
CS 545

Dynamic Programming

Slides courtesy of Charles Leiserson with
small changes by Carola Wenk

Dynamic programming
Example 1:Longest Common Subsequence (LCS)
• Given two sequences x[1 . . m] and y[1 . . n], find a longest

subsequence common to them both.

x: A B C B D A B

y: B D C A B A

“a” not “the”

BCBA =
LCS(x, y)

Different phrasing: Find a set of a maximum number of segments,
such that
•Each segment connects a character of x to an identical character of y,
•Each character is used at most once
•Segments do not intersect.

Brute-force LCS algorithm

Check every subsequence of x[1 . . m] to see
if it is also a subsequence of y[1 . . n].

Analysis
• Checking = Θ(m+n) time per subsequence.
• 2m subsequences of x (each bit-vector of

length m determines a distinct subsequence
of x).

Worst-case running time= Θ ((m+n)2m)
= exponential time.

Towards a better algorithm
Simplification:
1. Look at thelengthof a longest-common

subsequence.
2. Extend the algorithm to find the LCS itself.

Strategy: Consider prefixesof x and y.

• Define c[i, j] = |LCS(x[1 . . i], y[1 . . j]) |.

• Then, c[m, n] = |LCS(x, y) |.

Notation: Denote the length of a sequence s
by |s|.

Recursive formulation
Theorem.

c[i, j] =
c[i–1, j–1] + 1 if x[i] = y[j],
max{ c[i–1, j], c[i, j–1]} otherwise.

Proof: First Note that it is impossible that
x[i] is matched to an element in y[1..j-1] and in addition
y[j] is matched to an element in x[1..i-1]

���

1 2 i m

���

1 2 j n

x:

y:
=

Recursive formulation-cont
Case (I): x[i] = y[j]. Claim: c[i, j]=c[i-1,j-1]+1 .

We claim that there is a max matching that matches x[i] to y[j].

Indeed, if x[i] is matched to y[k] (for k<j) then y[j] is unmatched
(otherwise we have two crossing segments). Hence we can obtain
another matching of the same cardinality by match x[i] to y[j] .

This implies that we can match x[1..i-1] to y[1..j-1], and add the
match (x[i],y[j]). So c[i, j]=c[i-1,j-1]+1

Proof.

���

1 2 i m

���

1 2 j n

x:

y:
=

Recursive formulation-cont
Case (II): x[i] ≠ y[j] Claim: c[i, j]=max{c[i–1, j], c[i, j–1]}

Recall - in LCS(x[1 . . i], y[1 . . j]) it cannot be that both x[i] and
y[j] are both matched.

���

1 2 i m

���

1 2 j n

x:

y:

=

If x[i] is unmatched then
LCS(x[1 . . i], y[1 . . j])= LCS(x[1 . . i-1], y[1 . . j])

If y[j] is unmatched then
LCS(x[1 . . i], y[1 . . j])= LCS(x[1 . . i], y[1 . . j-1])

So c[i, j]= max{c[i–1, j], c[i, j–1]}

Dynamic-programming
hallmark #1

Optimal substructure
An optimal solution to a problem

(instance) contains optimal
solutions to subproblems.

If z = LCS(x, y), then any prefix of z is
an LCS of a prefix of x and a prefix of y.

Recursive algorithm for LCS
LCS(x, y, i, j)

if (i==0 or j=0) return0
if x[i] = y[j]

then return LCS(x, y, i–1, j–1) + 1
else return max{ LCS(x, y, i–1, j),

LCS(x, y, i, j–1)}
To call the functionLCS(x, y, m,n)

Worst-case:x[i] ≠ y[j], for all i,j in which case
the algorithm evaluates two subproblems, each
with only one parameter decremented.

same
subproblem

but we’re solving subproblems already solved!

Recursion tree

m = 3, n = 4: 3,43,4

2,42,4

1,41,4

3,33,3

3,23,22,32,3

1,31,3 2,22,2

Height = m+ n⇒ work potentially 2m+n exponential.

2,32,3

1,31,3 2,22,2

m+n

Dynamic-programming
hallmark #2

Overlapping subproblems
A recursive solution contains a

“small” number of distinct
subproblems repeated many times.

The number of distinct LCS subproblems for
two strings of lengths m and n is only mn.

Memoization algorithm
Memoization: After computing a solution to a
subproblem, store it in a table. Subsequent calls check
the table to avoid redoing work.

Time = Θ(mn) = constant work per table entry.
Space = Θ(mn).

