
Introduction to Algorithms, Lecture 5 September 24, 2001

© 2001 by Charles E. Leiserson 1

Augmented Data structres,
and Dynamic Order Statistic

Original slides courtesy of Erik
Demaine and Carola Wenk

Dynamic order statistics

OS-SELECT(i, S): returns the i th smallest element in the
dynamic set S.

OS-RANK(x, S): returns the rank of x ∈ S in the sorted
order of S’s elements.

(the rank of the smallest element is 1)

IDEA: Use your favorite balance search tree (AVL, Red-
Black, B-Trees, 2-3 trees, SkipList etc etc) for the set S,
but keep subtree sizes in the nodes.

key
size
key
sizeNotation for nodes:

Example of an OS-tree

M
9

M
9

C
5

C
5

A
1

A
1

F
3

F
3

N
1

N
1

Q
1

Q
1

P
3

P
3

H
1

H
1

D
1

D
1

size[x] = size[left[x]] + size[right[x]] + 1

Selection

OS-SELECT(x, i) ⊳⊳⊳⊳ returns thei’ th smallest element in the
subtree rooted atx

k ← size[left[x]] + 1 ⊳⊳⊳⊳ k = #keys ≤ x in the
subtree rooted at x

if i = k then return x
if i < k

then return OS-SELECT(left[x], i)
else return OS-SELECT(right[x], i – k)

⊳⊳⊳⊳when turning right, we skip k keys, all
smaller than x.

Implementation trick: Use a sentinel
(dummy record) for NIL such thatsize[NIL] = 0.

Example

M
9

M
9

C
5

C
5

A
1

A
1

F
3

F
3

N
1

N
1

Q
1

Q
1

P
3

P
3

H
1

H
1

D
1

D
1

OS-SELECT(root, 5)

i = 5
k = 6

M
9

M
9

C
5

C
5

i = 5
k = 2

i = 3
k = 2

F
3

F
3

i = 1
k = 1

H
1

H
1
H
1

H
1

Running time = O(h) = O(lg n) for a balanced
tree, since this is the height of the tree.

Finding the rank of x

OS-Rank(T,x)
⊳⊳⊳⊳ Assume x already found, and the path from the root is known
r ← size[left[x]]+1

⊳⊳⊳⊳ Recall that if left[x]] is NIL then its size=0
y ← x
While (y ≠ root(T)) {

do if y is the right child of parent[y]
then r += size[left[parent[y]]] +1

y ← parent[y]
}
Return r

Introduction to Algorithms, Lecture 5 September 24, 2001

© 2001 by Charles E. Leiserson 2

Data structure maintenance
Q. Why not keep the ranks themselves

in the nodes instead of subtree sizes?

A. They are hard to maintain when the
tree is modified.

Modifying operations: INSERTand DELETE.

Strategy: Update subtree sizes when
inserting or deleting.

Example of insertion

M
9

M
9

C
5

C
5

A
1

A
1

F
3

F
3

N
1

N
1

Q
1

Q
1

P
3

P
3

H
1

H
1

D
1

D
1

INSERT(“K”)
M
10

M
10

C
6

C
6

F
4

F
4

H
2

H
2

K
1

K
1

Handling rebalancing
If balancing is done via rotation, INSERTand
DELETE may also need to modify the tree in order
to maintain balance.
• Rotations: fix up subtree sizes in O(1) time.

Example:

C
11

C
11

E
16

E
16

7 3

4

C
16

C
16

E
8

E
8

7

3 4

∴INSERTand DELETE still run in O(lg n) time.

Data-structure augmentation
Methodology: (e.g., order-statistics trees)
1. Choose an underlying data structure (red-

black trees).
2. Determine additional information to be

stored in the data structure (subtree sizes).
3. Verify that this information can be

maintained for modifying operations (RB-
INSERT, RB-DELETE— don’t forget rotations).

4. Develop new dynamic-set operations that use
the information (OS-SELECTand OS-RANK).

These steps are guidelines, not rigid rules.

