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Dynamic programming
Example 1:Longest Common Subsequence (LCS)
• Given two sequences x[1 . . m] and y[1 . . n], find a longest 

subsequence common to them both.

x: A B C B D A B

y: B D C A B A

“a” not  “the”

BCBA = 
LCS(x, y)

Different phrasing: Find a set  of a maximum number of segments,
such that 
•Each segment connects a character of x to an identical character of y, 
•Each character is used at most once
•Segments do not intersect. 

Brute-force LCS algorithm

Check every subsequence of x[1 . . m] to see 
if it is also a subsequence of y[1 . . n].

Analysis
• Checking = Θ(m+n) time per subsequence.
• 2m subsequences of x (each bit-vector of 

length m determines a distinct subsequence 
of x).

Worst-case running time= Θ ((m+n)2m)
= exponential time.

Towards a better algorithm
Simplification:
1. Look at thelengthof a longest-common 

subsequence.  
2. Extend the algorithm to find the LCS itself.

Strategy: Consider prefixesof x and y.

• Define c[i, j] = |LCS(x[1 . . i], y[1 . . j]) |.

• Then, c[m, n] = |LCS(x, y) |.

Notation: Denote the length of a sequence s
by |s|.

Recursive formulation
Theorem.

c[i, j] =
c[i–1, j–1] + 1 if x[i] = y[j],
max{ c[i–1, j], c[i, j–1]} otherwise.

Proof: First Note that it is impossible that 
x[i] is matched to an element in y[1..j-1] and in addition 
y[j] is matched to an element in x[1..i-1]
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Recursive formulation-cont
Case (I):  x[i] = y[j].    Claim: c[i, j]=c[i-1,j-1]+1 .

We claim that there is a max matching that matches x[i] to y[j].

Indeed, if x[i] is matched to y[k] (for k<j) then y[j] is unmatched 
(otherwise we have two crossing segments). Hence we can obtain 
another matching of the same cardinality by match x[i] to y[j] .

This implies that we can match x[1..i-1] to y[1..j-1], and add the 
match (x[i],y[j] ).  So c[i, j]=c[i-1,j-1]+1 

Proof.  
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Recursive formulation-cont
Case (II): x[i] ≠ y[ j]   Claim:  c[i, j]=max{c[i–1, j], c[i, j–1]}

Recall - in  LCS(x[1 . . i], y[1 . . j]) it cannot be that both x[i] and 
y[j] are both matched. 
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If x[i] is unmatched then  
LCS(x[1 . . i], y[1 . . j])= LCS(x[1 . . i-1], y[1 . . j] )

If y[j] is unmatched then  
LCS(x[1 . . i], y[1 . . j])= LCS(x[1 . . i], y[1 . . j-1] )

So c[i, j]= max{c[i–1, j], c[i, j–1]}

Dynamic-programming 
hallmark #1

Optimal substructure
An optimal solution to a problem 

(instance) contains optimal 
solutions to subproblems.

If z = LCS(x, y), then any prefix of z is 
an LCS of a prefix of x and a prefix of y.

Recursive algorithm for LCS
LCS(x, y, i, j)

if ( i==0 or j=0) return0 
if x[i] = y[ j]

then return LCS(x, y, i–1, j–1) + 1
else return max{ LCS(x, y, i–1, j), 

LCS(x, y, i, j–1)}
To call the functionLCS(x, y, m,n )

Worst-case:x[i] ≠ y[ j],  for all i,j in which case 
the algorithm evaluates two subproblems, each 
with only one parameter decremented.

same 
subproblem

but we’re solving subproblems already solved!

Recursion tree

m = 3, n = 4: 3,43,4

2,42,4

1,41,4

3,33,3

3,23,22,32,3

1,31,3 2,22,2

Height = m+ n⇒ work potentially 2m+n exponential.

2,32,3

1,31,3 2,22,2

m+n

Dynamic-programming 
hallmark #2

Overlapping subproblems
A recursive solution contains a 

“small” number of distinct 
subproblems repeated many times.

The number of distinct LCS subproblems for 
two strings of lengths m and n is only mn.

Memoization algorithm
Memoization:  After computing a solution to a 
subproblem, store it in a table.  Subsequent calls check 
the table to avoid redoing work.

Time = Θ(mn) = constant work per table entry.
Space = Θ(mn). 

