CS 545

Dynamic Programming

Slides courtesy of Charles Leiserson with small changes by Carola Wenk

Dynamic programming

Example 1: Longest Common Subsequence (LCS)

- Given two sequences $x[1 \ldots m]$ and $y[1 \ldots n]$, find a longest subsequence common to them both
"a" not "the"

Different phrasing: Find a set of a maximum number of segments, such that
-Each segment connects a character of x to an identical character of y,
-Each character is used at most once
-Segments do not intersect.

Brute-force LCS algorithm

Check every subsequence of $x[1 \ldots m]$ to see if it is also a subsequence of $y[1 \ldots n]$.

Analysis

- Checking $=\Theta(m+n)$ time per subsequence.
- 2^{m} subsequences of x (each bit-vector of length m determines a distinct subsequence of x).
Worst-case running time $=\Theta\left((m+n) 2^{m}\right)$
= exponential time.

Towards a better algorithm

Simplification:

1. Look at the length of a longest-common subsequence.
2. Extend the algorithm to find the LCS itself.

Notation: Denote the length of a sequence s by $|s|$.

Strategy: Consider prefixes of x and y.

- Define $c[i, j]=|\operatorname{LCS}(x[1 \ldots i], y[1 \ldots j])|$.
- Then, $c[m, n]=|\operatorname{LCS}(x, y)|$.

Recursive formulation-cont

Case (I): $x[i]=y[j] . \quad$ Claim: $c[i, j]=c[i-1, j-1]+1$.
Proof.

We claim that there is a max matching that matches $x[i]$ to $y[j]$.
Indeed, if $x[i]$ is matched to $y[k]$ (for $k<j$) then $y[j]$ is unmatched (otherwise we have two crossing segments). Hence we can obtain another matching of the same cardinality by match $x[i]$ to $y[j]$.

This implies that we can match $x[1 . . i-1]$ to $\mathrm{y}[1 . . j-1]$, and add the match $(x[i], y[j])$. So $c[i, j]=c[i-1, j-1]+1$

Dynamic-programming hallmark \#1

```
O Optimal substructure
An optimal solution to a problem
        (instance) contains optimal
        solutions to subproblems.
```

If $z=\operatorname{LCS}(x, y)$, then any prefix of z is an LCS of a prefix of x and a prefix of y.

Recursive algorithm for LCS

$\operatorname{LCS}(x, y, i, j)$
if ($i==0$ or $j=0$) return 0
if $x[i]=y[j]$
then return $\operatorname{LCS}(x, y, i-1, j-1)+1$
else return max $\{\operatorname{LCS}(x, y, i-1, j)$,

$$
\operatorname{LCS}(x, y, i, j-1)\}
$$

To call the function $\operatorname{LCS}(x, y, m, n)$
Worst-case: $x[i] \neq y[j]$, for all i, j in which case the algorithm evaluates two subproblems, each with only one parameter decremented.

Dynamic-programming hallmark \#2

The number of distinct LCS subproblems for two strings of lengths m and n is only $m n$.

Recursion tree

Height $=m+n \Rightarrow$ work potentially $2^{\mathrm{m}+\mathrm{n}}$ exponential. but we're solving subproblems already solved!

Memoization algorithm

Memoization: After computing a solution to a
subproblem, store it in a table. Subsequent calls check
the table to avoid redoing work.
$\begin{array}{l}\text { LCS }(x, y) \\ \text { for } i=0 \text { to } m \quad c[i, 0]=0 \\ \text { for } j=0 \text { to } n \quad c[0, j]=0 \\ \text { for } i=1 \text { to } m \\ \text { for } j=1 \text { to } n \\ \text { if }(x[i]=y[j]) \\ \text { then } c[i, j] \leftarrow c[i-1, j-1]+1 \\ \text { else } c[i, j] \leftarrow \max \{[i-1, j], c[i, j-1]\}\end{array}$

Time $=\Theta(m n)=$ constant work per table entry. Space $=\Theta(m n)$.

