-of-burst time
for traffic from each ingress I to egress J (denoted Sij)
and perform an exhaustive search of all Sij to find a set
of start times that minimizes the number of transitions
across all the interfaces in the network. We call this
scheme optB&B. Clearly, such an algorithm is not
practical and we use it merely as an optimistic bound on
what might be achievable were nodes to coordinate in
shaping traffic under a buffer-and-burst approach.

We compare the sleep time achieved by optB&B to the
upper bound on sleep as given by 1 − µ, where µ is the
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Figure 3: Time asleep using optB&B and opportunistic
sleeping and compared to the upper bound (1 − µ).

network utilization. This upper bound is not achievable
by any algorithm since (unlike optB&B) it does not take
into account the overhead δ due to sleep/wake transi-
tions. Nonetheless it serves to capture the loss in savings
due to δ and the inability to achieve perfect coordination.

Any traffic shaping incurs some additional complexity
and hence a valid question is whether we need any
traffic shaping, or whether opportunistic sleeping that
does not require shaping is enough? We therefore also
compare optB&B to opportunistic sleeping based on
wake-on-arrival (WoA). For this naive WoA, we assume
optimistically that an interface knows the precise arrival
time of the subsequent packet and returns to sleep only
for inter-packet arrival periods greater than δ. Because
the performance of opportunistic WoA depends greatly
on the inter-arrival times of packets we evaluate WoA for
two types of traffic: constant bit rate (CBR) and Pareto.

For each of the above bounds, Figure 3 plots the
percentage of time asleep under increasing utilization
in Abilene. We use a buffer period of B = 10ms
and assume a (conservative) transition time δ of 1ms.
Comparing the savings from optB&B to the utilization
bound, we see that a traffic shaping approach based on
buffer-and-burst can achieve much of the potential for
exploiting sleep. As expected, even at very low utiliza-
tion, WoA with CBR traffic can rarely sleep; perhaps
more surprising is that even with bursty traffic WoA
performs relatively poorly. These results suggest that –
even assuming hardware WoA – traffic shaping offers a
significant improvement over opportunistic sleep.

3.3 A Practical Algorithm

We consider a very simple buffer-and-burst scheme,
called practB&B, in which each ingress router sends
its bursts destined for the various egresses one after the
other in a single “train of bursts”. At routers close to
the ingress this appears as a single burst which then
disperses as it traverses through the network.
practB&B bounds the number of bursts (and corre-

spondingly the number of transitions) seen by any router
R in an interval of B ms to at most IR, the total number
of ingress routers that send traffic through R. In practice,
our results show that the number of bursts seen by R in
time Bms is significantly smaller than this bound.
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Figure 4: Time asleep using CBR and Pareto traffic.

practB&B is simple – it requires no inter-router co-
ordination as the time at which bursts are transmitted is
decided independently by each ingress router. For net-
works supporting wake-on-arrival the implementation is
trivial – the only additional feature is the implementation
of buffer-and-burst at the ingress nodes. For networks
that employ timer-driven sleeping, packet bursts would
need to include a marker denoting the end of burst and
notifying the router of when it should expect the next
burst on that interface.

3.4 Evaluation

We evaluate the savings vs. performance tradeoff
achieved by practB&B algorithm and the impact of
equipment and network parameters on the same.

Savings vs. performance using practB&B We
compare the sleep time achieved by practB&B to that
achievable by optB&B. In terms of performance, we
compare the end-to-end packet delay and loss in a net-
work using practB&B to that of a network that never
sleeps (as today) as this shows the overall performance
penalty due to our sleep protocols.

Figure 4 plots the sleep time with increasing utilization
on the Abilene network using a buffering interval
B = 10ms. We plot the percentage sleep time under
both CBR and Pareto traffic workloads. We see that even
a scheme as simple as practB&B can create and exploit
significant opportunities for sleep and approaches the
savings achieved by the significantly more complex
optB&B. As with opportunistic sleeping, we see that
practB&B’s savings with CBR traffic are lower than for
the more bursty Pareto workloads, but that this reduction
is significantly smaller in the case of practB&B than
with opportunistic sleeping (recall Figure 3). That Pareto
traffic improves savings is to be expected as burstier
traffic only enhances our bunching strategy.

