Algorithms Cs545 - Homework \#1

1. Let $f_{i}(n)$ be a sequence of functions, such that for every $i, f_{i}(n)=O(n)$. Let $g(n)=\sum_{1}^{n} f_{i}(n)$. Prove or disprove: $g(n)=O\left(n^{2}\right)$.
Answer: Not true. Take $f_{i}(n)=i \cdot n$. Then

$$
g(n)=\sum_{1}^{n} i n=n \sum_{1}^{n} i=\Theta\left(n^{3}\right)
$$

2. If $f_{1}(n)=O\left(g_{1}(n)\right)$ and $f_{2}(n)=O\left(g_{2}(n)\right)$. Prove or disprove:

- $f_{1}(n)+f_{2}(n)=O\left(g_{1}(n)+g_{2}(n)\right)$

Answer: True. We know that there exists positive constnts n_{1}, K_{1} (resp. n_{2}, K_{2}) such that for $n>n_{1}$ (resp. $n>n_{2}$) we have that $f_{1}(n) \leq K_{1} g_{1}(n)$ (resp. $f_{2}(n) \leq K_{2} g_{2}(n)$). Hence for every $n>\max \left\{n_{1}, n_{2}\right\}$, we have that $f_{1}(n)+f_{2}(n) \leq \max \left\{K_{1}, K_{2}\right\}\left(g_{1}(n)+g_{2}(n)\right)$.

- $f_{1}(n) * f_{2}(n)=O\left(g_{1}(n) * g_{2}(n)\right)$

Answer: True. Analogous to the previous case

- $f_{1}(n)^{f_{2}(n)}=O\left(g_{1}(n)^{g_{2}(n)}\right)$

Answer: Not true. take $f_{1}(n)=2, f_{2}(n)=n, g_{1}(n)=0.5, g_{2}(n)=n$.
3. Let $P=\left\{p_{1} \ldots p_{n}\right\}$ be a set of n distinct points in the plane. Describe an $O(n \log n)$-time algorithm that finds the triangle with smallest perimeter, whose vertices are three different points of P.
4. You are given two arrays A and B, each contains n numbers, and each is sorted in increasing order. Let S denote the set of all numbers which are either in A, in B or in both. Find in time $O(\log n)$ the median of S. (if you have problem finding this element in $O(\log n)$, find it in time $O\left(\log ^{2} n\right)$.
5. Suggest a data structure that supports grades for a student. The operations on the data structure are as follows:

Insert (g, d) - Insert the grade g that the student received, for an example that took place at a date d. Each grade is a number between 1 and 100. For example, insert(73, "9/16/02").

Average $\left(d_{1}, d_{2}\right)$ report what is the average of all grades that the student received in exams that took place between date d_{1} and date d_{2}.

Each operation should take time $O(\log n)$, where n is the number of grades store in the sata structure.

Answer: Store the grades in a standard search tree, where each node μ in the tree stores the total sum s_{μ} of grades and the number n_{μ} of grades in the subtree rooted at μ. Then when the query Average $\left(d_{1}, d_{2}\right)$ is submitted, we sum (in $O(\log n)$ time) the sum of grades and number of grades between d_{1} and d_{2}. To sum of example the number of grades, it is easy to sum the sum of all grades that occur before d_{1} the sum of all grades that occur before d_{2} and subtract.

To find the sum op all grades that occur before d_{2}, perform find $\left(d_{2}\right)$ in the tree, and trace the path π that the search for d_{1} performed in the tree. For every node μ at the tree at which the path turned to the right subtree of a node μ sum the value of $s_{l e f t(\mu)}$, plus the value stored at μ itself. Clealry it is doable in $O(\log n)$
6. Assume that each point on the interval $[0,1]$ could be colored either black or white, and that initially the whole interval is white. We define the operation of reversing the color of a point $x \in[0,1]$, as follow: If x is black before the operation, then its color is white after the operation, and vice versa. Suggest a data structure that support the following operations.
reverse $\left(x_{1}, x_{2}\right)$ - reverse the color of each point of in the interval $\left(x_{1}, x_{2}\right)$, where $0<x_{1}<x_{2}<1$.
report_color (x) report the color of x, where $x \in[0,1]$.
The running time of each operation should be $O(\log n)$, where n here is the number of reverse operations.

Answer: Each reverse $\left(x_{1}, x_{2}\right)$ command defined an interval, where x_{1} is its left endpoint and x_{2} is its right endpoint. Observe that a point x is white (resp. black) iff the different between the number of left endpoints to the left of x, and the number of right endponits to the left of x is even (resp. odd). From here, the answer is similar to the previous answer.