LCS: Dynamic-programming algorithm

Reconstructing $z=L C S(X, Y)$

Another idea - While filling $c[]$, add arrows to each cell $c[i, j]$ specifying which neighboring cell $c[i, j]$ it got its value.

- $c[i, j] . f l a g=$ " " if $c[i, j]=c[i-1 ; j-1]+1$
- $c[i, j]$.flag $=$ " \uparrow " if $c[i, j]=c[i-1 ; j]$
$\bullet c[i, j] . f l a g=$ " \leftarrow " if $c[i, j j=c[i-1 ; j]$

IDEA: Compute the table bottom-up. Fill z backward.

Example 2
of dynamic programming: Matrix Chain-Products

- Review: Matrix Multiplication.
$-C=A B$
$-\boldsymbol{A}$ is $\boldsymbol{d} \times \boldsymbol{e}, \boldsymbol{B}$ is $\boldsymbol{e} \times f$

$$
-O(d e f) \text { time }
$$

.

Matrix Chain-Products

- Matrix Chain-Product:
- Compute $A=A_{0} A_{1} \ldots A_{n-l}$
$-A_{\mathrm{i}}$ is $d_{i} \times d_{i+1}$

- Problem: How to parenthesize?
- Example 1. $\left(A_{1} A_{2}\right)\left(A_{3} A_{4}\right)=A_{1}\left(A_{2}\left(A_{3} A_{4}\right)\right)=$ $\left(A_{1}\left(A_{2} A_{3}\right)\right) A_{4}=A_{l}\left(\left(A_{2} A_{3}\right) A_{4}\right)=\ldots$
- Example 2
$-B$ is 3×100
$-C$ is 100×7
$-D$ is 7×5
$-(B C) D \quad 3 \times 100 \times 7+7 \times 5 \times 5=2275$ mults
$-B(C D) \quad 3 \times 100 \times 5+100 \times 7 \times 5=5000$ mults

An Enumeration Approach

- Matrix Chain-Product Alg.:
- Try all possible ways to parenthesize $A=A_{0} A_{1} \ldots A_{n-1}$
- Calculate number of ops for each one
- Pick the one that is best
- Running time:
- \# of parenthesizations = \# of binary trees with n nodes
- Exponential!
- Called the $\mathrm{n}^{\text {th }}$ Catalan number - it is almost 4^{n}.
- This is a terrible algorithm!

A Greedy Approach

Repeatedly select the product that uses the fewest operations.

Counter-example:

- A is 101×11
-B is 11×9
-C is 9×100
- D is 100×99
- Idea selects $\mathrm{A}((\mathrm{BC}) \mathrm{D}) \quad 109989+9900+108900=228789$ mults
- Best is (AB)(CD)
$9999+89991+89100=189090$ mults

A "Recursive" Approach

Define subproblems:

- Find the best parenthesization of $A_{i} A_{i+1} \ldots A_{j}$
- Let $N_{i, j}=\#$ of operations done by this subproblem.
- The optimal solution for the whole problem is $N_{0, n-1}$

Subproblem optimality: Assume the last multiplication taken place is multiplying ($A_{0} \ldots A_{i}$) by $\left(A_{i+1} \ldots A_{n-1}\right)$.

- Then the optimal solution $N_{0, n-1}$ is the sum of two optimal subproblems, $N_{0, i}+N_{i+1, n-1}$ plus the time for the last multiply.
- If the global optimum did not have these optimal subproblems, we could define an even better "optimal" solution.

