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Augmented Data structres, 
and Dynamic Order Statistic 

Original slides courtesy of  Erik 
Demaine and Carola Wenk

Dynamic order statistics

OS-SELECT(i, S): returns the i th smallest element in the 
dynamic set S.

OS-RANK(x, S): returns the rank of x ∈ S in the sorted 
order of S’s elements.

(the rank of the smallest element is 1) 

IDEA: Use your favorite balance search tree (AVL, Red-
Black, B-Trees,  2-3 trees, SkipList etc etc)  for the set S, 
but keep subtree sizes in the nodes.

key
size
key
sizeNotation for nodes:

Example of an OS-tree
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size[x] = size[left[x]] + size[right[x]] + 1

Selection

OS-SELECT(x, i) ⊳⊳⊳⊳ returns thei’ th smallest element in the 
subtree rooted atx 

k ← size[left[x]] + 1 ⊳⊳⊳⊳ k = #keys ≤ x in the 
subtree rooted at x

if  i = k  then return x
if  i < k  

then return OS-SELECT( left[x], i )
else return OS-SELECT( right[x], i – k )

⊳⊳⊳⊳when turning right, we skip k keys, all 
smaller than x.

Implementation trick: Use a sentinel
(dummy record) for NIL such thatsize[NIL] = 0.

Example
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OS-SELECT(root, 5)

i = 5
k = 6

M
9

M
9

C
5

C
5

i = 5
k = 2

i = 3
k = 2

F
3

F
3

i = 1
k = 1

H
1

H
1
H
1

H
1

Running time = O(h) = O(lg n) for a balanced 
tree, since this is the height of the tree.

Finding the rank of x

OS-Rank(T,x)
⊳⊳⊳⊳ Assume x already found, and the path from the root is known
r ← size[left[x]]+1

⊳⊳⊳⊳ Recall that if left[x]] is NIL then its size=0
y ← x
While ( y ≠ root(T)) {

do if  y is the right child of parent[y]
then r += size[left[ parent[ y  ]]] +1

y ← parent[ y ]
}
Return r
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Data structure maintenance
Q. Why not keep the ranks themselves 

in the nodes instead of subtree sizes?

A. They are hard to maintain when the 
tree is modified.

Modifying operations: INSERTand DELETE.

Strategy: Update subtree sizes when 
inserting or deleting.

Example of insertion
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INSERT(“K”)
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Handling rebalancing
If balancing is done via rotation, INSERTand 
DELETE may also need to modify the tree in order 
to maintain balance.
• Rotations: fix up subtree sizes in O(1) time.

Example:
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∴INSERTand DELETE still run in O(lg n) time.

Data-structure augmentation
Methodology: (e.g., order-statistics trees)
1. Choose an underlying data structure (red-

black trees).
2. Determine additional information to be 

stored in the data structure (subtree sizes).
3. Verify that this information can be 

maintained for modifying operations (RB-
INSERT, RB-DELETE— don’t forget rotations).

4. Develop new dynamic-set operations that use 
the information (OS-SELECTand OS-RANK).

These steps are guidelines, not rigid rules.


