
Communication Patterns for Web Interaction
in Named Data Networking

Ilya Moiseenko
UCLA

iliamo@cs.ucla.edu

Mark Stapp
Cisco Systems

mjs@cisco.com

David Oran
Cisco Systems

oran@cisco.com

ABSTRACT
Named Data Networking (NDN) is an information-centric network-
ing architecture that has recently attracted significant attention. At
first glance NDN’s pure pull-based communication model seems
to match the request-reply mechanics of HTTP/Web interactions.
In reality, modern Web communication patterns involve passing
client-side information and/or application state in requests. As we
attempt to apply these communication patterns to NDN, we find
that it is not immediately clear how to use NDN effectively. In this
paper, we examine multiple diverse approaches to running mod-
ern Web-like applications over the NDN communication architec-
ture, discussing advantages and drawbacks of each of the proposed
approaches. Our primary goal is to start a focused discussion of
how NDN can support modern Web communication patterns effec-
tively.

Categories and Subject Descriptors
C.2 [COMPUTER-COMMUNICATION NETWORKS]: Network
Architecture and Design; Network Protocols; Distributed Systems

Keywords
NDN; REST; Web

1. INTRODUCTION
The Web today is a universal platform for many kinds of ser-

vices, from familiar content browsing and media streaming to purpose-
built applications hosted in browsers and in stand-alone agents. The
backbone of the web is the HTTP protocol [1] [2], which is based
on a request/response model running on top of a point-to-point con-
nection to a server. A client sends a request in the form of a mes-
sage containing a URI [3], request meta-information, and possible
body content. The server responds with a message containing en-
tity meta-information, and possible entity-body content.

Named Data Networking is a recently proposed general-purpose,
information-centric network architecture [4] [5]. It uses a pull-
based model: clients send requests into the network in order to
retrieve data; no other unsolicited transmission is allowed. NDN

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICN’14, September 24–26, 2014, Paris, France.
Copyright 2014 ACM 978-1-4503-3206-4/14/09 ...$15.00.
http://dx.doi.org/10.1145/2660129.2660152.

defines two types of network packets; the two possess highly asym-
metric properties. Clients send Interest packets, which contain only
a name and a minimal set of additional control fields. Servers re-
spond with Data packets, which contain the data associated with
the name in the corresponding Interest.

In this paper, we examine diverse approaches to matching the
needs of an important category of modern applications to the ca-
pabilities of the NDN protocol architecture. Challenges present
themselves when we attempt to support Web communication as it
might take place over a future NDN internet. Our goal is to stim-
ulate progress on this topic in the research community. We do not
believe it is either desirable or straightforward to simply reproduce
HTTP bit-for-bit within an NDN protocol envelope. Rather, we
explore the approach of enabling NDN-based Web clients to pass
the necessary meta-information and application state to Web server
applications that use NDN. We start with the necessary abstract
communication patterns and use those patterns to explore how they
might be realized within NDN protocol mechanics.

In Section 2 we provide a brief overview of the NDN architec-
ture. In Section 3 we describe the current state-of-the-art with Web
applications over the IP Internet and explain some of the immedi-
ate problems that arise when IP is replaced with NDN. In Section 4
we introduce NDN communication patterns suitable for Web-like
interaction and provide a high-level examination of their advan-
tages and drawbacks. Section 5 describes an analytic model used
to quantify the efficiency of the proposed NDN communication pat-
terns. Section 6 contains a summary of our observations and a com-
parison chart of the communication patterns discussed in this paper.

2. NAMED DATA NETWORKING
Named Data Networking (NDN) proposes the replacement of

IP’s endpoint-to-endpoint communication model with one centered
around named objects. NDN offers two distinct packet types: In-
terest and Data. Both types carry a name, which uniquely identi-
fies an information object. Names in NDN are hierarchically struc-
tured, and contain distinct components. Large objects that cannot
be carried in a single Data packet are segmented into multiple pack-
ets; the segment number is carried as a component at the end of
the name. An example representation of an NDN name might be:
/com/example/data/object/1. Applications are expected to
design appropriate naming schemes for the kinds of communica-
tion they require.

To retrieve data, a consumer requests it by sending an Interest
packet containing the name of the desired content. A router uses
this name and its Forwarding Information Base (FIB) to forward
the Interest closer to the location of the data. When an Interest
reaches an entity who has a matching Data packet, the Data packet
is returned to the consumer. Each router who forwards the Interest

87

constructs an entry in a Pending Interest Table (PIT). Each PIT
entry contains the Interest name, the ingress interface(s) where the
Interest has arrived, and the egress interface(s) to which the Interest
has been forwarded. Data packets are returned by following the
reverse path of the Interest, using the per-Interest state kept in the
PIT.

NDN routers can cache any passing Data packet in a data struc-
ture called a Content Store (CS). A cached Data packet can be used
to satisfy an Interest. One of NDN’s central tenets is that a con-
sumer does not care whether a Data packet was served from a router
cache or from the original producer: the trust in data is decoupled
from the place and time the data was obtained, and any consumer
can validate the integrity and provenance of the content using the
Data packet’s signature.