Figures 5(a) and (b) plot the corresponding average
and 98th percentile of the end-to-end delay. As expected,
we see that the additional delay in both cases is propor-
tional to the buffering interval B. Note that this is the
end-to-end delay, reinforcing that the buffering delay B
is incurred once for the entire end-to-end path.
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Figure 5: The impact on delay of practB&B.

We see that for higher B, the delay grows slightly
faster with utilization (e.g.,compare the absolute increase
in delay for B = 5ms to 25ms) because this situation is
more prone to larger bursts overlapping at intermediate
routers. However this effect is relatively small even
in a situation combining larger B (25ms) and larger
utilizations (20-30%) and is negligible for smaller B
and/or more typical utilizations.

We see that both average and maximum delays in-
crease abruptly beyond network utilizations exceeding
25%. This occurs when certain links approach full
utilization and queuing delays increase (recall that
the utilization on the horizontal axis is the average
network-wide utilization). However this increase occurs
even in the default network scenario and is thus not
caused by practB&B’s traffic shaping.

Finally, our measurements revealed that
practB&B introduced no additional packet loss (rela-
tive to the default network scenario) until we approach
utilizations that come close to saturating some links. For
example, in a network scenario losses greater than 0.1%
occur at 41% utilization without any buffering, they
occur at 38% utilization with B = 10ms, and at 36%
utilization with B = 25. As networks do not typically
operate with links close to saturation point, we do not
expect this additional loss to be a problem in practice.

In summary, the above results suggest that
practB&B can yield significant savings with a
very small (and controllable) impact on network delay
and loss. For example, at a utilization of 10%, a buffering
time of just B = 5ms allows the network to spend over
60% of its time in sleep mode for under 5ms added delay.

Impact of hardware characteristics We now evaluate
how the transition time δ affects the performance of
practB&B. Figure 6(a) plots the sleep time achieved by
practB&B for a range of transition times and compares
this to the ideal case of having instantaneous transitions.
As expected, the ability to sleep degrades drastically
with increasing δ. This observation holds across various
buffer intervals B as illustrated in Figure 6(b) that plots
the sleep time achieved at typical utilization (≈5%) for
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Figure 6: The impact of hardware constants on sleep time.
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increasing transition times and different values of B.
These findings reinforce our intuition that hardware

support featuring low-power sleep states and quick
transitions (preferably < 1ms) between these states are
essential to effectively save energy.

Impact of network topology We now evaluate
practB&B for the Intel enterprise network. The routing
structure of the Intel network is strictly hierarchical with
a relatively small number of nodes that connect to the
wide-area. Because of this we find a wide variation in
link utilization – far more than on the Abilene network.
Over 77% of links have utilizations below 1% while
a small number of links ( 2.5%) can see significantly
higher utilizations of between 20-75%. Correspond-
ingly, the opportunity for sleep also varies greatly across
links. This is shown in Figure 7 – each point in the
scatter-plot corresponds to a single link and we look at
sleep times for two transition times: 0.1ms and 1ms. We
see that the dominant trends in sleep time vs. utilization
remains and that higher δ yields lower savings.

4 Rate-Adaptation in Networks
This section explores the use of performance states to
reduce network energy consumption.

4.1 Model and Assumptions

Background In general, operating a device at a lower
frequency can enable dramatic reductions in energy
consumption for two reasons. First, simply operating
more slowly offers some fairly substantial savings.

For example, Ethernet links dissipate between 2-4W
when operating between 100Mbps-1Gbps compared
to 10-20W between 10Gbps[3]. Second, operating at a
lower frequency also allows the use of dynamic voltage
scaling (DVS) that reduces the operating voltage. This
allows power to scale cubically, and hence energy con-
sumption quadratically, with operating frequency[32].
DVS and frequency scaling are already common in
microprocessors for these reasons.

We assume the application of these techniques to
network links and associated equipment (i.e., linecards,
transceivers). While the use of DVS has been demon-
strated in prototype linecards [22], it is not currently sup-
ported in commercial equipment and hence we investi-
gate savings under two different scenarios: (1) equipment
that supports only frequency scaling and (2) equipment
that supports both frequency and voltage scaling.

