Two Easy Applications of Amortized
Analysis:

1. Making Static Data Structures semi-
dynamic

2. Dynamic Hash Tables

These slides are based on slides by Charles
Leiserson and Carola Wenk

Making Static structre Dynamic
(problem 17-2 in the text)

Last meeting we introducec
theVoronoi Diagram.

Given: A setS={s,...5,} of
points (sites) in 2D.

The Voronoi Diagram VIg)
is the plane — partition of th
plane into “cell” or “regions”

Voronoi Diagram — cont.

The Voronoi Diagram VD$)
is the subdivision of the plane
so that two point lie in the
same region of VIY) iff their
nearest site is the same.

qO %_.

Example:
S={s, s;} set of sites.

Pointp andq lie in the same
cell since the nearest site for
both points is the sitg.

History

Informal use of Voronoi diagrams can be traced badBescartes
in 1644

Dirichlet used 2-dimensional and 3-dimensional Voronoi diagrams
in his study of quadratic forms B850

British physicianJohn Snowsed a Voronoi diagram ib854to
illustrate how the majority of people who died lire Sohocholera
epidemic lived closer to the infected Broad Stprenp than to
any other water pump.

Voronoi diagrams are named after Russian matheraati&eorgy
Fedoseevich Voronoi

Using VD(S) — some facts

Letn=|S|.
VD(S) can be constructed @(nlogn).

Moreover, we can create in tintg nlogn ) a “point
location data structure” so that once a query ppist

given, we can find the nearest sitejtim time O(logn ).

By abusing notation, in this context, we ¢dlb( S) to the
whole structure.

This structure istatic — we cannot add sites.

Static Dynamic and Semi-Dynamic

Consider a data structur@ constructed on some input

Def: D is static, if once a new point is inserted or deleted, we n4g
to constructedd from scratch (takes super-linear tinf(() )).
Example: Sorted array.

D is dynamic if once a point is insertear deleted, we can update t
D in sub-linear time. (better tham(n)).
Example — red-black tree/AVL tree.

D is semi-dynamicif once a point is inserted, we can updat&
sub-linear time. (better tham(n)).




General technique for
Making static DS Semi-Dynamic

Bentley and J. B. SaxBecomposable searching problems I
Static-to-dynamic transformationdournal of Algorithms, 1:301-
358, 1980

Making the structure semi-dynamic

Need a semi-dynamic structure, so that we can
Add a new site t&in amortized time O(log? n)
Find the nearest site to a query pajnin time O( log?n)

We use Voronoi Diagram only for a demonstration pligg for many|
data structures.

Idea: We decomposginto a disjoint collection of sets
S={ S, [...[7S}, (some might be empty) whel§| = 2

So — at most one set of sizeat most one of siz2, one of sizet, and
so on. Sk=0O(logn ).

We construcVD(S), /i

Performing a query

Given VD(S)) , VD(S)... VD( S), to find the neatest sit¢
to a query poing, we just perform a query in eattd( S)
and find the nearest.

Time: O(logn) per VD, altogethe©(log2n ).

Handling insertions of sites:
Given S={§/7S, 7S}, add new sites’

Rule: During the insertion process, we can tempotadlye 2
sets both containing sites, but then they gave to be merged.

Algorithm:

Create a new s&t, ={s’}.

While ( there are two se§, S’ both containing sites ) {
Merge §, S; to form a new seb’,, containing 2'*! sites;
DiscardS , S ;

}

Compute newD for all new sets.

When done ,we have at most one set of &iZd

Running time analysis

Recall that constructing new VD of sites (wheren <n) costs
O(mlog m) sO(mlog n)
When inserting a new site, we equipped it wilflog? n) dollars.

The constant is the same constant as the consttirg O( ) of the
VD construction time.

Every time that a new VD ofn sites is constructed, its sites pays
for the construction. We colle€(mlog m)dollars, so the
construction leaves us with a positive balanced.

Every cite is involved inslog,n different VD's, so it is charged no
more tharO(log? n) dollars , as required.

Thm: Starting with an empty set, an sequence of n isertakes
time O(nlog?n).

Running time analysis

Recall that constructing new VD of sites (wheren <n) costs
O(mlog m) sO(mlog n)
When inserting a new site, we equipped it wilflog? n) dollars.

The constant is the same constant as the consttirg O( ) of the
VD construction time.

Every time that a new VD ofn sites is constructed, its sites pays
for the construction. We colle€(mlog m)dollars, so the
construction leaves us with a positive balanced.

