Algorithms CSs545 — Homework #6 Due: 12/11/02.

December 10, 2002

- 1. CLR 26-1. (CLRS 25-1).
- 2. The question refers to the stable matching algorithm as studied in class. We define a pair (m_i, w_j) to be a *stable pair* if these exists at least one stable marriage at m_i and w_j are matched. Prove that during the algorithm studied in class, if w_j rejects m_i , then they are not a stable pair. Hint assume this is not the case, consider the first event at which a woman w_1 rejects a man m_1 while (m_1, w_1) are stable pair. Let m_2 be the man whose proposal to w_1 caused her to reject m_1 , and show contradiction.
- 3. Assume that the coin used for setting the level in the SkipList data structure is not biased, and fall in head with probability α , which is not necessarily 1/2. What is the time for inserting an element - and the number of levels it participates in ? What is the effect on the query time, and on if α is much larger than 1/2? What is the effect if it is much smaller ?
- 4. Explain how would you use SkipList to store a set S of numbers, in a what that would allow you to find the number of elements in S which are smaller than a query value x. You should be able to add elements to S, delete elements, and perform a query in time $O(\log |S|)$.
- 5. Let G(V, E) denote a graph with weights assign to its edges, where $V = \{v_1 \dots v_n\}$. Read and understand how we can find a matrix $\Pi[\cdot, \cdot]$, such that $\Pi[i, j]$ contains the vertex proceeding v_i on the shortest path from v_i to v_j .
- 6. CLR 27.2-4 (CLRS 26.2-4)
- 7. CLR 27.2-9 (CLRS 26.2-)
- 8. (only if you feel like it) Let L be singly connected liked list. L is called a *snake* if the last element of L points to NULL, and is called a *snail* if the last element points to one of the last elements of L. You are given a pointer to the first

element of L, and O(1) additional memory. You cannot change L itself - not even temporarily. Find in O(n) time (a) if L is a snake or a snail, and (b) how many elements are there in L. There is a solution that does not use unbounded search.