
CS545 — Spring 2006

Brief Class Notes

August 4, 2006 We discussed augmented data structures — see the slides.
We expanded this material and also discussed interval trees. This
structures accepts as an input a set of intervals S = {(x1, y1), (x2, y2) . . . (xn, yn)},
where xi < yi. After preprocessing this structures supports the follow-
ing operations: Given a query point q, it reports all intervals of S that
contain q in time O(k + log n), where k is their number. The construc-
tions of the data structures is as follows:

Assume first that the subset S ′ ⊆ S of intervals has the property that
they all contain some point m. In this case we create two data struc-
tures for S ′, that are used to answer the same type of queries. The
first, L(S ′) is used to answer the query when the query point q is to
the left of m. Let }x′
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, , x′

|S′|} denote the endpoints of the intervals
of S ′, sorted from left to right. L(S ′) contains these endpoints, sorted
from left to right. To answer a query, we check whether x′

1
≥ q. If

not, then since x′
1

is the leftmost point, q is outside all intervals of S ′,
and we are done. If x′

1
≥ q then, since q is to the left of m, it must be

that q lies in the interval of S ′ associated with x′
1
. We report that q is

contained in this interval, and continue to check x′
2
.

The list for R(S ′) is symmetric, but with the right endpoints of S ′. It
is used when q is to the right of m.

Note that the time for answer a query is proportional to the number
of reported intervals, since excluding the last checked interval, each
interval that is checked contained q.

Finally, if there is no points that is contained in all intervals of S. we
do the following: We find the point m(S), the median of all endpoints
of intervals of S. We split S into 3 disjoint subsets:

SL — this set of intervals of S fully to the left of m.

SR — this set of intervals of S containing m.



SR — this set of intervals of S fully to the right of m.

We construct a tree binary tree T as follows. The root v of T is as-
sociated (that is, containing pointers to) m(S), and the two structures
L(SL) and R(SR).

We associated the left child of v with an interval tree constructed re-
cursively for SL. Similarly, we associated the right child of v with an
interval tree constructed recursively for SL.

September 4, 2006 We reviewed common techniques for generating hash
functions. We introduced universal families of functions, and construct
one such family. We saw the usage of these families to generate a perfect
hash function. This material is covered very nicely in the textbook, and
in the slides that you can find in the course webpage.

Sep 11, 2006 We started studying Amortized analysis. We consider the
binary counter examples. In this example a binary array represents a
number, and we presented pseudo-code to support the Inc operations,
increasing the value of this number by 1. The time required for this
operation is Θ(k + 1) where k is the length of the run of ’1’ in the
counter that need to be modified for this operations Let m be the size
of the counter, and assume that n Inc operations are executed. Clearly
O(nm) is a bound on the time needed to execute all n operations.
We presented a directed proof that the time it actually takes is only
O(n + m). Next we will use this example to see how other techniques
of amortize analysis can be used to obtain the same proof. See chapter
Chapter 17 (page 405) of the textbook.

9/13/06 We gave more proofs for the bounds on the time analysis needed
for a sequence of insertion in the binary counter. We also discussed the
problem of implementing a queue using two stacks. Our discussions in
these two problems followed the textbook.

We continued applications of amortized analysis for dynamizing data
structures. As an important applications, we introduced Voronoi dia-

gram, for a set S = {s1 . . . sn} of sites in the plane, which (when stored
in an appropriate point location data structure can support the follow-
ing operations: Given a query point q, find the nearest site of S to



q. We saw how we decompose the problem so that answering a query
takes O(log2 n), and moreover, we can add sites to S so that adding
each point takes amortized time O(log2 n). See the slides about this
topic.

9/18/06 We continued with the application of dynamizing the nearest site
Voronoi diagram. Then we presented another usage of amortized anal-
ysis, namely increasing the size of a table as elements are added to the
table. We saw that even though we need to copy a large set of elements
from time to time, the amortized time per insertion is still O(1). The
slides is a good reference.

9/27/06 We discussed spaly trees, (from a different textbook), and see how
to use amortize analysis to analyze their behaviors.

10/4/06 We studied Binomial and Fibonacci heaps. The slides contains
almost all the materials relevant for these topics. The only part that
was presented on the whiteboard was the use of potential functions
for amortize analysis. This topic is covered properly in the textbook
(CLRS).