LCS(x, y)
for i=0 to m c[i, 0] = 0
for j=0 to n c[0, j] = 0

for i=1 to m
for j=1 to n

if (x[i] = y[j])
then c[i, j] ← c[i–1, j–1] + 1
elsec[i, j] ← max{ c[i–1, j], c[i, j–1] }

00 00 00 00 00

00 00 11 11 11
00 00 00

11 11 11

00 00 11 11 11 22 22D 22

00 00 11 22 22 22 22C 22

00 11 11 22 22 22 33A 33

00 11 22 22 33 33 33B 44

00 11 22 22 33 33

A

LCS: Dynamic-programming algorithm

A B C B D B

B

A 44 44

1 2 3 4 5 6 7Y=

1

2

3

4

5

6

X
=

LCS(X,Y)=“BCBA”

X=B D C A B A

Y=A B C B D A B

Reconstruction z=LCS(x,y)
IDEA: Compute the table bottom-up. Fill z backward.

00 00 00 00 00 00 00 00

00 00 11 11 11 11 11 11

00 00 11 11 11 22 22D 22

00 00 11 22 22 22 22C 22

00 11 11 22 22 22 33A 33

00 11 22 22 33 33 33B 44

00 11 22 22 33 33

AA B C B D B

B

A 44 444

0 0
B

B

A

1

C

C

2

B

B

3

A

A

D

1

A

2

D

3

B

4

LCS(x,y)=“BCBA”
Observation: c[i;j] ≥c[i-1;j] and c[i;j] ≥c[i;j-1]
Proof Sketch:We use a longer prefix, so there
are more chars to be match.

x=B D C A B A

y=A B C B D A B
LCS Reconstruction:
Set i=m; j=n; k=c[i;j]
While(k>0){

if (c[i;j] >c[i-1;j] and c[i;j] >c[i;j-1]) {
z[k] = x[i] ;
i--; j-- ; k-- ;

}else /*c[i;j]=c[i-1;j] or c[i;j]=c[i-1;j]
*/

if (c[i;j] ==c[i;j-1]) j-- ;
else i-- ;

}

1

2

3

4

5

6

1 2 3 4 5 6 7

Reconstructing z=LCS(X,Y)
Another idea – While filling c[], add arrows to each
cell c[i,j] specifying which neighboring cell c[i,j] it
got its value.
• c[i,j].flag = “\ “ if c[i,,j]=c[i-1;j-1]+1
• c[i,j].flag = “↑ “ if c[i,,j]=c[i-1;j]
•c[i,j].flag = “←“ if c[i,,j]=c[i-1;j]

00 00 00 00 00 00 00 00
00 ↑0↑0 11 ←1←1 11 11 11 11
00 ↑0↑0 11 ←1←1 ←1←1 22 22D 22
00 ↑0↑0 ↑1↑1 22 ←2←2 ←2←2 22C 22
00 11 ↑1↑1 22 ←2←2 22 33A 33
00 ↑1↑1 22 ←2←2 33 33 33B 44
00 11 ↑2↑2 ←2←2 ↑3↑3 ←3←3

AA B C B D B

B

A 44 44

0
A

←4

←0
B

B
↑1

C

C

↑2
B

B

←3

A

A

D
1

A
2

D

3

B

4

Example 2
of dynamic programming:
Matrix Chain-Products
• Review: Matrix Multiplication.

– C = AB

– A is d × e, B is e × f

– O(def) time

A C

B

d d

f

e

f

e

i

j

i,j∑=],[],[],[jkBkiAjiC
e-1

k=0

Matrix Chain-Products
• Matrix Chain-Product:

– Compute A = A0 A1…An-1

– Ai is di × di+1

– Problem: How to parenthesize?
• Example 1. (A1 A2)(A3 A4) = A1 (A2 (A3 A4)) =

(A1 (A2 A3)) A4 = A1((A2 A3) A4) =…
• Example 2

– B is 3 × 100
– C is 100 × 7
– D is 7 × 5
– (BC)D 3×100×7 + 7×5×5 = 2275 mults
– B(CD) 3×100×5 + 100×7×5 = 5000 mults

An Enumeration Approach

• Matrix Chain-Product Alg.:
– Try all possible ways to parenthesize

A=A0 A1…An-1
– Calculate number of ops for each one
– Pick the one that is best

• Running time:
– # of parenthesizations = # of binary trees with n

nodes
• Exponential!
• Called the nth Catalan number – it is almost

4n.
– This is a terrible algorithm!

A Greedy Approach

Repeatedly select the product that uses the fewest operations.

