
Algorithms CSc — Homework #2
Due: 10/21/02.

1. Question 9.3-3 from CLR (second Addition). Answer: We use median-
selection to find the pivot of merge sort. Since finding the median of n elements
takes ≤ cn time (for a constant c), the running time of the whole algorithm
obeys the formula T (n) ≤ cn + c′n + 2T (n/2) (where c′n is the time needed for
the partitioning). The solution of this formula is O(n log n).

2. Question 9.3-9 from CLR (second Addition).

Answer: The pipe must pass above exactly n/2 of the wells. If it passes above
more than n/2, then by shifting the line down we decrease its vertical distance
to these ones, but decrease the distance to < n/2 lines, so altogether the total
distance decreases. An analogous argument holds if it passes above less than
n/2 wells.

3. Problem 9–1 from CLR (second Addition).

Answer: (a) O(n logn). (b) Takes O(n) + O(i log n). (c) Takes O(n) +
O(i log i).

4. You are given a set L of n lines in the plane, in a sorted order order of slopes.
Show, using a potentials function that the running time of the algorithm studied
in class for computing the lower envelop of L is O(n).

Answer: Assume L = {`1 . . . `n} in sorted order of slopes.

Let Fi denote the lower envelope of the lines {`1 . . . `i}. Let φi denote the number
of lines on the lower envelope after inserting `i. If in the ith stage k segments
of Fi−1 need to be scanned, than all but the last one can also be deleted (as
argues in class) so ci, the actual work at this stage is k, and φi − φi−1 = 1 − k.
Hence the amortized time ĉi is

ĉi = ci + φi − φi−1 = k + (1 − k) = 1

5. The standard operations defined on a stack S are pop(S) that returns the
element in the top of the tact and remove it from the stack, and push(S, x) that
pushes x into S.

1



The operation on a queue Q are EnQueue(Q, x) that insert the element x into
the tail of Q, and the operation DeQue(Q) that returns the element at the head
of Q, and remove it from Q.

Assume that you are given two stacks S1, S2, and O(1) memory in addition.
Explain how you can support O(n) operations on a queue, where the only
operations done on the stacks are of the type push(S1, x), pop(S1), push(S2, x),
and pop(S2), So that a sequence of m EnQueue and DeQueue operations would
require O(m) operations on the stack.

Answer:

Function EnQueue(x, Q)
Push(S1, x)

Function DeQueue(Q)
While S1 is Not empty Do

push(S2, pop(S1))
Return pop(S2)

Each element is inserted into each of the stacks exactly once, so the total time
is O(m).

6. Problem 17-2 from CLR (Second edition) a,b. Section c is more challenging.
Answer:

(a) Since the number of arrays is O(log n), and search is done by performing a
binary search in each, of sizes 1, 2, 22 . . . 2dlog2

ne, and it takes Θ(log2 2i) =
Θ(i) time to perform a binary search in each, the query time is (in the
worst case)

Θ





i=dlog
2

ne
∑

1

i



 = Θ(log2
2 n)

(b) To perform insert of a new element x, create an array of size 1 for x. Next,
we repeat: As long as there are two arrays of the same size, we merge them
into an array of double size. We need to merge an array of size m = 2k

only after k insertions, and the merge process takes cm time (for a constant
k).Hence the time needed for n insertions is

cn + 2c
n

2
+ 4c

n

4
+ . . . + c2i

n

2i
+ . . . + nc = cn log2 n

(where we assume for simplicity that n is a power of 2. Thus the amortized
time for an insertion is O(log n).

A slightly different way to obtain the same time bound, is to note that
an element can be moved from an array of size m to an array of size 2m



(during a merging process) only once, and so it can be moved at most
log2 n times, and each time that an element is transferred to a new array
we spend c time.

One an obtain the same running time you obtained for this question, but in
the worst case setting (i.e. not amortized). The idea is to keep a few copies of
the data structure. Once merging of two arrays of size m is required as a result
of inserting a new element, the merging process is divided into small tasks, so
that each is accomplished during a sequence of m operations. Can you show
the details here, and prove that the running time is not changed ?

7. Question 17.4-3 from CLR. You can prove the result in any way you choose.

8. Question 27 a,b from the handout on Splay trees. See how you feel about parts
c,d.


