CS 545

Dynamic Programming

Slides courtesy of Charles Leiserson with small changes by Carola Wenk

Brute-force LCS algorithm

Check every subsequence of x[1 ...m] to see if it is also a subsequence of y[1 ...n].

Analysis

- Checking = $\Theta(m+n)$ time per subsequence.
- 2^{*m*} subsequences of *x* (each bit-vector of length *m* determines a distinct subsequence of *x*).

Worst-case running time = $\Theta((m+n)2^m)$ = exponential time.

Towards a better algorithm

Simplification:

- 1. Look at the *length* of a longest-common subsequence.
- 2. Extend the algorithm to find the LCS itself.

Notation: Denote the length of a sequence s by |s|.

Strategy: Consider *prefixes* of *x* and *y*.

- Define c[i, j] = |LCS(x[1 ... i], y[1 ... j])|.
- Then, c[m, n] = |LCS(x, y)|.

Dynamic-programming hallmark #2

Overlapping subproblems A recursive solution contains a "small" number of distinct subproblems repeated many times.

G)

The number of distinct LCS subproblems for two strings of lengths m and n is only mn.

A "Recursive" Approach

Define subproblems:

- Find the best parenthesization of $A_i A_{i+1} \dots A_j$.
- Let $N_{i,j} = \#$ of operations done by this subproblem.
- The optimal solution for the whole problem is $N_{0,n-1}$.
- **Subproblem optimality**: Assume the last multiplication taken place is multiplying $(A_0...A_i)$ by $(A_{i+1}...A_{n-1})$.
- Then the optimal solution $N_{0,n-1}$ is the sum of two optimal subproblems, $N_{0,i} + N_{i+1,n-1}$ plus the time for the last multiply.
- If the global optimum did not have these optimal subproblems, we could define an even better "optimal" solution.

Linumpic it Lait and under	Exampl	le 4:	Edit	distance
----------------------------	--------	-------	------	----------

Given strings x, y, the **edit distance** ed(x, y) between x and y is defined as the minimum number of operations that we need to perform on x, in order to obtain y.

Defintion: An Operations (in this context) Insertion/Deletion/Replacement of a single character.

Examples:

ed("aaba", "aaba") = 0 ed("aaa", "aaba") = 1 ed("aaaa", "abaa") = 1 ed("baaa", "r) = 4 ed("baaa", "aaab") =2

Example 4': "Priced" Edit distance ed(x,y)

Assume also given

InsCost, - the cost of a single insertion into x. *DelCost* - the cost of a single **deletion** from *x*, and *RepCost* - the cost of **replacing** one character of xby a different character.

Definition: Given strings x, y, the **edit distance** ed(x, y) between x and y is the cheapest sequence of operations, starting on x and ending at y.

Problem: Compute ed(x, y), and compute the sequence of operations.