Counter-example:
– A is 101 × 11
– B is 11 × 9
– C is 9 × 100
– D is 100 × 99

– Idea selects A((BC)D) 109989+9900+108900=228789
mults

– Best is (AB)(CD)
9999+89991+89100=189090 mults

A “Recursive” Approach
• Define subproblems:

– Find the best parenthesization of Ai Ai+1…Aj .

– Let Ni,j = # of operations done by this subproblem.

– The optimal solution for the whole problem is N0,n-1 .

• Subproblem optimality: Assume the last multiplication taken
place is multiplying (A0…Ai) by (Ai+1…An-1).

– Then the optimal solution N0,n-1 is the sum of two optimal
subproblems, N0,i + Ni+1,n-1 plus the time for the last multiply.

– If the global optimum did not have these optimal subproblems,
we could define an even better “optimal” solution.

A Characterizing Equation
• Again assume the last multiplication is

(A0…Ai) (Ai+1…An-1).
– That is, we break at indexi

• Consider all possible places for that final multiply
(possible values of 0 ≤ i ≤ n-1). That is…
– (A0)(A1 A2 …An-1), and(A0 A1)(A2…An-1), and
– (A0 A1A2)(A3 …An-1), (A0 … A3)(A4 …An-1) etc till
– (A0 An-2)(An-1),

• Recall that Ai is a di × di+1 dimensional matrix.
– So, a characterizing equation for Ni,j is the following:

}{min 11,1,, +++<≤
++= jkijkki

jki
ji dddNNN

I.e, break (Ai … Aj), into (Ai … Ak)(Ak+1 …Aj),

A Dynamic Programming
Algorithm

Since subproblems overlap,
we don’t use recursion.

Instead, we construct
optimal subproblems
“bottom-up.”

Ni,i’s are easy, so start with
them

Then do length 2,3,…
subproblems, and so on.

Running time:

O(n3)

Algorithm matrixChain(S):
Input: sequence S of n matrices to be

multiplied
Output: # of multiplications in optimal

parenthesization of S
for i ← 1 to n-1 do Ni,i ← 0
for b ← 1 to n-1 do //length of a run

for i ← 0 to n-b-1 do //start of run
j ← i+b //end of run
Ni,j ← +∞∞∞∞
for k ← i to j-1 do //break pnt

Ni,j ←min{Ni,j ,
Ni,k +Nk+1,j+di dk+1 dj+1}

N 0 1

0
1

2 …

n-1

…

n-1j

i

A Dynamic Programming

Algorithm Visualization

• The bottom-up construction fills in
the N array by diagonals

• Ni,j gets values from pervious entries
in i-th row and j-th column

• Filling in each entry in the N table
takes O(n) time.

• Total run time: O(n3)

• Getting actual parenthesization can
be done by remembering “k” for
each N entry (next slide).

}{min 11,1,, +++<≤
++= jkijkki

jki
ji dddNNN

Matrix Chain algorithm

Algorithm matrixChain(S):
for i ← 0 to n-1 do

Ni,i ← 0
for b ← 1 to n-1 do //length of a run

for i ← 0 to n-b-1 do //start of run
j ← i+b //end of run
Ni,j ← +infinity
for k ← i to j-1 do

sum =Ni,k +Nk+1,j +di dk+1 dj+1
if (sum< Ni,j) then

Ni,j ← sum
Oi,j ← k

return N0,n-1

Example: ABCD

– A is 10 × 5
– B is 5 × 10
– C is 10 × 5
– D is 5 × 10

N 0 1 2 3

0

1

2

3

0

0

0

0

A

B

C

D

AB

BC

CD

A(BC)

(BC)D

(A(BC))D

500

250

500

500

500

1000
0 0 2

0 1

0

How do we find the actual order of operations ?

Recovering operations

• Example: ABCD

– A is 10 × 5
– B is 5 × 10
– C is 10 × 5
– D is 5 × 10

N 0 1 2 3

0

1

2

3

0

0

0

0

A

B

C

D

AB

BC

CD

A(BC)

(BC)D

(A(BC))D

500

250

500

500

500

1000
0 0 2

0 1

0

// return expression for multiplying
// matrix chain Ai through Aj

exp(i,j)
if (i=j) then // base case, 1 matrix

return ‘ Ai’
else

k = O[i,j] // see red values on left
S1 = exp(i,k) // 2 recursive calls
S2 = exp(k+1,j)
return ‘(‘ S1 S2 ‘)’

The General Dynamic
Programming Technique

• Applies to a problem that at first seems to
require a lot of time (often exponential),
provided we have:

– Simple subproblems:the subproblems can
be defined in terms of a few variables, such
as j, k, l, m, and so on.