Crucially, one Interest packet returns at most one Data packet.
A client retrieves a large, segmented object by sending multiple
Interests naming each segment. In NDN, there are no unsolicited
Data packets; the PIT mechanism in a router prevents unsolicited
Data packets from being processed or forwarded. This symmetry
between Interest and Data packets is often called flow balance.

3. WEB INTERACTION
Arguably, the most widespread and economically important of

the Internet’s application infrastructures is the modern Web, which
uses HTTP/TCP/IP as its foundational protocol underpinnings. In
addition to carrying content data, the HTTP protocol defines a wide
range of meta-data for both requests and responses. The meta-
data are carried in HTTP headers, part of the messaging proto-
col. The meta-data sent in client requests may be information about
the client application itself, including information about acceptable
content languages and data encodings.

A large fraction of these Web applications use a transactional
paradigm known as Representational State Transfer (REST) [6].
REST improves scalability by distributing application state from
servers to clients. A pure RESTful request is self-contained — it
carries all the information necessary for a service to process the
request. Without the client-side context, a RESTful service may
be inefficient or impaired, or may not be able to function at all.
The familiar HTTP cookie is a simple form of distributed context,
where a service uses the HTTP protocol to convey tokens, often
opaque, to its clients. The tokens are typically unique to each client;
this allows the service to associate multiple requests from a given
client together. The cookie may carry client-side state directly, or
may be used as a reference to state held at the server.

The usability of these distributed applications depends on the la-
tency between user action and the rendering of a result. Because
the Web is composed of multiple highly distributed services, this
issue of latency (round-trips within the transport or the application
protocol) has considerable importance in the system design. Mod-
ern browsers and other applications have evolved to be ever more
efficient in the way they use round-trips, by caching content locally,
and by reusing DNS information and TCP connections. Some mod-
ern browsers even speculatively initiate DNS queries and TCP con-
nection activity in order to improve perceived responsiveness [7].

As we view the current state of HTTP/RESTful communication,
then, we see these key points:

• Clients have data to send in their requests, in the form of
HTTP header meta-data and other application-specific REST-
ful state.

• Many client requests are intimately bound to the client con-
text data associated with them; the context and the request are
carried together in the HTTP communication protocol mes-
sages. The client-specific data tends to make each request

unique even when clients are accessing common resources
or services.

• Latency and number of network round-trips are key factors
in efficiency and perceived responsiveness.

Given our understanding of the existing NDN protocols, REST-
ful interactions encounter a number of challenges:

• All of the client-side context and meta-data associated with a
request must be encoded in the Interest name field: no other
field is present in the base NDN architecture.

• NDN Content objects are immutable, and the object names
are bound to fixed data. Services are not able to return dif-
ferent results based on client-specific processing unless the
clients use unique names in their requests.

• NDN’s stateful forwarding supports clients (consumers) who
do not have to have a globally-routable address (name). Web
services that require bidirectional data flow cannot get their
own requests to their clients unless the clients have routable
names.

• Many web sites and RESTful applications depend on being
able to identify (or at least count) the specific clients mak-
ing requests. NDN mechanisms like Interest aggregation and
pervasive caching prevent producers from seeing some Inter-
est packets.

In the next section, we will examine a range of approaches to
supporting RESTful and Web applications on NDN networks. Each
approach addresses the challenges we have outlined above in a dif-
ferent way, adapting the basic NDN protocols in more or less sig-
nificant ways.

4. NDN COMMUNICATION PATTERNS
In this section, we explore communication patterns suitable for

running transactional and interactive REST- or Web-like applica-
tions over NDN. We focus on the key issue as we see it: how can
servers obtain the client meta-data and context information that is
associated with client requests? We start with an approach that re-
lies solely on the existing design of NDN, but several important
drawbacks compel us to try out alternative patterns which intro-
duce various degrees of changes in NDN. The two types of NDN
packets divide the discussion into two corresponding categories:
approaches using clients’ Interest packets alone, and approaches
where the server is obliged to retrieve information from client-
sourced Data packets.

We discuss benefits and disadvantages of each communication
pattern as well as the effect each has on the network, considering
several specific factors as we examine each approach:

• Interest name size: impact on routers
• Data name size: impact on Data packet efficiency
• Round-trips
• Client data segmentation and reliable delivery
• Potential security vulnerabilities: reflection, amplification,

flooding, spoofing/poisoning

4.1 Name Component
In the basic NDN protocol design, an Interest packet carries lit-

tle more than a Name field. In some previous work, Interest names
have been used to pass commands to an NDN router [8], to pass au-
thenticated requests to a lighting controller [9], and to convey the
current state of a system to support distributed dataset synchroniza-
tion [10].

88

Today’s interactive Web applications need to pass meta-information
and application-specific data with their requests, so we begin by
examining the consequences of using the Interest’s Name field to
convey that information. An Interest packet is routed through the
network via the name it carries. Application meta-information and
client-side data required for a particular type of request could be
carried by appending it using one or more trailing name compo-
nents. This pattern is illustrated in Figure 1.

consumer producer router

PIT

Interest : /prefix/[Meta, Data]

Data: /prefix/[Meta, Data]

/prefix/[Meta, Data]

/prefix/[Meta, Data]

Interest

Data

Figure 1: Interest name carries client-side information.

