Algorithms CSc - Homework \#2 Due: 10/21/02.

1. Question 9.3-3 from CLR (second Addition). Answer: We use medianselection to find the pivot of merge sort. Since finding the median of n elements takes $\leq \mathrm{cn}$ time (for a constant c), the running time of the whole algorithm obeys the formula $T(n) \leq c n+c^{\prime} n+2 T(n / 2)$ (where $c^{\prime} n$ is the time needed for the partitioning). The solution of this formula is $O(n \log n)$.
2. Question 9.3-9 from CLR (second Addition).

Answer: The pipe must pass above exactly $n / 2$ of the wells. If it passes above more than $n / 2$, then by shifting the line down we decrease its vertical distance to these ones, but decrease the distance to $<n / 2$ lines, so altogether the total distance decreases. An analogous argument holds if it passes above less than $n / 2$ wells.
3. Problem 9-1 from CLR (second Addition).

Answer: (a) $O(n \log n)$. (b) Takes $O(n)+O(i \log n)$. (c) Takes $O(n)+$ $O(i \log i)$.
4. You are given a set L of n lines in the plane, in a sorted order order of slopes. Show, using a potentials function that the running time of the algorithm studied in class for computing the lower envelop of L is $O(n)$.
Answer: Assume $L=\left\{\ell_{1} \ldots \ell_{n}\right\}$ in sorted order of slopes.
Let F_{i} denote the lower envelope of the lines $\left\{\ell_{1} \ldots \ell_{i}\right\}$. Let ϕ_{i} denote the number of lines on the lower envelope after inserting ℓ_{i}. If in the ith stage k segments of F_{i-1} need to be scanned, than all but the last one can also be deleted (as argues in class) so c_{i}, the actual work at this stage is k, and $\phi_{i}-\phi_{i-1}=1-k$. Hence the amortized time $\hat{c_{i}}$ is

$$
\hat{c_{i}}=c_{i}+\phi_{i}-\phi_{i-1}=k+(1-k)=1
$$

5. The standard operations defined on a stack S are $\operatorname{pop}(S)$ that returns the element in the top of the tact and remove it from the stack, and $\operatorname{push}(S, x)$ that pushes x into S.

The operation on a queue Q are $\operatorname{EnQueue}(Q, x)$ that insert the element x into the tail of Q, and the operation $\operatorname{DeQue}(Q)$ that returns the element at the head of Q, and remove it from Q.
Assume that you are given two stacks S_{1}, S_{2}, and $O(1)$ memory in addition. Explain how you can support $O(n)$ operations on a queue, where the only operations done on the stacks are of the type $\operatorname{push}\left(S_{1}, x\right), \operatorname{pop}\left(S_{1}\right), \operatorname{push}\left(S_{2}, x\right)$, and $\operatorname{pop}\left(S_{2}\right)$, So that a sequence of m EnQueue and DeQueue operations would require $O(m)$ operations on the stack.
Answer:

```
Function EnQueue \((x, Q)\)
    \(\operatorname{Push}\left(S_{1}, x\right)\)
Function DeQueue \((Q)\)
    While \(S_{1}\) is Not empty Do
        \(\operatorname{push}\left(S_{2}, \operatorname{pop}\left(S_{1}\right)\right)\)
    Return \(\operatorname{pop}\left(S_{2}\right)\)
```

Each element is inserted into each of the stacks exactly once, so the total time is $O(m)$.
6. Problem 17-2 from CLR (Second edition) a,b. Section c is more challenging. Answer:
(a) Since the number of arrays is $O(\log n)$, and search is done by performing a binary search in each, of sizes $1,2,2^{2} \ldots 2^{\left\lceil\log _{2} n\right\rceil}$, and it takes $\Theta\left(\log _{2} 2^{i}\right)=$ $\Theta(i)$ time to perform a binary search in each, the query time is (in the worst case)

$$
\Theta\left(\sum_{1}^{i=\left\lceil\log _{2} n\right\rceil} i\right)=\Theta\left(\log _{2}^{2} n\right)
$$

(b) To perform insert of a new element x, create an array of size 1 for x. Next, we repeat: As long as there are two arrays of the same size, we merge them into an array of double size. We need to merge an array of size $m=2^{k}$ only after k insertions, and the merge process takes cm time (for a constant k).Hence the time needed for n insertions is

$$
c n+2 c \frac{n}{2}+4 c \frac{n}{4}+\ldots+c 2^{2} \frac{n}{2^{i}}+\ldots+n c=c n \log _{2} n
$$

(where we assume for simplicity that n is a power of 2. Thus the amortized time for an insertion is $O(\log n)$.
A slightly different way to obtain the same time bound, is to note that an element can be moved from an array of size m to an array of size $2 m$
(during a merging process) only once, and so it can be moved at most $\log _{2} n$ times, and each time that an element is transferred to a new array we spend c time.

One an obtain the same running time you obtained for this question, but in the worst case setting (i.e. not amortized). The idea is to keep a few copies of the data structure. Once merging of two arrays of size m is required as a result of inserting a new element, the merging process is divided into small tasks, so that each is accomplished during a sequence of m operations. Can you show the details here, and prove that the running time is not changed ?
7. Question 17.4-3 from CLR. You can prove the result in any way you choose.
8. Question 27 a,b from the handout on Splay trees. See how you feel about parts c,d.