Every cite is involved irclog,n different VD's, so it is charged no
more tharO(log? n) dollars , as required.




Application 2: Dynamic tables

Goal: Maintain insertions into an array, s.t. the aigagmall
(with respect to the input)

Applications: Hashing tables, when the number of keys is not
known in advanced.

Problem: What if we don’t know the number of insertions in
advance?

Solution: Dynamic tables.

IDEA: Whenever the table overflows, “grow” it by allocaifvia
mal | oc ornew) a new, larger table. Move all items from the olg
table into the new one, and free the storage ®ott table.

Example of a dynamic table

1. INSERT

2. INSERT overflow

Example of a dynamic table

1. INSERT E

2. INSERT overflow .

Example of a dynamic table

1. INSERT |
2. INSERT

Example of a dynamic table

1. INSERT N
2. INSERT

3. INSERT overflow

Example of a dynamic table

2. INSERT
3. INSERT overflow

1. INSERT |:I E 1




Example of a semi-dynamic table Example of a dynamic table
1. INSERT | [1] 1. INSERT | [1]
2. INSERT 2] 2. INSERT 2]
3. INSERT 3. INSERT
4. INSERT
Example of a dynamic table Example of a dynamic table
1. INSERT | [ ] 1. INSERT | 1]
2. INSERT . 2. INSERT hei|
3. INSERT L 3. INSERT k1
4. INSERT L 4. INSERT 1 4]
5. INSERT overflow | | 5. INSERT overflow | |
Example of a dynamic table Example of a dynamic table
1. INSERT N [1] 1. INSERT N [1]
2. INSERT | 2] 2. INSERT | 2|
3. INSERT 13 3. INSERT 18]
4. INSERT 1 4] 4. INSERT | 4]
5. INSERT L 5. INSERT 15]
. 6. INSERT 16|
. 7. INSERT 7]




Worst-case analysis

Consider a sequence ofnsertions. The
worst-case time to execute one insertion is
O(n). Therefore, the worst-case time for
insertions is1 - ©(n) = O(n?).

WRONG! In fact, the worst-case cost for
ninsertions is onlyd(n) # O(n?).

Let's see why.

Tighter analysis

Letc, = the cost of théth insertion
_ {i if i — 1is an exact power df,
1 otherwise.

i1 2 3 4 5 6 7 8 9 10
sizg |l 1 2 4 4 8 8 8 8 16 16
112 3 1 5 1 1 1 9 1

Tighter analysis

Letc, = the cost of théth insertion
i if i —1is an exact power ¢,

1 otherwise.
i 2 3 4 5 6 7 8 9 10
size 2 4 4 8 8 8 8 16 16
. 1 1 1 1 1 1 1 1 1
' 1 2 4 8

Tighter analysis (continued)

n
Cost ofn insertions= ) ¢
i=1
llgn=]
<n+ ) 2
j=0
<3n
=0O(n).

Thus, the amortized cost of each dynamic-
table insertion i©(n)/n = O(1).

Accounting analysis of
dynamic tables
Charge an amortized cost&f= $3for theith
insertion.
* $1 pays for the immediate insertion.
* $2is stored for later table doubling.

When the table double$] pays to move a
recent item, ané1 pays to move an old item.

Example:
[$0/$0/$0/$0/$2/$2/$2/$2] overflow

Accounting analysis of
dynamic tables

Charge an amortized costf= $3for theith
insertion.
* $1 pays for the immediate insertion.
* $2is stored for later table doubling.
When the table double$] pays to move a
recent item, ané1 pays to move an old item.
Example:

[elelelelelele]s]overfow

TTTTTT T
[solsojsasasosososd | [ [ [ [ [ [




Accounting analysis of
dynamic tables

Charge an amortized cost&f= $3for theith
insertion.

 $1 pays for the immediate insertion.

« $2is stored for later table doubling.

When the table double$] pays to move a

recent item, andé1 pays to move an old item.

Example:

[s0/s0/sds0/s0[s0/s0s0/$2s2$2] [ [ | [ |

Accounting analysis (continued)

Key invariant: Bank balance never drops below

Thus, the sum of the amortized costs provides a

upper bound on the sum of the true costs.

=4

What about deletions ?

If mis the size of the table containinglements
Doubling: Copy all elements the size into a taiflsize
2m, if n>m.
Shrinking: Copy all elements the size into a taiflsize
m/2 if n<m/4.

Then still the amortized time per operatiori€l)

(homework)