This communication pattern works with the current NDN archi-
tecture, and naively seems fairly natural. The client-side data is
bound to each Interest packet directly, satisfying the server’s ex-
pectation that the client-side context will be present along with each
client request.

However, there are a number of significant drawbacks to this
simple approach. The first concern is related to stateful packet
forwarding in NDN. Contemporary HTTP requests that perform
browsing often convey hundreds of bytes (or even kilobytes) of
supplemental information in HTTP headers [11] [12]. If this meta-
information and application-specific data is placed in the Interest
name, there may be a significant additional overhead on interme-
diary NDN routers. Each router will have to process these large
names, increasing the computational load, and the accumulated
name state held in their PIT data structures will consume substan-
tially more memory.

A second concern is decreased network throughput and increased
nodal processing delays. The entire name must be echoed in each
Data packet. Inside the NDN router, longer names may lead to
more operations on name components, slowing down packet pro-
cessing. The name-to-payload ratio can turn out to be far from
optimal. Regardless of the eventual fragmentation scheme NDN
proposes, large names will reduce available packet space, reducing
space for the actual content. This leads to decreased goodput, and
potentially more fragmentation and reassembly operations per Data
packet.

A third concern is the possibility of cases where a single Inter-
est name is not able to carry all required application data. While
there is no clear consensus within the NDN community on the
maximum allowed size of the name, there is a clear possibility that
meta-information and application data (e.g. HTTP POST or a large
cookie) may be larger than the maximum name length can accom-
modate. Within the constraints of the current NDN protocol, meta-
information and application data would have to be subdivided into
multiple Interests’ names, transmitted as multiple Interest packets
and reassembled by the producer. Figure 2 illustrates how NDN
might accommodate transmitting arbitrary sized client-side data to
the producer, and retrieving an arbitrary sized response from it.

consumer producer router

PIT

Interest1 : /prefix/[Meta1, Data1]

Data1

Data2

Interest2 : /prefix/[Meta2, Data2]

/prefix/[Meta1, Data1]

/prefix/[Meta2, Data2]

/prefix/[Meta1, Data1]

/prefix/[Meta2, Data2]

Interest1

Interest2

Data1

Data2

Figure 2: Client data carried in multiple Interests.

According to this pattern, the consumer sends no fewer Inter-
ests than needed to both accommodate client-side data in Interests
and fetch all segments of the producer’s reply. This pattern appears
to take only a single round-trip to transmit the whole request and
receive the whole reply. But once multiple related packet transmis-
sions are introduced, we now need to consider some sort of reliable
delivery of consumer-supplied information. That is, the client must
re-transmit its Interests in the absence of any timely response or
acknowledgement that they have been delivered. This complexity
leads us to examine some alternative protocol approaches.

The conventional design of NDN interactions is that the producer
acknowledges arrival of Interest packets in its Data packets, but
the situation may be more nuanced. The completion time for Web
and application requests requiring dynamic on-demand content can
vary widely. As a result, it is not clear how the client should esti-
mate waiting time between Interest retransmissions. One extreme
is to use an Interest retransmission timer at the scale of network
RTT. But this may result in many unnecessary retransmissions of
Interests if the server processing time is significantly greater than
RTT. The other extreme is to use a timer scaled to the tolerable ap-
plication response delay. This in turn results in poor responsiveness
in cases when network retransmission is indeed necessary. NDN
protocol mechanics do not inherently distinguish network-level and
application-level responsiveness, despite the substantially differing
time scales.

One solution might be for the producer to use Data packets to ac-
knowledge delivery of Interest packets containing meta-information
and application data. The producer application would acknowledge
each of these Interest packets prior to the execution of the actual
content request, resulting in a two-phase operation. First, an initial
set of Interest packets conveys the client-side data; Data packets
from the producer acknowledge receipt of this information. Then a
second round of Interest packets retrieves the actual producer-side
content. This pattern is illustrated in Figure 3.

Note that this approach employs parallel Interest transmission to
reduce overall latency. Separating the delivery of client data from
the Interests used to retrieve producer content eliminates the need
for all Interests in the exchange to use the same name, reducing
the Interest size penalty. However, a significant problem with this
approach is that the first round of ‘acknowledgement’ Data pack-
ets must be signed with the producer’s private key in order to be
considered valid. Signing a Data packet is computationally costly.
If malicious clients flood Interests like these, this could lead to a
denial of service (DoS) attack on the producer. In addition, the
producer requires some means of associating the client-side data in

89

consumer producer router

PIT

Interest1 : /prefix/[Meta1, Data1]

Data1
Data2

Interest2 : /prefix/[Meta2, Data2]

/prefix/[Meta1, Data1]

/prefix/[Meta2, Data2]

/prefix/[Meta1, Data1]

/prefix/[Meta2, Data2]

Interest1

Interest2

Data1 – ACK to Interest1

Data2 – ACK to Interest2

/prefix/1

/prefix/2

Interest1

Interest2

/prefix/1

/prefix/2

Data1

Data2

Figure 3: Two-phase Interest exchange.

the initial round of Interests with the subsequent Interests for the
producer’s content, resulting in more interaction state at the server.