Model We assume individual links can switch perfor-
mance states independently and with independent rates
for transmission and reception on interfaces. Hence the
savings we obtain apply directly to the consumption
at the links and interface cards of a network element,
although in practice one could also scale the rate of
operation of the switch fabric and/or route processor.

We assume that each network interface supports
N performance states corresponding to link rates
r1, . . . , rn (with ri < ri+1 and rn = rmax, the default
maximum link rate), and we investigate the effect that
the granularity and distribution (linear vs. exponential)
of these rates has on the potential energy savings.

The final defining characteristic of performance states
is the transition time, denoted δ, during which packet
transmission is stalled as the link transitions between
successive rates. We explore performance for a range of
transition times (δ) from 0.1 to 10 milliseconds.

Measuring savings and performance As in the case
of sleep we’re interested in solutions that reduce the rate
at which links operate without significantly affecting
performance.

In this section, we use the percentage reduction in
average link rate as an indicative measure of energy
savings and relate this to overall energy savings in
Section 5 where we take into account the power profile
of equipment (including whether it supports DVS or
not). In terms of performance, we again measure the
average and 98th percentile of the end-to-end packet
delay and packet loss.

4.2 An optimal strategy

Our initial interest is to understand the extent to which
performance states can help if used to best effect. For
a DVS processor, it has been shown that the most
energy-efficient way to execute C cycles within a given
time interval T is to maintain a constant clock speed of
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Figure 8: An illustration of delay-constrained service curves
and the service curve minimizing energy.

C/T [20]. In the context of a network link, this translates
into sending packets at a constant rate equal to the
average arrival rate. However under non-uniform traffic
this can result in arbitrary delays and hence we instead
look for an optimal schedule of rates (i.e.,the set of rates
at which the link should operate at different points in
time) that minimize energy while respecting a specified
constraint on the additional delay incurred at the link.

More precisely, given a packet arrival curve AC, we
look for a service curve SC that minimizes energy con-
sumption, while respecting a given upper bound d on the
per-packet queuing delay. The delay parameter d thus
serves to tradeoff savings for increased delay. Figure 8(a)
shows an example arrival curve and the associated latest-
departure curve (AC+d), which is simply the arrival
curve shifted in time by the delay bound d. To meet the
delay constraint, the service curve SC must lie within
the area between the arrival and latest-departure curves.

In the context of wireless links, [19] proves that if
the energy can be expressed as a convex, monotonically
increasing function of the transmission rate, then the
minimal energy service curve is the shortest Euclidean
distance in the arrival space (bytes × time) between the
arrival and shifted arrival curves.

In the scenario where we assume DVS support, the
energy consumption is a convex, monotonically increas-
ing function of link rate and thus this result applies to
our context as well. Where only frequency scaling is
supported, any service curve between the arrival and
shifted-arrival curves would achieve the same energy
savings and therefore the service curve with the shortest
Euclidean distance would be optimal in this case too.
In summary, for both frequency-scaling and DVS, the
shortest distance service curve would achieve the highest
possible energy savings.

Fig. 8 illustrates an example of such a minimal
energy service curve. Intuitively, this is the set of lowest
constant rates obeying the delay constraint. Note that
this per-link optimal strategy is not suited to practical
implementation since it assumes perfect knowledge of
the future arrival curve, link rates of infinite granularity
and ignores switching overheads. Nonetheless, it is
useful as an estimate of the potential savings by which

to calibrate practical protocols.
We will evaluate the savings achieved by applying

the above per-link solution at all links in the network
and call this approach link optRA. One issue in
doing so is that the service curves at the different links
are inter-dependent – i.e.,the service curve for a link
l depends in turn on the service curves at other links
(since the latter in turn determine the arrival curve at
l). We address this by applying the per-link optimal
algorithm iteratively across all links until the service and
arrival curves at the different links converge.

4.3 A practical algorithm

Building on the insight offered by the per-link opti-
mal algorithm, we develop a simple approach, called
practRA (practical rate adaptation), that seeks to nav-
igate the tradeoff between savings and delay constraints.
A practical approach differs from the optimum in that
(i) it does not have knowledge of future packet arrivals,
(ii) it can only choose among a fixed set of available
rates r1, . . . , rn, and (iii) at every rate switch, it incurs a
penalty δ, during which it cannot send packets.