– Subproblem optimality: the global
optimum value can be defined in terms of
optimal subproblems

Example 3: All-Pairs Shortest Paths
Floyd-Warshall alg

� Given a graph G(V,E) with weights
(positive and negative) assign to each
edges. Assume V={v1 …vn }.

� Compute a matrix D such that D[i,j]
contains the length of the shortest path
from vi to vj. .

� Define Pi,j,
(k) as the shortst path vi → vj

that does not go through any of the
vertices {vk+1…vn }. (that is, it is
allowed to go through any of {v1…vk }.

� Dk[i,j] – the length of Pi,j
(k)

� We compute D0 first, then D1, etc.

vj

vi

This example appears is in the shortest paths’’ chapter of CLRS (25.2)

Forbidden:
{vk+1…vn }.

Allowed:
{v1…vk}.

�AssumeDk-1[i,j] has been computed (1 < i, j <n).

�We now want to computeDk[i,j]. I.e. now we can (but
don’t have to) go throughvk on the shortest path vi→ vj .

�Two possibilities: .

�Going through vk is longer, and better stick to Pi,j
(k-1) .

(previous found shortest path vi→ vj)

�Use Pi,k,
(k-1) , the shortest path vi→ vk to reach vk , and

continue along Pi,k
(k-1) to vj.

�Dk[i,j] = min(Dk-1[i,j], Dk-1[i,k] + Dk-1[k,j])

vk

vjvi

Pi,k
(k-1) Pk,j

(k-1)

Forbidden:
{vk+1…vn }.

Floyd Warshll-Pairs Shortest Paths
Computing Dk[i,j] for every i,j,k.

Algorithm AllPair(G) for all vertex pairs(i,j)
if i = j thenD0[i,i] ← 0
else if (vi ,vj) is an edge inG

D0[i,j] ← w(vi ,vj)
else

D0[i,j] ← +∞

for k ← 1 to n do
for i ← 1 to n do

for j ← 1 to n do
Dk[i,j] = min{ Dk-1[i,j], Dk-1[i,k] + Dk-1[k,j] }

return Dn

vk

vj
vi

Pi,k
(k)

Pk,k
(k-1)Pi,k

(k-1)

Floyd’s algorithm: example

21 3

2

8

3

5

2

02∞3

∞032

5801

321D0

0
∞+5

2
∞+8

∞
∞+0

3

8
3+5

0
3+8

3
3+0

2

5
0+5

8
0+8

0
0+0

1

321D1

0
2+8

2
2+0

5
2+3

3

8
0+8

0
0+0

3
0+3

2

5
8+8

8
8+0

0
8+3

1

321D2

0
0+0

2
0+2

5
0+5

3

8
8+0

0
8+2

3
8+5

2

5
5+0

7
5+2

0
5+5

1

321D3

Example 4: Edit distance

Given strings x,y, the edit distance ed(x,y) between x and y is
defined as the minimum number of operations that we need to
perform on x, in order to obtain y.

Defintion: An Operations (in this context)
Insertion/Deletion/Replacement of a singlecharacter.

Examples:
ed(“aaba”, “aaba”) = 0
ed(“aaa”, “aaba”) = 1
ed(“aaaa”, “abaa”) = 1
ed(“baaa”, “”) =4
ed(“baaa”, “aaab”) =2

Example 4’:
``Priced’’ Edit distance ed(x,y)

Assume also given
InsCost, -the cost of a single insertion into x.
DelCost -the cost of a single deletion from x, and
RepCost- the cost of replacing one character of x

by a different character.

Definition: Given strings x,y, the edit distance ed(x,y) between
x and y is the cheapest sequence of operations, starting on x and
ending at y.

Problem: Compute ed(x,y), and compute the sequence of
operations.

Theorem:

Let c[i,j] = ed(x[1..i], y[1..j]) then

If x[i]=y[j] then c[i,j] = c[i-1,j-1]

If X[i] ≠Y[j] then c[i,j] = min{ c[i-1, j] + InsCost,
c[i,j-1] + DelCost ,
c[i-1,j-1] + RepCost,

}

Algorithm
Memoization: After computing a solution to a subproblem, store
it in a table. Subsequent calls check the table to avoid redoing
work.

Time = Θ(m n) = constant work per table entry. Space = Θ(m n).

ed(x, y)
for i=0 to m c[i, 0] = 0
for j=0 to n c[0, j] = 0

for i=1 to m
for j=1 to n

if (x[i] == y[j])
then c[i, j] ← c[i–1, j–1]
elsec[i, j] ←min{ c[i-1 , j] + InsCost,

c[i-1, j-1] + RepCost,
c[i , j-1] + DelCost
}