LCS(x, y)
for i=0 to m c[i, 0] = 0
for j=0 to n c[0, j] = 0

for i=1 to m 
for j=1 to n 

if (x[i] = y[j] )
then c[i, j] ← c[ i–1, j–1]  + 1
elsec[i, j] ← max{ c[ i–1, j],  c[i, j–1] } 
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LCS(X,Y)=“BCBA”

X=B D C A B A

Y=A B C B D A B

Reconstruction z=LCS(x,y)
IDEA: Compute the table bottom-up. Fill z backward. 

00 00 00 00 00 00 00 00

00 00 11 11 11 11 11 11

00 00 11 11 11 22 22D 22

00 00 11 22 22 22 22C 22

00 11 11 22 22 22 33A 33

00 11 22 22 33 33 33B 44

00 11 22 22 33 33
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LCS(x,y)=“BCBA”
Observation:  c[i;j] ≥c[i-1;j] and c[i;j] ≥c[i;j-1]
Proof Sketch:We use a longer prefix, so there 
are more chars to be match.  

x=B D C A B A

y=A B C B D A B
LCS Reconstruction: 
Set i=m;  j=n;  k=c[i;j] 
While(k>0){

if (c[i;j] >c[i-1;j] and c[i;j] >c[i;j-1] ) {
z[k] = x[i] ;
i--; j-- ; k-- ; 

}else /*c[i;j]=c[i-1;j] or c[i;j]=c[i-1;j]
*/

if  (c[i;j] ==c[i;j-1] )  j-- ; 
else i-- ; 

}
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Reconstructing z=LCS(X,Y)
Another idea – While filling c[], add arrows to each 
cell c[i,j] specifying which neighboring cell c[i,j] it 
got its value. 
• c[i,j].flag = “\ “ if c[i,,j]=c[ i-1;j-1]+1
• c[i,j].flag = “↑ “ if c[i,,j]=c[i-1;j ]
•c[i,j].flag = “←“ if c[i,,j]=c[i-1;j ]

00 00 00 00 00 00 00 00
00 ↑0↑0 11 ←1←1 11 11 11 11
00 ↑0↑0 11 ←1←1 ←1←1 22 22D 22
00 ↑0↑0 ↑1↑1 22 ←2←2 ←2←2 22C 22
00 11 ↑1↑1 22 ←2←2 22 33A 33
00 ↑1↑1 22 ←2←2 33 33 33B 44
00 11 ↑2↑2 ←2←2 ↑3↑3 ←3←3

AA B C B D B

B

A 44 44
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Example 2 
of dynamic programming: 
Matrix Chain-Products
• Review: Matrix Multiplication.

– C = AB

– A is d × e, B is e × f

– O(def ) time

A C

B

d d

f

e

f

e

i

j

i,j∑= ],[],[],[ jkBkiAjiC
e-1

k=0

Matrix Chain-Products
• Matrix Chain-Product:

– Compute A = A0 A1…An-1

– Ai is di × di+1

– Problem: How to parenthesize?
• Example 1. (A1 A2 )( A3 A4 )   = A1 (A2 ( A3 A4 )) = 

(A1 ( A2 A3 )) A4 = A1(( A2 A3 ) A4  ) =…
• Example 2

– B is 3 × 100
– C is 100 × 7
– D is 7 × 5
– (BC)D 3×100×7 + 7×5×5 = 2275 mults
– B(CD) 3×100×5 + 100×7×5 = 5000 mults

An Enumeration Approach

• Matrix Chain-Product Alg.:
– Try all possible ways to parenthesize            

A=A0  A1…An-1
– Calculate number of ops for each one
– Pick the one that is best

• Running time:
– # of parenthesizations = # of binary trees with n 

nodes
• Exponential!
• Called the nth Catalan number – it is almost 

4n.
– This is a terrible algorithm!



A Greedy Approach

Repeatedly select the product that uses the fewest operations.

Counter-example: 
– A is 101 × 11
– B is 11 × 9
– C is 9 × 100
– D is 100 × 99

– Idea selects A((BC)D) 109989+9900+108900=228789 
mults

– Best is (AB)(CD)
9999+89991+89100=189090 mults

A “Recursive” Approach
• Define subproblems:

– Find the best parenthesization of Ai Ai+1…Aj  .

– Let Ni,j = # of operations done by this subproblem.

