
Two Easy Applications of Amortized 
Analysis:

1. Making Static Data Structures semi-
dynamic 

2. Dynamic Hash Tables

These slides are based on slides by Charles 
Leiserson and Carola Wenk

Making Static structre Dynamic
(problem 17-2 in the text)

Last meeting we introduced 
the Voronoi Diagram.

Given: A set S={s1…sn } of 
points (sites) in 2D.

The Voronoi Diagram VD(S) 
is the plane – partition of the 
plane into “cell” or “regions”.

s2

s1

s3

s4

s7

s6

s5

p

The Voronoi Diagram VD(S) 
is the subdivision of the plane 
so that two point lie in the 
same region of VD(S) iff their 
nearest site is the same. 

Example: 
S={s1…s7} set of sites.

Point p and q lie in the same 
cell since the nearest site for 
both  points is the site s1.

q

Voronoi Diagram – cont. History
Informal use of Voronoi diagrams can be traced back to Descartes
in 1644. 

Dirichlet used 2-dimensional and 3-dimensional Voronoi diagrams 
in his study of quadratic forms in 1850.

British physician John Snowused a Voronoi diagram in 1854to 
illustrate how the majority of people who died in the Sohocholera 
epidemic lived closer to the infected Broad Street pump than to 
any other water pump.

Voronoi diagrams are named after Russian mathematician Georgy 
Fedoseevich Voronoi

Using VD(S) – some facts 

Let n=|S|.

VD(S) can be constructed in O(n log n ).

Moreover, we can create in time O( n log n ) a “point 

location data structure” so that once a query point q is 

given, we can find the nearest site to q in time O( log n ). 

By abusing notation, in this context, we call VD( S ) to the 

whole structure. 

This structure is static – we cannot add sites. 

Static Dynamic and Semi-Dynamic
Consider a data structure  D constructed on some input. 

Def:  D is static, if once a new point is inserted or deleted, we need 

to constructed D from scratch  (takes super-linear time (Ω(n) )). 

Example: Sorted array. 

D is dynamic if once a point is inserted or deleted, we can update the 

D in sub-linear time.  (better than O(n) ). 

Example– red-black tree/AVL tree. 

D is semi-dynamic if once a point is inserted, we can update D in 

sub-linear time.  (better than O(n) ). 



General technique for 
Making static DS  Semi-Dynamic

Bentley and J. B. Saxe. Decomposable searching problems I: 

Static-to-dynamic transformations. Journal of Algorithms, 1:301-

358, 1980 

Making the structure semi-dynamic

Need a semi-dynamic structure,  so that we can 

Add a new site to S in amortized time O(log2 n)

Find the nearest site to a query point q, in time O( log2 n )

We use Voronoi Diagram only for a demonstration – applies for many 
data structures. 

Idea: We decompose S into a disjoint collection of sets 

S={ S0∪ S1 ∪…∪ Sk }, (some might be empty) where  |Si| = 2i

So – at most one set of size 1, at most one of size 2, one of size 4, and  
so on. So k=O(log n ). 

We construct VD(Si),   ∀i

Performing a query

Given  VD(S0 ) , VD( S1)… VD( Sk), to find the neatest site 
to a query point q, we just perform a query in each VD( Si)
and find the nearest. 

Time: O(log n) per VD, altogether O( log2 n ).

Handling insertions of sites: 
Given S={S0∪ S1 ∪ Sk}, add new site s’

Rule: During the insertion process, we can temporallyhave 2 
sets both containing 2i sites, but then they gave to be merged. 

Algorithm:

Create a new set S’0 ={s’}.

While ( there are two sets Si , S’i both containing2i sites )  {

Merge  Si ,  S’i to form a new set S’i+1 containing 2i+1 sites;

DiscardSi   ,  S’i    ;

} 

Compute new VD for all new sets.

When done ,we have at most one set of size 2i ∀i

Running time analysis

Recall that constructing new VD of m sites (where m ≤ n ) costs

O(m log m) ≤ O(m log n) 

When inserting a new site, we equipped it with  O(log2 n) dollars. 

The constant is the same constant as the constant in the O( )  of the 
VD construction time. 

Every time that a new VD  of m sites is constructed, its sites pays 
for the construction. We collect O(m log m) dollars, so the 
construction leaves us with a positive balanced. 

Every cite is involved in ≤ log2n different VD’s, so it is charged no 
more than O(log2 n) dollars , as required. 

Thm:  Starting with an empty set, an sequence of n insertions takes 
time O( n log2 n). 

Running time analysis

Recall that constructing new VD of m sites (where m ≤ n ) costs

O(m log m) ≤ O(m log n) 

When inserting a new site, we equipped it with  O(log2 n) dollars. 

The constant is the same constant as the constant in the O( )  of the 
VD construction time. 