4.2 Compressed name component
Including significant client-side data in Interest names raises con-

cerns about memory scalability for the PITs of intermediary NDN
routers, and decreased throughput due to the need to echo the en-
tire name in each Data packet. These concerns can be partially
addressed by compressing the client-side data into a constant size
compact representation, and using this representation in the router
PIT and in Data messages.

To achieve compression, a specialized Name component could
be introduced to hold client meta-information and application data.
An NDN router recognizing this specialized name component could
then compute a hash of the component. This operation would ef-
fectively reduce the amount of state held in the PIT, compressing
variable meta-information and application data into a constant size
hash value. In order to forward Data packets back to the consumer,
the producer application would replace the specialized name com-
ponent with the corresponding hash value. As a result, Data packet
names would continue to match the names in the PITs of interme-
diary routers, while occupying less space. This technique is illus-
trated in Figure 4.

consumer producer router

Interest: /prefix/[Meta, Data]

Data: /prefix/[hash]

PIT

/prefix/[hash]

/prefix/[hash]
Data

Interest

Figure 4: Consumer-supplied name-component is compressed
to a hash.

4.3 Common Issues with Interest Names
Even with name component compression, all protocol approaches

where meta-information and application data are pushed in Interest
packet name components still have a number of common problems.

Exposure of meta-information and application data impairs con-
fidentiality. If meta-information similar to HTTP cookies and HTTP
headers such as Referer and User-agent are passed unencrypted in
an Interest name component, the user can be easily tracked and
deanonymized by a third-party observer. If security-sensitive data
is held in these meta-information structures, the compromise could
be even more substantial.

Signature generation must be performed on-the-fly for all Data
packets that acknowledge the arrival of Interest packets with names
carrying meta-information and application data. The per-client in-
formation creates names that are unpredictable, so the producer ap-
plication must build and sign the corresponding Data packets dy-
namically. This introduces a potential vulnerability to a resource-
exhaustion attack. NDN signature generation with public key cryp-
tography is computationally expensive — significantly more ex-
pensive than, for example, SYN cookie generation.

Interest packet flooding in NDN networks can be a vector for
Distributed Denial of Service (DDoS) attacks [13]. It has been
shown that many Interest flooding attacks can be mitigated by ex-
ploiting stateful forwarding in NDN routers, such as by observing
the rate with which Interests successfully retrieve Data packets on
a per-prefix per-interface basis [14]. If meta-information and ap-
plication data is pushed in Interests and if producer applications
acknowledge every Interest with a Data packet, the per-prefix per-
interface statistics may be distorted. An artificially high Interest
satisfaction rate might jeopardize detection and mitigation of Inter-
est flooding attacks.

4.4 Application Data field
We have examined some approaches to carrying client-side in-

formation in Interest names; now we’ll explore sending request
meta-data in the Interest packet, but outside the Interest name. In
this approach, an Interest carries the additional application data in
an ApplicationData field. This field would contain opaque data,
and thereby not influence the operation of NDN routers or their
processing in any way. The Interest name only requests the named
content, and does not carry any client- or application-specific infor-
mation. Figure 5 illustrates this approach.

The client includes an AppData field in its "base" Interest packet
- the Interest for segment zero of a possibly segmented Data object.
For Web-like interactions, the AppData field would carry meta-
information about the client application, including stored cookies
(i.e. what is found today in HTTP headers). In a standalone REST-
ful application, the field would carry client-side application context
data.

The AppData field is opaque to routers. No special name com-
ponents are present, and no special name processing takes place at
routers. If a client Interest packets name a cacheable object, in-
termediate routers can perform normal CS processing and return
the cached data. If an application requires server-side processing,
client Interests must use unique-ified names so that Interests from
different clients avoid aggregation.

The client does not have to send the entire AppData in each In-
terest during a multi-segment exchange. In an ongoing exchange
of packets to retrieve larger, segmented Data objects, the server
may need to associate the correct client context with each individ-
ual Interest in order to respond properly. To accomplish this, the

90

Interest: /prefix/1 ... n
AppData: token consumer producer router

Interest: /prefix/0
AppData: Meta, Data

Data: /prefix/0
AppData: token

PIT

/prefix/0

/prefix/1
Data1

Interest0 + Meta, Data

/prefix/1
Interest1 + token

/prefix/0
Data0 + token

/prefix/2
Data2

/prefix/2
Interest2 + token

Data: /prefix/1 ... n
AppData: token

Figure 5: Interest carrying ApplicationData field.

server could generate a token — presumably shorter than the entire
client context data — and return it to the client with the first Data
packet. Subsequent Interests then would include this token in the
AppData, allowing the server to properly associate the client meta-
data with each individual Interest packet. If a series of exchanges
required dynamic, frequently updated client context, obviously that
context would have to be transferred between client and server as it
changed.

Employing such a token mechanism requires that each Inter-
est contain either the client context, or a corresponding server-
generated token. This may affect a client’s choice of initial Interest
window size. If the initial Interest window size is just one, data
fetching efficiency during the first round trip is reduced. If the ini-
tial Interest window is greater than one, the client has not been of-
fered a server-side token, so it must transmit redundant application
data in each Interest in this window. The choice of initial window
size for Interests using a scheme like this may have delicate trade-
offs.