While knowledge of the future arrival rate is unavail-
able, we can use the history of packet arrivals to predict
the future arrival rate. We denote this predicted arrival
rate as r̂f and estimate it with an exponentially weighted
moving average (EWMA) of the measured history of past
arrivals. Similarly, we can use the current link buffer
size q and rate ri to estimate the potential queuing delay
so as to avoid violating the delay constraint.

With these substitutes, we define a technique inspired
by the per-link optimal algorithm. In practRA, packets
are serviced at a constant rate until we intersect one of
the two bounding curves presented earlier (Figure 8):
the arrival curve (AC), and the latest-departure curve
(AC+d). Thus, we avoid increasing the operating rate ri

unless not doing so would violate the delay constraint.
This leads to the following condition for rate increases:

A link operating at rate ri with current queue size q
increases its rate to ri+1 iff ( q

ri
> d OR δr̂f+q

ri+1
> d − δ)

The first term checks whether the delay bound d would
be violated were we to maintain the current link rate.
The second constraint ensures that the service curve
does not get too close to the delay-constrained curve
which would prevent us from attempting a rate increase
in the future without violating the delay bound. That is,
we need to allow enough time for a link that increases
its rate to subsequently process packets that arrived
during the transition time (estimated by δr̂f ) and its
already-accumulated queue. Note that we cannot use
delay constraints d smaller than the transition time δ.
Similarly, the condition under which we allow a rate
decrease is as follows:
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A link operating at rate ri with current queue size q
decreases its rate to ri−1 iff q = 0 AND r̂f < ri−1

First, we only attempt to switch to a lower rate when the
queue at the link is empty (q = 0). Intuitively, this corre-
sponds to an intersection between the arrival curve and
the service curve. However, we don’t always switch to a
lower rate ri−1 when a queue empties as doing so would
prevent the algorithm from operating in a (desired)
steady state mode with zero queuing delay. Instead, the
desirable steady state is one where ri > rf > ri+1

and we want to avoid oscillating between rates (which
would lead to larger average delay). For example, a
link that sees a constant arrival rate of 3.5Mbps might
oscillate between 3 and 4Mbps (incurring queuing
delays at 3Mbps), instead of remaining at 4Mbps (with
low average queuing delay). We thus use the additional
condition: r̂f < ri−1 to steer our algorithm toward the
desired steady state and ensure that switching to a lower
rate does not immediately lead to larger queues.

In addition to the above conditions, we further dis-
courage oscillations by enforcing a minimum time Kδ
between consecutive switches. Intuitively, this is because
rate switching should not occur on timescales smaller
than the transition time δ. In our experiments, we found
K = 4 to be a reasonable value for this parameter.

Note that unlike the link optRA algorithm, the
above decision process does not guarantee that the delay
constraints will be met since it is based on estimated
rather than true arrival rates. Similarly, practRA
cannot guarantee that the rates used by the links match
those used by the link-optimal algorithm. In Section 5,
after discussing how power scales with rate, we use
simulation to compare our approximate algorithm to the
optimal under realistic network conditions. We leave it
to future work to analytically bound the inaccuracy due
to our approximations.

Finally, we observe that the above rate-adaptation is
simple in that it requires no coordination across different
nodes, and is amenable to implementation in high-speed
equipment. This is because the above decision making
need not be performed on a per-packet basis.

4.4 Evaluation

We evaluate the savings vs. performance tradeoff
achieved by our practical rate-adaptation algorithm and
the impact of equipment and network parameters on the
same. We first evaluate the percentage reduction in av-
erage link rate achieved by practRA for the Abilene
network. For comparison, we consider the rate reduction
due to link optRA and the upper bound on rate reduc-
tion as determined by the average link utilization. In this
case, since we found the reduction from link optRA
was virtually indistinguishable from the utilization
bound, we only show the latter here for clarity. (We re-
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Figure 10: Average and 98th percentile delay achieved by
practRA for various available rates

port on the energy savings due to link optRA in the
following section.) To measure performance, we measure
the end-to-end packet delay and loss in a network using
practRA to that in a network with no rate adaptation.