Every time that a new VD  of m sites is constructed, its sites pays 
for the construction. We collect O(m log m) dollars, so the 
construction leaves us with a positive balanced. 

Every cite is involved in ≤ log2n different VD’s, so it is charged no 
more than O(log2 n) dollars , as required. 



Application 2: Dynamic tables 

Problem: What if we don’t know the number of insertions in 
advance?

Goal: Maintain insertions into an array, s.t.  the array is small 
(with respect to the input) 

Applications: Hashing tables, when the number of keys is not 
known in advanced. 

IDEA: Whenever the table overflows, “grow” it by allocating (via 
mallocor new) a new, larger table.  Move all items from the old 
table into the new one, and free the storage for the old table.

Solution: Dynamic tables. 

Example of a dynamic table

1. INSERT 1

2. INSERT overflow

11

Example of a dynamic table

1. INSERT

2. INSERT overflow

11

2

Example of a dynamic table

1. INSERT

2. INSERT

Example of a dynamic table

1. INSERT

2. INSERT

11

22

3. INSERT overflow

Example of a dynamic table

1. INSERT

2. INSERT

3. INSERT

2

1

overflow



Example of a semi-dynamic table

1. INSERT

2. INSERT

3. INSERT

2

1

Example of a dynamic table

1. INSERT

2. INSERT

3. INSERT

4. INSERT 4

3

2

1

Example of a dynamic table

1. INSERT

2. INSERT

3. INSERT

4. INSERT

5. INSERT

4

3

2

1

overflow

Example of a dynamic table

1. INSERT

2. INSERT

3. INSERT

4. INSERT

5. INSERT

4

3

2

1

overflow

Example of a dynamic table

1. INSERT

2. INSERT

3. INSERT

4. INSERT

5. INSERT

4

3

2

1

Example of a dynamic table

1. INSERT

2. INSERT

3. INSERT

4. INSERT

6. INSERT 6
5. INSERT 5

4

3

2

1

77. INSERT



Worst-case analysis

Consider a sequence of n insertions.  The 
worst-case time to execute one insertion is 
Θ(n).  Therefore, the worst-case time for n
insertions is n ·Θ(n) = Θ(n2).

WRONG! In fact, the worst-case cost for 
n insertions is only Θ(n) ≠ Θ(n2).

Let’s see why.

Tighter analysis

i 1 2 3 4 5 6 7 8 9 10

sizei 1 2 4 4 8 8 8 8 16 16

ci 1 2 3 1 5 1 1 1 9 1

Let ci = the cost of the i th insertion

=
i if i – 1 is an exact power of 2,
1 otherwise.

Tighter analysis

Let ci = the cost of the i th insertion

=
i if i – 1 is an exact power of 2,
1 otherwise.

i 1 2 3 4 5 6 7 8 9 10

sizei 1 2 4 4 8 8 8 8 16 16

1 1 1 1 1 1 1 1 1 1
1 2 4 8

ci

Tighter analysis (continued)

 

)(

3

2

 

)1lg(

0

1

n

n

n

c

n

j

j

n

i
i

Θ=
≤

+≤

=

∑

∑
−

=

=
Cost of n insertions

.

Thus, the amortized cost of each dynamic-
table insertion is Θ(n)/n = Θ(1).

$0$0 $0$0 $0$0 $0$0 $2$2 $2$2

Example:

$2 $2

Accounting analysis of 
dynamic tables

Charge an amortized cost of 
ĉ

i = $3for the i th 
insertion.
• $1pays for the immediate insertion.
• $2 is stored for later table doubling.
When the table doubles, $1pays to move a 
recent item, and $1pays to move an old item.

overflow

Example:

Accounting analysis of 
dynamic tables

Charge an amortized cost of 
ĉ

i = $3for the i th 
insertion.
• $1pays for the immediate insertion.
• $2 is stored for later table doubling.
When the table doubles, $1pays to move a 
recent item, and $1pays to move an old item.

overflow

$0$0 $0$0 $0$0 $0$0 $0$0 $0$0 $0$0 $0$0



Example:

Accounting analysis of 
dynamic tables

Charge an amortized cost of 
ĉ

i = $3for the i th 
insertion.
• $1pays for the immediate insertion.
• $2 is stored for later table doubling.
When the table doubles, $1pays to move a 
recent item, and $1pays to move an old item.

$0$0 $0$0 $0$0 $0$0 $0$0 $0$0 $0$0 $0$0 $2 $2 $2

Accounting analysis (continued)

Key invariant: Bank balance never drops below 0.  
Thus, the sum of the amortized costs provides an 
upper bound on the sum of the true costs.

What about deletions ? 

If m is the size of the table containing n elements 
Doubling:  Copy all elements  the size into a table of size 

2m,  if  n>m.
Shrinking: Copy all elements  the size into a table of size 

m/2 if  n < m/4..

Then still the amortized time per operation is O(1)

(homework) 


