Algorithms Cs545 — Homework #1

1. Let $f_i(n)$ be a sequence of functions, such that for every i, $f_i(n) = O(n)$. Let $g(n) = \sum_{i=1}^{n} f_i(n)$. Prove or disprove: $g(n) = O(n^2)$.

Answer: Not true. Take $f_i(n) = i \cdot n$. Then

$$g(n) = \sum_{1}^{n} in = n \sum_{1}^{n} i = \Theta(n^3)$$

- 2. If $f_1(n) = O(g_1(n))$ and $f_2(n) = O(g_2(n))$. Prove or disprove:
 - $f_1(n) + f_2(n) = O(g_1(n) + g_2(n))$ Answer: True. We know that there exists positive constants n_1, K_1 (resp. n_2, K_2) such that for $n > n_1$ (resp. $n > n_2$) we have that $f_1(n) \le K_1g_1(n)$ (resp. $f_2(n) \le K_2g_2(n)$). Hence for every $n > \max\{n_1, n_2\}$, we have that $f_1(n) + f_2(n) \le \max\{K_1, K_2\}(g_1(n) + g_2(n))$.
 - f₁(n) * f₂(n) = O(g₁(n) * g₂(n))
 Answer: True. Analogous to the previous case
 - $f_1(n)^{f_2(n)} = O(g_1(n)^{g_2(n)})$ **Answer:** Not true. take $f_1(n) = 2, f_2(n) = n, g_1(n) = 0.5, g_2(n) = n.$
- 3. Let $P = \{p_1 \dots p_n\}$ be a set of *n* distinct points in the plane. Describe an $O(n \log n)$ -time algorithm that finds the triangle with smallest perimeter, whose vertices are three different points of *P*.
- 4. You are given two arrays A and B, each contains n numbers, and each is sorted in increasing order. Let S denote the set of all numbers which are either in A, in B or in both. Find in time $O(\log n)$ the median of S. (if you have problem finding this element in $O(\log n)$, find it in time $O(\log^2 n)$.
- 5. Suggest a data structure that supports grades for a student. The operations on the data structure are as follows:
 - Insert(g, d) Insert the grade g that the student received, for an example that took place at a date d. Each grade is a number between 1 and 100. For example, insert(73, "9/16/02").

Average (d_1, d_2) report what is the average of all grades that the student received in exams that took place between date d_1 and date d_2 .

Each operation should take time $O(\log n)$, where n is the number of grades store in the sata structure.

Answer: Store the grades in a standard search tree, where each node μ in the tree stores the total sum s_{μ} of grades and the number n_{μ} of grades in the subtree rooted at μ . Then when the query $Average(d_1, d_2)$ is submitted, we sum (in $O(\log n)$ time) the sum of grades and number of grades between d_1 and d_2 . To sum of example the number of grades, it is easy to sum the sum of all grades that occur before d_1 the sum of all grades that occur before d_2 and subtract.

To find the sum op all grades that occur before d_2 , perform $\texttt{find}(d_2)$ in the tree, and trace the path π that the search for d_1 performed in the tree. For every node μ at the tree at which the path turned to the right subtree of a node μ sum the value of $s_{left(\mu)}$, plus the value stored at μ itself. Clealry it is doable in $O(\log n)$

6. Assume that each point on the interval [0, 1] could be colored either black or white, and that initially the whole interval is white. We define the operation of *reversing* the color of a point $x \in [0, 1]$, as follow: If x is black before the operation, then its color is white after the operation, and vice versa. Suggest a data structure that support the following operations.

 $reverse(x_1, x_2)$ — reverse the color of each point of in the interval (x_1, x_2) , where $0 < x_1 < x_2 < 1$.

report_color(x) report the color of x, where $x \in [0, 1]$.

The running time of each operation should be $O(\log n)$, where n here is the number of reverse operations.

Answer: Each $reverse(x_1, x_2)$ command defined an interval, where x_1 is its left endpoint and x_2 is its right endpoint. Observe that a point x is white (resp. black) iff the different between the number of left endpoints to the left of x, and the number of right endpoints to the left of x is even (resp. odd). From here, the answer is similar to the previous answer.