Impact of hardware characteristics The main con-
stants affecting the performance of practRA are (1)
the granularity and distribution of available rates, and
(2) δ, the time to transition between successive rates. We
investigate the reduction in rate for three different dis-
tributions of rates r1, . . . , rn: (i) 10 rates uniformly dis-
tributed between 1Gbps to 10Gbps, (ii) 4 rates uniformly
distributed between 1Gbps to 10Gbps and (iii) 4 expo-
nentially distributed rates (10Gbps, 1Gbps, 100Mbps,
10Mbps). We consider the latter case since physical layer
technologies for these rates already exist making these
likely candidates for early rate-adaptation technologies.

Figure 9 plots the average rate reduction under increas-
ing utilizations, with a per-link delay constraint d = δ
+ 2ms, and a transition time δ =1ms. We see that for 10
uniformly distributed rates, practRA operates links at
a rate that approaches the average link utilization. With
4 uniformly distributed rates this reduction drops, but
not significantly. However, for exponentially distributed
rates, the algorithm performs poorly, indicating that
support for uniformly distributed rates is essential.
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Figure 11: Impact of Switch Time (δ) for practRA

Figure 10 plots the corresponding average and 98th
percentile of the end-to-end delay. We see that, for all the
scenarios, the increase in average delay due to practRA
is very small: ∼ 5ms in the worst case, and less than 2ms
for the scenario using 4 uniform rates. The increase in
maximum delay is also reasonable: at most 78ms with
practRA, relative to 69ms with no adaptation.

Perhaps surprisingly, the lowest additional delay
occurs in the case of 4 uniformly distributed rates. We
found this occurs because there are fewer rate transitions,
with corresponding transition delays, in this case. . Fi-
nally, we found that practRA introduced no additional
packet loss for the range of utilizations considered.

Next, we look at the impact of transition times δ.
Figures 11 (a) and (b) plot the average rate reduction and
98th percentile of delay under increasing δ for different
network utilizations. For each test, we set the delay
constraint as d = δ + 2ms, and we assume 10 uniform
rates. As would be expected, we see that larger δ lead
to reduced savings and higher delay. On the whole we
see that, in this scenario, both savings and performance
remain attractive for transition times as high as ∼ 2ms.

In summary, these results suggest that rate adaptation
as implemented by practRA has the potential to offers
significant energy savings with little impact on packet
loss or delay. In all our tests, we foundpractRA to have
minimal effects on the average delay and loss and hence,
from here on, we measure the performance impact only
in terms of the 98th percentile in packet delay.

Impact of network topology We now evaluate
practRA applied to the Intel enterprise network. Fig-
ure 12 plots the rate reduction across links - each point in
the scatter-plot corresponds to a single link, and we look
at rate reduction for two rate distribution policies: 10 uni-
formly distributed rates and 4 exponentially distributed
rates. Since these are per-link results, we see significant
variations in rate reduction for the same utilization, due
to specifics of traffic across various links. We also notice
that the dominant trend in reduction remains similar to
that seen in the Abilene network (Figure 9).

Link Utilization (%)
0 10 20 30 40 50

Ra
te

Re
du

ct
io

n
(%

)

0

20

40

60

80

100 Uniform (10)
Exponential (4)
Utilization Bound

Figure 12: Rate reduction per link

5 Overall Energy Savings
In the previous sections we evaluated power-
management solutions based on their ability to increase
sleep times (Section 3), or operate at reduced rates
(Section 4). In this section, we translate these to overall
energy savings and hence compare the relative merits
of rate adaptation vs. sleeping. For this, we develop an
analytical model of power consumption under different
operating modes. Our model derives from measurements
of existing networking equipment [13, 5, 24]. At the
same time, we construct the model to be sufficiently
general that we may study the potential impact of future,
more energy-efficient, hardware.

5.1 Power Model

Recall from section 2 that the total energy consump-
tion of a network element operating in the absence
of any power-saving modes can be approximated as:
E = paTa + piTi.