The communication pattern with the Application Data field has
the following benefits:

• The Interest name does not need any special processing. There
is no need for complex name matching at the PIT or CS:
exact-match for names is available.

• The application context information travels directly with the
Interests; the client context, name, and returning data remain
bound together.

• The application data can be transferred just once, with the
initial Interest. Subsequent Interests can refer to the context
if a server-generated token is returned in Data packets.

• No additional round-trips are needed.

Any scheme that "pushes" client data in Interest packets increases
Interest packet size, possibly substantially. The NDN property of
flow balance assumes that Interest packets will generally be small
compared to the corresponding Data packets. Pushing ‘unsolicited’
data might compromise that property. To address this concern we
might consider a limit on the size of Interest packets. A 4KB limit,
for example, would be adequate for most current Web-like inter-
actions [11]. However, this is still quite large — possibly large
enough to make bandwidth accounting for Interests more impor-
tant. A RESTful application that required a larger client payload
would need to send multiple Interests, or use a different mecha-
nism.

4.5 Data Locator field
The alternative to pushing client-side data with Interest packets

is a communication pattern where the producer application pulls
data it needs from the client. An essential piece of such protocols
is a so called Interest-Interest exchange [15]. In this exchange, an
initial Interest packet is expressed by the consumer application as
usual. This initial Interest prompts the producer application to ex-
press one or more Interest packets in return. These requests from
the producer retrieve client-specific information from the client; the
producer then uses that information to satisfy the client’s original
Interests.

The Interest-Interest information could be placed in the initial
client Interest name, but this approach would suffer from some of
the same constraints as the examples in the previous sections —
extremely long NDN names have drawbacks. Enclosing one name
in another, for example, will not allow both names to approach their
maximum lengths, which is inconvenient for application designers.

In our view, a better alternative would be to introduce an optional
DataLocator field in the Interest packet. The presence of the Dat-
aLocator would serve as an indication for the producer that some
supplemental information — meta-information, consumer-supplied
data, etc. — is available to be fetched from the client before pro-
cessing the initial request. The DataLocator would therefore con-
tain a name the producer could use to express Interests that reach
the client application. We discuss some variations of this mecha-
nism below.

4.5.1 Routable name
This pattern requires the consumer application to provide a routable

name at which it can be reached. The client must be prepared to
package necessary meta information and application data in properly-
formatted and signed Data packet(s). The consumer application
might acquire a routable prefix from the point of presence (PoP) of
the Internet Service Provider (ISP) that it is currently connected to,
or through some other means.

consumer producer router

Interest: /prefix
Interest DataLocator: /routable/prefix

Data: /prefix

Interest: /prefix

Data: /prefix

PIT

/prefix

/routable/prefix

/prefix
Interest: /routable/prefix

/routable/prefix

/prefix
Data: /routable/prefix

/prefix

Figure 6: Interest-Interest exchange with routable name.

The consumer application sends an Interest packet containing
the name for the producer to use in a DataLocator field. When
the producer application receives the Interest, it transmits an In-
terest packet using the name specified in the DataLocator field to
fetch meta-information and/or application data associated with the

91

client’s request. This communication pattern is illustrated in Fig-
ure 6.

The immediate advantage of this protocol is eliminating "pushed"
data from client’s Interests, which do not need to convey more than
a single name. This restores the NDN flow balance property. A
second important benefit is that the producer application is now in
control of the data retrieval process. The producer is subject to
standard NDN flow control and congestion control mechanisms as
it retrieves Data from the client.

A third benefit is that some client-side data can benefit from
NDN’s natural on-path caching. Web cookies that represent the
state of the server, kept on the client, may be stable for extended
periods of time. Client data associated with related idempotent re-
quests (e.g. HTTP GETs) can be cached in the intermediary routers
that are located closer to the producer. Both the client and server
therefore benefit from the NDN mechanisms that localize traffic
and reduce latency.

However, the use of routable names for the server to fetch client
data has several drawbacks. First, the client must acquire and con-
vey a routable name prefix. A mobile consumer will either have
to acquire a new prefix every time its connectivity changes, or use
some sort of indirection service to map a stable name alias to its
current routable prefix. This adds complexity, and introduces the
possibility of traffic interruptions.

Second, the DataLocator mechanism’s use of a routable name
could be used to launch a reflection attack involving the producer.
If an attacker specifies the name of a target third party, the producer
will be induced to direct Interests to that third party. The reflection
attack might be mitigated if the DataLocator is inspected when In-
terests enter the client’s Internet Service Provider (ISP) network.
The ISP ingress router could perform a check similar to an ingress
filter in Reverse Path Forwarding (RPF) [16], accepting and for-
warding Interest packets carrying DataLocators that will route to
the source face. The router would drop any Interests with DataLo-
cator names that would route elsewhere.

4.5.2 Non-routable transient name
The problems caused by the use of routable prefixes in the Dat-

aLocator field prompt us to explore the possibility of using non-
routable prefixes for client-side data. This approach uses the per-
packet router PIT state to construct an ephemeral path for Inter-
ests going back from the producer to the client in a manner some-
what like Kite [17]. As shown in (Figure 7), this introduces several
changes in the forwarding mechanism of an NDN router:

1. The client constructs a unique name, preferably using a dis-
tinguished (by convention) non-routable prefix, and includes
it in a DataLocator field.