A Characterizing Equation

- Again assume the last multiplication is

$$
\left(A_{0} \ldots A_{i}\right)\left(A_{i+1} \ldots A_{n-1}\right) .
$$

- That is, we break at index i
- Consider all possible places for that final multiply (possible values of $0 \leq i \leq n-1$). That is..
$-\left(A_{0}\right)\left(A_{1} A_{2} \ldots A_{n-1}\right)$, and $\left(A_{0} A_{1}\right)\left(A_{2} \ldots A_{n-1}\right)$, and
- $\left(A_{0} A_{1} A_{2}\right)\left(A_{3} \ldots A_{n-1}\right),\left(A_{0} \ldots A_{3}\right)\left(A_{4} \ldots A_{n-1}\right)$ etc till
- $\left(A_{0} A_{n-2}\right)\left(A_{n-1}\right)$,
- Recall that A_{i} is a $d_{i} \times d_{i+l}$ dimensional matrix.
- So, a characterizing equation for $N_{i, j}$ is the following:

$$
N_{i, j}=\min _{i \leq k<j}\left\{N_{i, k}+N_{k+1, j}+d_{i} d_{k+1} d_{j+1}\right\}
$$

I.e, $\operatorname{break}\left(A_{i} \ldots A_{j}\right)$, into $\left(A_{i} \ldots A_{k}\right)\left(A_{k+1} \ldots A_{j}\right)$,

A Dynamic Programming Algorithm	
Since subproblems overlap, we don't use recursion. Instead, we construct optimal subproblems "bottom-up." $N_{i, i}$'s are easy, so start with them Then do length $2,3, \ldots$ subproblems, and so on. Running time: $O\left(n^{3}\right)$	```Algorithm matrixChain(S): Input: sequence \(\boldsymbol{S}\) of \(\boldsymbol{n}\) matrices to be multiplied Output: \# of multiplications in optimal parenthesization of \(S\) for \(i \leftarrow 1\) to \(n-1\) do \(N_{i, i} \leftarrow 0\) for \(b \leftarrow 1\) to \(n-1\) do \(\quad\) /llength of a run for \(i \leftarrow 0\) to \(n-b-1\) do //start of run \(j \leftarrow i+b \quad\) /lend of run \(N_{i, j} \leftarrow+\infty\) for \(\boldsymbol{k} \leftarrow \boldsymbol{i}\) to \(\boldsymbol{j}-1\) do //break pnt \(N_{i, j} \leftarrow \min \left\{N_{i, j}\right.\), \(\left.N_{i, k}+N_{k+1, j}+d_{i} d_{k+1} d_{j+1}\right\}\)```

Recovering operations

Example: ABCD

- A is 10×5
- B is 5×10
-C is 10×5
- D is 5×10

// return expression for multiplying
// matrix chain A_{i} through A_{j}
$\exp (i, j)$
if $(i=j)$ then
return ' A_{i} '
else
$\boldsymbol{k}=\mathbf{O}[i, j] \quad / /$ see red values on left
$\mathbf{S} 1=\exp (i, k) \quad / / 2$ recursive calls
$\mathbf{S} 2=\exp (k+1, j)$
return '(' S1 S2 ')

The General Dynamic Programming Technique

- Applies to a problem that at first seems to require a lot of time (often exponential), provided we have:
- Simple subproblems: the subproblems can be defined in terms of a few variables, such as j, k, l, m, and so on.
-Subproblem optimality: the global optimum value can be defined in terms of optimal subproblems

Example 3: All-Pairs Shortest Paths Floyd-Warshall alg

- Given a graph $G(V, E)$ with weights (positive and negative) assign to each edges. Assume $V=\left\{v_{1} \ldots v_{n}\right\}$.
- Compute a matrix D such that $D[i, j]$ contains the length of the shortest path from v_{i} to v_{j}.
- Define $P_{i j}{ }^{(k)}$ as the shortst path $v_{i} \rightarrow v_{j}$ that does not go through any of the vertices $\left\{v_{k+1 \ldots} v_{n}\right\}$. (that is, it is allowed to $g o$ through any of $\left\{v_{1 . .}, v_{k}\right\}$.

Allowed: $\left\{v_{1 . .} v_{k}\right\}$.

- $D_{k}[i, j]$ - the length of $P_{i, j}(k)$
- We compute D_{0} first, then D_{1}, etc.