– The optimal solution for the whole problem is N0,n-1  .

• Subproblem optimality: Assume the last multiplication taken 
place is multiplying   (A0…Ai) by (Ai+1…An-1).

– Then the optimal solution N0,n-1 is the sum of two optimal 
subproblems, N0,i + Ni+1,n-1 plus the time for the last multiply.

– If the global optimum did not have these optimal subproblems, 
we could define an even better “optimal” solution.

A Characterizing Equation
• Again assume the last multiplication is  

(A0…Ai ) (Ai+1…An-1). 
– That is, we break at indexi

• Consider all possible places for that final multiply 
(possible values of 0 ≤ i ≤ n-1 ).  That is…
– (A0 )( A1 A2 …An-1), and(A0  A1)(A2…An-1), and
– (A0 A1A2 )(A3 …An-1), (A0 … A3 )(A4 …An-1) etc till 
– (A0 An-2 )(An-1),

• Recall that Ai is a di × di+1 dimensional matrix.
– So, a characterizing equation for Ni,j is the following:

}{min 11,1,, +++<≤
++= jkijkki

jki
ji dddNNN

I.e,  break (Ai … Aj), into (Ai … Ak )( Ak+1 …Aj),

A Dynamic Programming 
Algorithm

Since subproblems overlap, 
we don’t use recursion.

Instead, we construct 
optimal subproblems 
“bottom-up.” 

Ni,i’s are easy, so start with 
them

Then do length 2,3,… 
subproblems, and so on.

Running time: 

O(n3)

Algorithm matrixChain(S):
Input: sequence S of n matrices to be 

multiplied
Output: # of multiplications in optimal

parenthesization of S
for i ← 1 to n-1 do Ni,i ← 0
for b ← 1 to n-1 do          //length of a run

for i ← 0 to n-b-1 do  //start of run
j ← i+b                   //end of run
Ni,j ← +∞∞∞∞
for k ← i to j-1 do //break  pnt 

Ni,j ←min{Ni,j , 
Ni,k +Nk+1,j+di dk+1 dj+1}

N 0 1

0
1

2 …

n-1

…

n-1j

i

A Dynamic Programming 

Algorithm Visualization

• The bottom-up construction fills in 
the N array by diagonals

• Ni,j gets values from pervious entries 
in i-th row and j-th column 

• Filling in each entry in the N table 
takes O(n) time.

• Total run time: O(n3)

• Getting actual parenthesization can 
be done by remembering “k” for 
each N entry (next slide).

}{min 11,1,, +++<≤
++= jkijkki

jki
ji dddNNN

Matrix Chain algorithm

Algorithm matrixChain(S):
for i ← 0 to n-1 do

Ni,i ← 0
for b ← 1 to n-1 do  //length of a run

for i ← 0 to n-b-1 do //start of run
j ← i+b //end of run
Ni,j ← +infinity
for k ← i to j-1 do

sum =Ni,k +Nk+1,j +di dk+1 dj+1
if (sum< Ni,j ) then

Ni,j ← sum
Oi,j ← k

return N0,n-1

Example: ABCD

– A is 10 × 5
– B is 5 × 10
– C is 10 × 5
– D is 5 × 10

N 0       1       2        3

0

1

2

3

0

0

0

0

A

B

C

D

AB

BC

CD

A(BC)

(BC)D

(A(BC))D

500

250

500

500

500

1000
0 0 2

0 1

0

How do we find the actual order of operations ?



Recovering operations

• Example: ABCD

– A is 10 × 5
– B is 5 × 10
– C is 10 × 5
– D is 5 × 10

N 0       1       2        3

0

1

2

3

0

0

0

0

A

B

C

D

AB

BC

CD

A(BC)

(BC)D

(A(BC))D

500

250

500

500

500

1000
0 0 2

0 1

0

// return expression for multiplying
// matrix chain Ai through Aj

exp(i,j)
if ( i=j ) then // base case, 1 matrix

return ‘ Ai’
else

k = O[i,j ] // see red values on left
S1 = exp(i,k) // 2 recursive calls
S2 = exp(k+1,j)
return ‘(‘ S1 S2 ‘)’

The General Dynamic 
Programming Technique

• Applies to a problem that at first seems to 
require a lot of time (often exponential), 
provided we have:

– Simple subproblems:the subproblems can 
be defined in terms of a few variables, such 
as j, k, l, m, and so on.