2. When an Interest containing a DataLocator field arrives at a
router, the DataLocator name is saved in the PIT along with
the name in the Interest packet itself.

3. The producer responds with an Interest using the non-routable
name taken from the DataLocator. As the producer’s Inter-
est moves through the network, each NDN router performs
an exact match on the producer’s Interest name using the ex-
tended PIT entries created as it forwarded the client’s original
Interest. If the router finds a match, it creates a new PIT entry
for the non-routable name with the egress interface matching
the ingress interface of the original Interest. The FIB is not
consulted: the producer’s Interest is forwarded on the inverse
path of the consumer’s original Interest packet using the PIT
alone.

The DataLocator name is not independently routable. If the
server (or anyone else) tries to access this information object out-

consumer producer router

Interest1: /prefix
Interest DataLocator: /nonroutable/prefix

Data1: /prefix

match

Interest1

New PIT entry

PIT

Ingress
interface

Interest
name

Interest
DataLocator

Egress
interface

1 /prefix /nonroutable/prefix 4

1 /prefix /nonroutable/prefix 4

Interest1

4 /nonroutable/prefix --- 1

1 /prefix /nonroutable/prefix 4

4 /nonroutable/prefix --- 1
Data1

1 /prefix /nonroutable/prefix 4
Data1

Interest1: /nonroutable/prefix

Data1: /nonroutable/prefix

Figure 7: Interest-Interest exchange with non-routable name.

side the context of the enclosing Interest/Data exchange, the oper-
ation will fail. Further, since the names used cannot be forwarded
outside the reverse path, reflection attacks are eliminated.

The fact that these non-routable Interests bypass the normal FIB
does not prevent them from being satisfied by a Content Store. If a
router’s CS cache has a matching entry, this entry can be returned to
the producer. However, the non-routable name can take any form,
including self-certifying and other flat names, and therefore reverse
forwarding cannot depend on longest prefix lookup.

When a mobile consumer changes its connectivity, the path for
reverse Interest packets can be quickly rebuilt by client-side re-
transmission of its Interest packet, which will create necessary PIT
state again.

If client meta information or application data is too large to fit in
one Data packet, the consumer application segments it into multiple
Data packets just as would be done for any large Data object. The
producer application issues multiple interests to retrieve the entire
information object. In order to accommodate this, the algorithm
matching DataLocator names in the PIT ignores any segment num-
ber name component. Pipelining would allow a producer to fetch
arbitrary size client data with minimal round trips.

5. ANALYTIC MODEL
In this section, we develop a simple analytic model and use it

to characterize each communication pattern. We model bidirec-
tional traffic between an HTTP/Web-like client (consumer) and an
HTTP/Web-like server (producer); network traffic is an obvious,
key metric applicable to all of the communication patterns we have
considered.

The model applies NDN segmentation as data objects grow large.
Segmentation is the operation where a content producer splits a
large data object into smaller pieces, naming and signing each sepa-
rately. NDN flow balance, the one-to-one correspondence between
Interest and Data packets, assumes that Data packets have constant

92

0.678	

1.749	

13.555	

67.773	

134.983	

674.912	

1349.824	

0.665	

1.616	

12.22	

59.972	

119.944	

599.156	

1198.312	

1.276	

2.211	

11.641	

53.607	

106.09	

525.802	

1050.479	

0.665	

1.607	

11.176	

53.792	

107.104	

533.436	

1066.391	

0.814	

1.749	

11.279	

53.745	

106.878	

531.64	

1062.667	

0	 200	 400	 600	 800	 1000	 1200	 1400	

100	 B	

1	 KB	

10	 KB	

50	 KB	

100	 KB	

500	 KB	

1	 MB	

Bidirec'onal	 Interest-‐Data	 traffic	 (KB)	
Pr
od

uc
er
	 c
on

te
nt
	 si
ze
	

Name	 component	 Compressed	 Name	 component	 Interest	 acknowledgement	 AppData	 field	 DataLocator	 field	

Figure 8: Bidirectional traffic model using 512 bytes of client data.

size for simplifying hop-by-hop flow- and congestion control. A
large name field reduces the available space for the content pay-
load in each fixed-size Data packet. A given content object requires
more or fewer segments (packets) depending on the payload space
made available in each pattern.

The model utilizes a base Interest name (prefix) that is 50 bytes
long, with 512 bytes of client-side data. We do not argue that this
is accurate or representative of actual traffic; rather that it is not
unrealistic given the current web traffic patterns [11].

We use this simplified arithmetic equation to compute the num-
ber of segments (NoS):

Number of segments (NoS) =
Producer content size

Space for content

The choice of the communication pattern affects the amount of
space available for content in Data packets. In the name component
pattern, all of the client data is appended to the base name prefix. In
the compressed name component pattern, Data packet names have a
large hash value (e.g. SHA-512) appended to the base name prefix.
In the Interest acknowledgement pattern, client data is not echoed
in the name of Data segments. In the application data pattern, pro-
ducer generates and echoes back a token (e.g. SHA-256), carried
in its Data segments. In the DataLocator pattern, client data is not
echoed in the name of Data segments.