This example appears is in the shortest paths', chapter of CLRS (25.2)

- Assume $D_{k-1}[i, j]$ has been computed $(1<i, j<n)$.
-We now want to compute $\boldsymbol{D}_{k}[i, j]$. I.e. now we can (but don't have to) go through v_{k} on the shortest path $v_{i} \rightarrow v_{j}$.
-Two possibilities:
\bullet Going through v_{k} is longer, and better stick to $P_{i, j}(k-1)$. (previous found shortest path $v_{i} \rightarrow v_{j}$)
\bullet Use $P_{i, k, k}{ }^{(k-1)}$, the shortest path $v_{i} \rightarrow v_{k}$ to reach v_{k}, and continue along $P_{i, k}(k-1)$ to v_{j}.
$\bullet D_{k}[i, j]=\min \left(D_{k-1}[i, j], \quad D_{k-1}[i, k]+D_{k-1}[k, j]\right)$

Floyd Warshll-Pairs Shortest Paths Computing $D_{k}[i, j]$ for every i, j, k.
$\operatorname{Algorithm} \operatorname{AllPair}(G)$ for all vertex pairs (i, j) if $i=j$ then $D_{0}[i, i] \leftarrow 0$ else if $\left(v_{i}, v_{j}\right)$ is an edge in G $D_{0}[i, j] \leftarrow w\left(v_{i}, v_{j}\right)$
else

$$
D_{0}[i, j] \leftarrow+\infty
$$

for $k \leftarrow 1$ to n do
for $i \leftarrow 1$ to n do
for $j \leftarrow 1$ to n do
$D_{k}[i, j]=\min \left\{D_{k-1}[i, j], D_{k-1}[i, k]+D_{k-1}[k, j]\right\}$ return D_{n}

Floyd's algorithm: example

Example 4: Edit distance

Given strings x, y, the edit distance $\boldsymbol{e d}(x, y)$ between x and y is defined as the minimum number of operations that we need to perform on x, in order to obtain y.

Defintion: An Operations (in this context) Insertion/Deletion/Replacement of a single character.

Examples:
ed ("aaba", "aaba") = 0
ed ("aaa", "aaba") = 1
ed ("aaaa", "abaa") = 1
ed("baaa","") =4
ed("baaa", "aaab") =2

Example 4':

'Priced'' Edit distance ed (x, y)
Assume also given
InsCost, - the cost of a single insertion into x.
DelCost - the cost of a single deletion from x, and
RepCost - the cost of replacing one character of x by a different character.

Definition: Given strings x, y, the edit distance $\boldsymbol{e d}(x, y)$ between x and y is the cheapest sequence of operations, starting on x and ending at y.

Problem: Compute $\boldsymbol{e d}(x, y)$, and compute the sequence of operations.

Theorem:

```
Let c[i,j]=\operatorname{ed}(x[1..i],y[1..j]) then
If }x[i]=y[j]\quad\mathrm{ then }c[i,j]=c[i-1,j-1
If X[i]\not=Y[j] then c[i,j]=min}{c[i-1,j] + InsCost
    c[i,j-1] + DelCost,
    c[i-1,j-1] + RepCost,
    }
```


Algorithm

Memoization: After computing a solution to a subproblem, store
it in a table. Subsequent calls check the table to avoid redoing work.
$\operatorname{ed}(x, y)$
for $i=0$ to $m \quad c[i, 0]=0$
for $j=0$ to $n \quad c[0, j]=0$
for $i=1$ to m
for $j=1$ to n
if $(x[i]==y[j])$
then $c[i, j] \leftarrow c[i-1, j-1]$.
else $c[i, j] \leftarrow \min \{\quad c[i-1, j]+\quad$ InsCost,
$\begin{array}{ll}c[i-1, j-j]+ & \text { InsCost }, \\ \text { RepCost },\end{array}$
$c[i, j-1]+$ DelCost