– Subproblem optimality: the global 
optimum value can be defined in terms of 
optimal subproblems

Example 3: All-Pairs Shortest Paths
Floyd-Warshall alg

� Given a graph G(V,E) with weights 
(positive and negative) assign to each 
edges. Assume V={v1 …vn }.

� Compute a matrix D such that D[i,j]
contains the length of the shortest path 
from vi to vj. .

� Define Pi,j,
(k) as the shortst path vi → vj

that does not go through any of the 
vertices {vk+1…vn }. (that is, it is 
allowed to go through any of  {v1…vk }.

� Dk[i,j] – the length of Pi,j
(k)

� We compute D0 first, then D1, etc.

vj

vi

This example appears is in the shortest paths’’ chapter of CLRS  (25.2)

Forbidden:
{vk+1…vn }.

Allowed:
{v1…vk}.

�AssumeDk-1[i,j] has been computed (1 < i, j <n).

�We now want to computeDk[i,j]. I.e. now we can (but 
don’t have to) go throughvk on the shortest path vi→ vj . 

�Two possibilities: .

�Going through vk is longer, and better stick to Pi,j 
(k-1) . 

(previous found shortest path vi→ vj )

�Use Pi,k,
(k-1) , the shortest path vi→ vk to reach vk , and 

continue  along Pi,k
(k-1)  to vj. 

�Dk[i,j] = min( Dk-1[i,j], Dk-1[i,k] + Dk-1[k,j] )

vk

vjvi

Pi,k
(k-1) Pk,j

(k-1)

Forbidden:
{vk+1…vn }.

Floyd Warshll-Pairs Shortest Paths
Computing Dk[i,j] for every i,j,k.

Algorithm AllPair(G) for all vertex pairs(i,j) 
if i = j thenD0[i,i ] ← 0
else if (vi ,vj) is an edge inG

D0[i,j] ← w(vi ,vj )
else

D0[i,j] ← +∞

for k ← 1 to n do    
for i ← 1 to n do    

for j ← 1 to n do
Dk[i,j] = min{  Dk-1[i,j], Dk-1[i,k] + Dk-1[k,j] }

return Dn

vk

vj
vi

Pi,k
(k)

Pk,k
(k-1)Pi,k

(k-1)

Floyd’s algorithm: example
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Example 4: Edit distance

Given strings x,y,  the edit distance ed(x,y) between x and y is 
defined as the minimum number of operations that we need to 
perform on x, in order to obtain y. 

Defintion: An Operations (in this context) 
Insertion/Deletion/Replacement of a singlecharacter.

Examples: 
ed(“aaba”, “aaba”) = 0
ed(“aaa”, “aaba”) = 1
ed(“aaaa”, “abaa”) = 1
ed(“baaa”, “”) =4
ed(“baaa”, “aaab”) =2 

Example 4’:
``Priced’’ Edit distance ed(x,y)

Assume also given
InsCost, -the cost of a single insertion into x.  
DelCost -the cost of a single deletion from x, and
RepCost- the cost of  replacing one character of x

by a different character. 

Definition: Given strings x,y,  the edit distance ed(x,y) between 
x and y is the cheapest sequence of operations, starting on x and 
ending at y. 

Problem: Compute ed(x,y), and compute the sequence of 
operations. 

Theorem:

Let c[i,j] = ed( x[1..i], y[1..j] ) then 

If x[i]=y[j] then c[i,j] = c[i-1,j-1]

If  X[i] ≠Y[j] then  c[i,j] = min{ c[i-1, j ] + InsCost, 
c[ i,j-1] + DelCost ,
c[i-1,j-1] + RepCost,

}

Algorithm
Memoization:  After computing a solution to a subproblem, store 
it in a table.  Subsequent calls check the table to avoid redoing 
work.

Time = Θ(m n) = constant work per table entry. Space = Θ(m n). 

ed(x, y)
for i=0 to m c[i, 0] = 0
for j=0 to n c[0, j] = 0

for i=1 to m 
for j=1 to n 

if (x[i] == y[j] )
then c[i, j] ← c[ i–1, j–1]
elsec[i, j] ←min{ c[ i-1 , j ] + InsCost, 

c[ i-1, j-1 ] + RepCost, 
c[ i , j-1] + DelCost 
}