Space = Data size−

Prefix− Client data (Name component)

Prefix−Hash (Compressed name)

Prefix (Interest ack.)

Prefix− Token (Application data)

Prefix (Data Locator)

Name component pattern carries client data in the Interest name.
Each segment is fetched with an Interest carrying the relatively
large name.

Interest traffic = NoS ∗ (Prefix+ Client data)

Large names force the producer to send more segments, increasing
the amount of bidirectional traffic:

2way traffic = Interest traffic+NoS ∗Data size

Compressed name component pattern carries client data in each
Interest name, but echoes back only the hash of the client data in
each Data packet of the producer’s response.

Interest traffic = NoS ∗ (Prefix+ Client data)

Total amount of bidirectional traffic:

2way traffic = Interest traffic+NoS ∗Data size

Interest acknowledgement pattern uses an initial series of Inter-
ests containing client data, acknowledged with signed Data pack-
ets. The producer’s actual content is then fetched using the normal
length Interest packets.

First round — acknowledged delivery of client data. A Data
packet with Interest acknowledgement has a negligible payload,
therefore:

1st round traffic = (Prefix+ Client Data) ∗ 2

Second round — fetching segmented content from the producer.

2nd round traffic = NoS ∗ prefix+NoS ∗Data size

Total amount of bidirectional traffic:

2way traffic = 1st round traffic+ 2nd round traffic

Application Data pattern carries client data in a single Inter-
est, in a special Interest packet field. The producer generates and
echoes back a token, carried in its Data segments. Subsequent In-
terests, if any, use the producer’s token and do not have to convey
the client data explicitly.

Interesttraffic = (Prefix+Clientdata)+NoS∗(Prefix+Token)

Total amount of bidirectional traffic:

2way traffic = Interest traffic+NoS ∗Data size

93

	 	 	 	 	 	 	 	 	 	 Pa#ern	
Criteria	

Name	 component	
	

Compressed	 	
Name	 component	

Interest	
acknowledgement	

Applica6on	 Data	
field	

Routable	 	
DataLocator	

Non-‐routable	
DataLocator	

Impact	 on	 router	
memory	 Large	 Normal	 Large	 Normal	 Normal	 2	 x	 Normal	

Payload/Name	 ra6o	
in	 Data	 packets	 Low	 Normal	 Low	 Normal	 Normal	 Normal	

Round	 trips	 1	 round	 1	 round	 2	 rounds	 1	 round	 2	 rounds	 2	 rounds	

Support	 of	 large	 client	
data	 No	 No	 Mul6ple	 Interest	

packets	 No	 Mul6ple	 Data	 	
packets	

Mul6ple	 Data	
packets	

Retransmission	 of	
client	 data	

Slow,	 7mescale	 of	
applica7on	 RTT	

Slow,	 7mescale	 of	
applica7on	 RTT	

Fast,	 6mescale	 of	
network	 RTT	

Fast,	 6mescale	 of	
network	 RTT	

Fast,	 6mescale	 of	
network	 RTT	

Fast,	 6mescale	 of	
network	 RTT	

Disrup6on	 scenarios	

PIT	 infla6on	
	

DoS	 on	 router’s	
fragmenta6on	 &	

reassembly	

DoS	 on	 router’s	
hashing	

	
	
	

DoS	 on	 producer’s	
signing	

	
DDoS	 with	 Interest	

flooding	 	

Client	 mobility	
	
	

Reflec6on	 aNack	
	

Table 1: Comparison chart of communication patterns.

DataLocator pattern carries an additional name in a special field
of each Interest packet. For the purposes of this arithmetic traffic
model, the routable and non-routable locator names are identical.
We use 50-byte name lengths for both the content name and the
DataLocator name.

The client’s Interest packets carry the content name and a Dat-
aLocator name. The producer responds with its own Interest(s)
using the DataLocator name.

Interest-Interest traffic = 2 ∗ Prefix ∗NoS + Prefix

The client provides its client data in Data object(s) using the Dat-
aLocator name, then retrieves the actual content from the producer.

Data-Data traffic = Data size+NoS ∗Data size

Total amount of bidirectional traffic.

2way traffic = Interest-Interest traffic+Data-Data traffic

Figure 8 summarizes the results of applying this arithmetic model.
The canonical NDN Interest formulation proves to be noticibly less
efficient than any other. Name field size has an obvious impact
for any but the smallest contents; even the use of a compressed
name component has a considerable though less-dramatic impact.
The network bandwidth used by the other three protocol patterns
is roughly equivalent. This particular metric does not distinguish
among these other approaches particularly, though we highlight
some key comparison points in Table 1 and discuss it in the next
section.

6. CONCLUSION
In this paper we have explored the characteristics of HTTP or

REST-like interactions using the NDN communication model. Ac-
tive state transfer from the client to the server is one of the defining
characteristics of these interactions. This state transfer from client
(consumer) to server (producer) in NDN is challenging, for a num-
ber of reasons:

• Interest packets are lightweight: they do not have a "pay-
load" field to carry ancillary parameters, and have no confi-
dentiality protection mechanisms without additional protocol
machinery.

• Interests create state on every NDN router, whose size is cor-
related with the size of the names carried.