We start by considering the power consumption when
actively processing packets (pa). Typically, a portion
of this power draw is static in the sense that it does not
depend on the operating frequency (e.g.,refresh power
in memory blocks, leakage currents and so forth) while
the dominant portion of power draw does scale with
operating frequency. Correspondingly, we set:

pa(r) = C + f(r) (2)

Intuitively, C can be viewed as that portion of power
draw that cannot be eliminated through rate adaptation
while f(r) reflects the rate-dependent portion of energy
consumption. To reflect the relative proportions of C and
f(r) we set C to be relatively small – between 0.1 and
0.3 of the maximum active power pa(rn). To study the
effect of just frequency scaling alone we set f(r) = O(r)
and set f(r) = O(r3) to evaluate dynamic voltage scal-
ing (DVS). In evaluating DVS, we need to consider an
additional constraint – namely that, in practice, there is
a minimum rate threshold below which scaling the link
rate offers no further reduction in voltage. We thus define
a maximum scaling factor λ and limit our choice of avail-
able operating rates to lie between [rn/λ, rn], for scenar-
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ios that assume voltage scaling. While current transistor
technology allows scaling up to factors as high as 5 [32],
current processors typically use λ ∼ 2 and hence we
investigate both values as potential rate scaling limits.

Empirical measurements further reveal that the idle
mode power draw, pi, varies with operating frequency
in a manner similar to the active-mode power draw but
with lower absolute value[13]. Correspondingly, we
model the idle-mode power draw as:

pi(r) = C + βf(r) (3)

Intuitively, the parameter β represents the relative
magnitudes of routine work incurred even in the absence
of packets to the work incurred when actively processing
packets. While measurements from existing equipment
suggest values of β as high as 0.8 for network interface
cards [13] and router linecards [5], we would like to cap-
ture the potential for future energy-efficient equipment
and hence consider a wide range of β between [0.1, 0.9].

Energy savings from rate adaptation With the above
definitions of pa and pi, we can now evaluate the overall
energy savings due to rate adaptation. The total energy
consumption is now given by:

∑

rk

pa(rk)Ta(rk) + pi(rk)Ti(rk) (4)

Our evaluation in Section 4 yields the values of Ta(rk)
and Ti(rk) for different rk and test scenarios, while
Eqns. 2 and 3 allow us to model pa(rk) and pi(rk) for
different C, β and f(r). We first evaluate the energy
savings using rate adaptation under frequency scaling
(f(r) = O(r)) and DVS (f(r) = O(r3)). For these
tests, we set C and β to middle-of-the-range values
of 0.2 and 0.5 respectively; we examine the effect of
varying C and β in the next section.

Figure 13(a) plots the energy savings for our practical
(practRA) and optimal (link optRA) rate adaptation
algorithms assuming only frequency scaling. We see
that, in this case, the relative energy savings for the
different algorithms as well as the impact of the different
rate distributions is similar to our previous results (Fig. 9)
that measured savings in terms of the average reduction
in link rates. Overall, we see that significant savings are
possible even in the case of frequency scaling alone.

Figure 13(b) repeats the above test assuming voltage
scaling for two different values of λ, the maximum rate
scaling factor allowed by DVS. In this case, we see
that the use of DVS significantly changes the savings
curve – the more aggressive voltage scaling allows
for larger savings that can be maintained over a wide
range of utilizations. Moreover, we see that once again
the savings from our practical algorithm (practRA)
approach those from the optimal algorithm. Finally, as

expected, increasing the range of supported rates (λ)
results in additional energy savings.

Energy savings from sleeping To model the energy
savings with sleeping, we need to pin down the relative
magnitudes of the sleep mode power draw (ps) relative
to that when idle (pi). We do so by introducing a
parameter γ and set:

ps = γpi(rn) (5)

where 0.0 ≤ γ ≤ 1.0. While the value of γ will depend
on the hardware characteristics of the network element
in question, empirical data suggest that sleep mode
power is typically a very small fraction of the idle-mode
power consumption: ∼ 0.02 for network interfaces [13],
0.001 for RFM radios [11], 0.3 for PC cards [11] and
less than 0.1 for DRAM memory [8]. In our evaluation
we consider values of γ between 0 and 0.3.

