
Algorithms CSc545 — homework #4
Due 11/11/02

November 18, 2002

1. Suggest a data structure that supports the following operations on a set of
intervals on the real numbers.

• Insert(x, y) — Insert the interval (x, y) (where x < y) into the structure.

• Delete(x, y) — Delete the interval (x, y) (where x < y) from the structure,
if it was inserted beforehand. You may assume that no two intervals share
the same endpoint in the structure.

• Report(x) — Report how many intervals in the structure contain x ?

The time for each operation should be O(logn), where n is the number of
intervals.

Answer: We create a balanced search tree T that stores all endpoints of
intervals, sorted by their x-coordination. With each node µ of T we store
two fields Lµ and Rµ, where Lµ (resp. Rµ) which is the number of left (resp.
endpoints) of endpoints of intervals stored in the subtree whose root is µ. Then
we can find for a query value x the number of left (resp. right) endpoint of
intervals to the left (resp. right) of x. The different between these numbers is
the number of intervals containing x.

2. Let S be a set of numbers. An partition of S into k-subsets S1Ṡk is called
ordered splitting if each element of S appears in exactly one subset, S = ∪iSi,
each Si contains ≤ d|S|/ke elements, and each element of Si is smaller than
each element of Si+1, for i = 1 . . . k − 1.

Let ε > 0 be a very tiny number, and let S be a set of n numbers. We wish to
find an order splitting of S into nε subsets, (each contains dn1−εe. For example,
if n = 220 and ε = 1/10 then each subset contains 220·(1−1/10) = 218, and we
divide S into 220·1/10 = 4 subsets.

(a) Suggest an algorithm for this problem whose running time is O(n log n).

1

Answer: We sort the elements of S (in O(n logn) time), and pick the
appropriate numbers.

(b) Suggest an algorithm whose running time is O(n), when we want an order
splitting of S into 3 subsets.

Answer: We apply twice the algorithm for picking the k’st largest ele-
ment in S, where k = dn/3e and k = d2k/3e.

(c) Suggest an algorithm whose running time is O(n) when ε = 1/ log n, for
finding an ordered splitting of S into nε subsets.

Answer: We find the median of of S, split S into two parts, divide each
region into two parts of equal size (so each part is n/4 and repeat until
each part is of size n/2k ≤ n1−ε. The running time of each iteration is
O(n), since the total number of elements moved in each iteration by the
partition algorithm is O(n). The number of iteration is O(log nε = ε log n),
and since ε = 1 log n, this time is O(1).

Finally we need to find in each part of the array the k’th largest element,
according to the values of n1−ε.

3. We discussed in class and in a homework a method for transforming a static
data structure for a set S of elements into a semi-dynamic one (when inser-
tions are allowed). In the case of the sorted array proplem, the dynamization
was obtained by storing the elements of S in ≤ log2 |S| sorted arrays of sizes
1, 2, 22, . . . 2blog2

nc, where at most one array of each size was stored. We showed
an analogy between the way we maintain the arrays as points are added to S,
and the method a binary counter is updated as we increase the values it stores.

The purpose of this question is to study what happens if we handle the arrays
analogous to a decimal counter. That is, we allow at most 9 arrays of size 1, at
most 9 arrays of size 10, at most 9 of size 100 etc. Once 10 arrays of size 10k

are created (for some integer k), we merge them into an array of size 10k+1.

(a) What is the amortized running time for inserting an element? What is the
time for finding an element in the structure?

(b) What is the answer to the previous question if we use base b ? What if
b = nα for some small α?

(c) What is you answer for the first question, if the time to create an array
for a set of n elements is Θ(n2) ?

4. Suggest how to modify the data structure Union/Find studied in class, so that
in addition to the “standard’ operations it supports (Link of two sets, find

the root of an element and create a new set), it would also support the op-
eration Historical Find(x, y, t), where x, y are elements in the structure and
t is some time in the past. This operation should answer whether at time t

the elements x and y were in the same set. The amortized time for Link and
Find set operations is α(n), and the amortized time for Historical Find is
O(α(m) log log n). Here n is the number of elements and m is the number of
operations. Hint — maintain for each element x the parent of x at each time.

Answer: Each element x in the structure stores all the points to elements it
used to point to in different stages of the algorithm, including the current one.
These elements are sorted in sorted array by their time of update. Note that
there are only O(log n) of them. When x is updated to a new element y (as
a result to a path compression or link operation) y is added at the end of the
array. This operation takes O(1) time for an element, so it does not increase
the asymptotic running time.

To answer Historical Find(x, y, t) operation, we trace elements from x and
y, based on the element pointed at time t. To find this pointers, we perform
binary search in each array. Since the size of the array is O(log n), the time for
a finding the pointer of a single element is O(log log n).

5. Let S be a set of vertical segments in the plane. The distance between two
segments is defined as the closest distance between two points on the segments.
Describe an O(n log n)-time algorithm for finding the closest pair of segments.
You can assume that no two endpoints of different segments have the same x
or y coordination.

Answer: The algorithm is identical to the divide and conquer algorithm for
finding the closest pair of segments. We only need to show how to find in
O(n) time the distance between the closest pair of segments, one to the left
of a vertical line `, one to the right, and both lie in a vertical strip of width
2δ (the notation is as in the algorithm for closest pair of points). This is true
since a rectangle sliding along the strip can intersect O(1) segments at any fixed
location. Indeed, at most one segment intersect the upper or lower edge of the
sliding rectangle, and the rectangle can contain at most 4 endpoints of segments.

assume that more than 4 segment to the left of ` intersect the rectangle, and
let p be the distance bet

6. CLRS 15-4.5