• Interests are aggregated in order to reduce the router state
and save upstream bandwidth. Additional name manipula-
tion needs to be implemented in clients to guarantee Interest
propagation all the way to the producer application where
this is necessary.

• NDN clients (consumers) are not required to have a routable
name, making it difficult for them to ’publish’ data as NDN
content objects.

We describe a number of communication patterns to enable NDN
to handle RESTful transactions. All, in our view, have significant
drawbacks or disadvantages, as summarized in Table 1.

The Name component pattern has an impact on all processing
and message efficiency, due to name size expansion.

The Compressed name component pattern violates the NDN
assumption that Interests and returning Data packets use identical
names. Interests still carry potentially large names; there is no way
to perform fast retransmission of Interest packets without additional
protocol machinery.

The Interest acknowledgement pattern uses two phases: one
set of Interests conveys client-side data, and a second retrieves the
producer-side content. This helps by allowing retransmission of
client data without waiting for a server timeout, but imposes a bur-
den on producers. It also may frustrate Interest flooding mitigation
techniques by skewing the network statistics they depend on.

The Application Data field pattern is efficient, but requires changes
in the Interest packet format, and potentially challenges the inher-
ent NDN assumption that Interest packets are small.

The Routable DataLocator pattern not only requires changes in
the Interest packet format, but also depends on a client’s obtaining
a routable prefix to be able to respond to Interests sent by the pro-
ducer. This pattern is awkward for mobile clients, and may make
NDN services vulnerable to reflection attacks.

The Non-routable DataLocator pattern exploits stateful for-
warding to instantiate a transient reverse path for Interests sent by
the producer. Since no information in the FIB is being used for re-
verse forwarding, the DataLocator name can be non-routable. The
consumer does not need to obtain a routable prefix, but the router’s
forwarding algorithm is more complicated.

Eventually, these Web-like/REST-like interactions in NDN may
evolve in ways that make them significantly different from their
current forms in the IP Internet. But some fundamental constraints

94

or properties will continue to hold: technical feasibility (e.g. scal-
ability, latency) that affect all distributed, REST-ful services, and
business needs that drive the ’commercial’ Web. In our opinion,
REST-like applications are important, and therefore it is highly de-
sirable that they be supported effectively. This deserves considera-
tion in the ongoing discussion and design of the NDN architecture.

7. REFERENCES
[1] T. Berners-Lee, R. Fielding, and H. Frystyk, “RFC 1945:

Hypertext Transfer Protocol–HTTP/1.0,” The Internet
Society, 1996.

[2] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter,
P. Leach, and T. Berners-Lee, “RFC 2616: Hypertext
Transfer Protocol–HTTP/1.1,” The Internet Society, 1999.

[3] T. Berners-Lee, R. Fielding, and L. Masinter, “RFC 3986:
Uniform resource identifier (URI): Generic syntax,” The
Internet Society, 2005.

[4] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass,
N. H. Briggs, and R. L. Braynard, “Networking named
content,” in Proc. of CoNEXT, 2009.

[5] L. Zhang et al., “Named data networking (NDN) project,”
NDN Project, Tech. Rep. NDN-0001, October 2010.

[6] R. T. Fielding and R. N. Taylor, “Principled design of the
modern Web architecture,” ACM TOIT, vol. 2, no. 2, pp.
115–150, 2002.

[7] I. Grigorik. High performance networking in google chrome.
[Online]. Available: http://www.igvita.com/posa/
high-performance-networking-in-google-chrome/

[8] CCNX documentation. [Online]. Available: https://www.
ccnx.org/releases/latest/doc/technical/Registration.html

[9] J. Burke, A. Horn, and A. Marianantoni, “Authenticated
lighting control using Named Data Networking,” UCLA,
NDN Technical Report NDN-0011, 2012.

[10] Z. Zhu and A. Afanasyev, “Let’s ChronoSync: Decentralized
dataset state synchronization in Named Data Networking,” in
ICNP, 2013.

[11] B. Newton, K. Jeffay, and J. Aikat, “The Continued
Evolution of Web Traffic,” in MASCOTS. IEEE Computer
Society, 2013, pp. 80–89.

[12] S. Ramachandran. Web metrics: Size and number of
resources. [Online]. Available:
https://developers.google.com/speed/articles/web-metrics

[13] P. Gasti, G. Tsudik, E. Uzun, and L. Zhang, “DoS and DDoS
in Named Data Networking,” in ICCCN 2013. IEEE, 2013,
pp. 1–7.

[14] A. Afanasyev, P. Mahadevan, I. Moiseenko, E. Uzun, and
L. Zhang, “Interest flooding attack and countermeasures in
Named Data Networking,” in IFIP Networking Conference,
2013. IEEE, 2013, pp. 1–9.

[15] J. Burke, P. Gasti, N. Nathan, and G. Tsudik, “Securing
Instrumented Environments over Content-Centric
Networking: the Case of Lighting Control,” arXiv preprint
arXiv:1208.1336, 2012.

[16] F. Baker and P. Savola, “RFC 3704: Ingress filtering for
multihomed networks,” Tech. Rep., 2004.

[17] Y. Zhang, H. Zhang, and L. Zhang, “Kite: A Mobility
Support Scheme for NDN,” NDN Project, Tech. Rep., 2014.

95