With this, the energy consumption of an element that
spends time Ts in sleep is given by:

E = pa(rn)Ta + pi(rn)(Ti − Ts) + psTs. (6)

Our evaluation from Section 3 estimated Ts for
different scenarios. Figure 13(c) plots the corresponding
overall energy savings for different values of γ for our
practB&B algorithm. We assume a transition time
δ =1ms, and a buffering interval B=10ms. Again, our
results confirm that sleeping offers good overall energy
savings and that, as expected, energy savings are directly
proportional to γ.

5.2 Comparison: Sleep vs. Rate Adaptation

We now compare the savings from sleeping vs. rate
adaptation by varying the two defining axes of our
power model: C, the percentage of power that does not
scale with frequency, and β that determines the relative
magnitudes of idle to active power draws. We consider
two end-of-the-range values for each: C = 0.1 and
C = 0.3 and β = 0.1 and β = 0.8. Combining the
two gives us four test cases that span the spectrum of
hardware power profiles:

• C = 0.1 and β = 0.1: captures the case where the
static portion of power consumption (that cannot
be rate-scaled away) is low and idle-mode power is
significantly lower than active-mode power.

• C = 0.1 and β = 0.8: the static portion of power
consumption is low and idle-mode power is almost
comparable to active-mode power.

• C = 0.3 and β = 0.1: the static portion of power
consumption is high; idle-mode power is significantly
lower than that in active mode.

• C = 0.3 and β = 0.8: the static portion of power
consumption is high; idle-mode power is almost
comparable to active-mode power.
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Figure 13: Total Energy Saving with Sleeping and Rate Adaptation

We evaluate energy savings for each of the above
scenarios for the case where the hardware supports DVS
and when the hardware only supports frequency scaling.

With DVS: f(r) = O(r3) Figures 14 plots the overall
energy savings for practRA and practB&B for the
different test scenarios. These tests assume 10 uniformly
distributed rates and a sleep power ps = 0.1pi(rn).
In each case, for both sleep and rate-adaptation, we
consider hardware parameters that reflect the best and
worst case savings for the algorithm in question. For
practRA, these parameters are λ (the range for voltage
scaling) and δ (the transition time). For the best-case
results these are λ = 5 and δ = 0.1ms; for the worst
case: λ = 2, δ = 1ms. The parameter for practB&B
is the transition time δ which we set as δ = 0.1ms (best
case) and δ = 1ms (worst case).

The conclusion we draw from Figure 14 is that, in
each scenario there is a “boundary” utilization below
which sleeping offers greater savings, and above which
rate adaptation is preferable. Comparing across graphs,
we see that the boundary utilization depends primarily
on the values of C and β, and only secondarily on the
transition time and other hardware parameters of the
algorithm. For example, the boundary utilization for
C = 0.1 and β = 0.1 varies between approximately
5-11% while at C = 0.3, β = 0.8 this boundary
utilization lies between 4% and 27%. We also evaluated
savings under different traffic characteristics (CBR,
Pareto) and found that the burstiness of traffic has a
more secondary effect on the boundary utilization.

For further insight on what determines the boundary
utilization, we consider the scenario of a single idealized
link. The sleep-mode energy consumption of such an
idealized link can be viewed as:

Esleep = pa(rmax)µT + ps(1 − µ)T (7)

Similarly, the idealized link with rate adaptation is one
that runs with an average rate of µrmax for an energy
consumption of:

Erate = pa(µrmax)T (8)
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Figure 14: Comparison of energy savings between sleep
and rate adaptation. Support for dynamic voltage scaling.

Figure 15 represents the boundary utilization for this
idealized link as a function of C. In this idealized
scenario, the dominant parameter is C because the link
is never idle and therefore β has only a small, indirect
effect on ps. The gray zone in the figure represents the
spread in boundary utilization obtained by varying β
between 0.1 and 0.9.

With frequency scaling alone: f(r) = O(r) Fig-
ures 16 plots the overall energy savings for practRA
and practB&B for the different test scenarios in the
more pessimistic scenario where voltage scaling is not
supported. Due to lack of space, we only plot the com-
parison for the first two test scenarios where C = 0.1;
at C = 0.3, the savings show a similar scaling trend but
with significantly poorer performance for rate-adaptation
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Figure 15: Sleeping vs. rate-adaptation

and hence add little additional information.
The primary observation is that the savings from rate

adaptation are significantly lower than in the previous
case with DVS and, in this case, sleeping outperforms
rate adaptation more frequently. We also see that –
unlike the DVS case – network utilization impacts
energy savings in a similar manner for both sleeping and
rate-adaptation (i.e., the overall “slope” of the savings-
vs-utilization curves is similar with both sleeping and
rate-adaptation while they were dramatically different
with DVS – see Fig. 14).

