Algorithms CSc — Homework #2
Due: 10/21/02.

. Question 9.3-3 from CLR (second Addition). Answer: We use median-
selection to find the pivot of merge sort. Since finding the median of n elements
takes < cn time (for a constant c), the running time of the whole algorithm
obeys the formula T'(n) < cn+ ¢'n+ 2T (n/2) (where ¢'n is the time needed for
the partitioning). The solution of this formula is O(nlogn).

. Question 9.3-9 from CLR (second Addition).

Answer: The pipe must pass above exactly n/2 of the wells. If it passes above
more than n/2, then by shifting the line down we decrease its vertical distance
to these ones, but decrease the distance to < n/2 lines, so altogether the total
distance decreases. An analogous argument holds if it passes above less than
n/2 wells.

. Problem 9-1 from CLR (second Addition).

Answer: (a) O(nlogn). (b) Takes O(n) + O(ilogn). (c) Takes O(n) +
O(ilogi).

. You are given a set L of n lines in the plane, in a sorted order order of slopes.
Show, using a potentials function that the running time of the algorithm studied
in class for computing the lower envelop of L is O(n).

Answer: Assume L = {{;...(,} in sorted order of slopes.

Let F; denote the lower envelope of the lines {{; ... ¢;}. Let ¢; denote the number
of lines on the lower envelope after inserting ¢;. If in the ith stage k segments
of F;_1 need to be scanned, than all but the last one can also be deleted (as
argues in class) so ¢;, the actual work at this stage is k, and ¢; — ¢p;_1 = 1 — k.
Hence the amortized time ¢; is

éiICi+¢i—¢i_1:kZ+(1—k):1

. The standard operations defined on a stack S are pop(S) that returns the
element in the top of the tact and remove it from the stack, and push(S, z) that
pushes x into S.



The operation on a queue ) are EnQueue(Q, x) that insert the element x into
the tail of (), and the operation DeQue(Q) that returns the element at the head
of @), and remove it from Q).

Assume that you are given two stacks Sp, S, and O(1) memory in addition.
Explain how you can support O(n) operations on a queue, where the only
operations done on the stacks are of the type push(Sy, z), pop(S1), push(Ss, z),
and pop(Ss), So that a sequence of m EnQueue and DeQueue operations would
require O(m) operations on the stack.

Answer:

Function EnQueue(z, Q)
Push(Sy, )

Function DeQueue(Q))
While Sy is Not empty Do
push(Sy, pop(Sh))
Return pop(S,)

FEach element is inserted into each of the stacks exactly once, so the total time

is O(m).

. Problem 17-2 from CLR (Second edition) a,b. Section ¢ is more challenging.
Answer:

(a) Since the number of arrays is O(logn), and search is done by performing a
binary search in each, of sizes 1,2,2%...2/°82"1 " and it takes ©(log, 2') =
©(1) time to perform a binary search in each, the query time is (in the
worst case)

i=[logy n]
ol Y i| = ©(ogin)

1

(b) To perform insert of a new element x, create an array of size 1 for x. Next,
we repeat: As long as there are two arrays of the same size, we merge them
into an array of double size. We need to merge an array of size m = 2F
only after k insertions, and the merge process takes cm time (for a constant
k).Hence the time needed for n insertions is

cn+2cg+4CE—l—...+02iﬁ—|—...+nc:cnlog2n

4 20
(where we assume for simplicity that n is a power of 2. Thus the amortized
time for an insertion is O(logn).
A slightly different way to obtain the same time bound, is to note that
an element can be moved from an array of size m to an array of size 2m



(during a merging process) only once, and so it can be moved at most
log, n times, and each time that an element is transferred to a new array
we spend c time.

One an obtain the same running time you obtained for this question, but in
the worst case setting (i.e. not amortized). The idea is to keep a few copies of
the data structure. Once merging of two arrays of size m is required as a result
of inserting a new element, the merging process is divided into small tasks, so
that each is accomplished during a sequence of m operations. Can you show
the details here, and prove that the running time is not changed ?

. Question 17.4-3 from CLR. You can prove the result in any way you choose.

. Question 27 a,b from the handout on Splay trees. See how you feel about parts
c,d.