Once again, we obtain insight on this by studying the
the highly simplified case of a single idealized link. For
this idealized scenario with f(r) = O(r), we find that
the boundary condition that determines whether to use
sleep or rate adaptation is in fact independent of network
utilization. Instead, one can show that sleep is superior
to rate-adaptation if the following inequality holds:

c >
γβ

1 − γ(1 − β)
(9)

Otherwise, rate adaptation is superior.
In practice, network utilization does play a role

(as our results clearly indicate) because the various
practical constraints due to delay bounds and transition
times prevent our algorithms from fully exploiting all
opportunities to sleep or change rates.

In summary, we find that both sleeping and rate-
adaptation are useful, with the tradeoff between them
depending primarily on the power profile of hardware ca-
pabilities and network utilization. Results such as those
presented here can guide operators in deciding how to
best run their networks. For example, an operator might
choose to run the network with rate adaptation during the
day and sleeping at night based on where the boundary
utilization intersects diurnal behavior, or identify com-
ponents of the network with consistently low (or high)
utilization to be run with sleeping (or rate-adaptation).

6 Related Work
There is a large body of work on power management in
contexts complementary to ours. This includes power
provisioning and load balancing in data centers[6, 9],
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Figure 16: Energy savings of sleep vs. rate adaptation,
β = 0.1, frequency scaling alone.

and OS techniques to extend battery lifetimes in
mobiles [10, 30].

Perhaps the first to draw attention to the problem
of saving overall energy in the network was an early
position paper by Gupta et al. [12]. They use data from
the US Department of Commerce to detail the growth
in network energy consumption and argue the case for
energy-saving network protocols, including the possi-
bility of wake-on-arrival in wired routers. In follow-on
work they evaluate the application of opportunistic
sleeping in a campus LAN environment [21, 11].

Other recent work looks at powering-down redundant
access points (APs) in enterprise wireless networks [17].
The authors propose that a central server collect AP
connectivity and utilization information to determine
which APs can be safely powered down. This approach
is less applicable to wired networks that exhibit much
less redundancy.

Sleeping has also been explored in the context of
802.11 to save client power, e.g., see [2]. The 802.11
standard itself includes two schemes (Power-Save Poll
and Automatic Power Save Delivery) by which access
points may buffer packets so that clients may sleep for
short intervals. In some sense, our proposal for bunching
traffic to improve sleep opportunities can be viewed as
extending this idea deep into the network.

Finally, the IEEE Energy Efficient Ethernet Task
Force has recently started to explore both sleeping and
rate adaptation for energy savings. Some initial studies
consider individual links and are based on synthetic
traffic and infinite buffers [4].

In the domain of sensor networks, there have been
numerous efforts to design energy efficient protocols.
Approaches investigated include putting nodes to sleep
using TDMA-like techniques to coordinate transmis-
sion and idle times (e.g., FPS [14]), and distributed
algorithms for sleeping (e.g.,S-MAC [28]). This context
differs from ours in many ways.
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7 Conclusion
We have argued that power management states that slow
down links and put components to sleep stand to save
much of the present energy expenditure of networks.
At a high-level, this is apparent from the facts that
while network energy consumption is growing networks
continue to operate at low average utilizations. We
present the design and evaluation of simple power man-
agement algorithms that exploit these states for energy
conservation and show that – with the right hardware
support – there is the potential for saving much energy
with a small and bounded impact on performance, e.g., a
few milliseconds of delay. We hope these preliminary
results will encourage the development of hardware
support for power saving as well as algorithms that use
them more effectively to realize greater savings.
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Notes
1In reality the energy savings using rate-adaptation will

depend on the distribution of operating rates over time and the
corresponding power consumption at each rate. For simplicity,
we initially use the average rate of operation as an indirect
measure of savings in Section 4 and then consider the complete
distribution of operating rates in Section 5 when we compute
energy savings.
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