

Voronoi Diagram - cont.

The Voronoi Diagram VD(S)is the subdivision of the plane so that two point lie in the same region of VD(S) **iff** their nearest site is the same.

Example: $S = \{s_{1...}s_7\}$ set of sites.

Point p and q lie in the same cell since the nearest site for both points is the site s_1 .

History

Informal use of Voronoi diagrams can be traced back to $\underline{\text{Descartes}}$ in $\underline{1644}$.

Dirichlet used 2-dimensional and 3-dimensional Voronoi diagrams in his study of quadratic forms in <u>1850</u>.

British physician John Snow used a Voronoi diagram in <u>1854</u> to illustrate how the majority of people who died in the <u>Soho</u> cholera epidemic lived closer to the infected Broad Street pump than to any other water pump.

Voronoi diagrams are named after Russian mathematician Georgy Fedoseevich Voronoi

Using **VD**(*S*) – some facts

Let n=/S/.

VD(S) can be constructed in $O(n \log n)$.

Moreover, we can create in time $O(n \log n)$ a "point location data structure" so that once a query point q is given, we can find the nearest site to q in time $O(\log n)$.

By abusing notation, in this context, we call VD(S) to the whole structure.

This structure is static - we cannot add sites.

Static Dynamic and Semi-Dynamic

Consider a data structure D constructed on some input.

Def: *D* is **static**, if once a new point is inserted or deleted, we need to constructed *D* from scratch (takes super-linear time ($\Omega(n)$)). **Example:** Sorted array.

D is **dynamic** if once a point is inserted **or** deleted, we can update the *D* in sub-linear time. (better than O(n)). **Example** – red-black tree/AVL tree.

D is **semi-dynamic** if once a point is inserted, we can update D in sub-linear time. (better than O(n)).

General technique for Making static DS Semi-Dynamic

Bentley and J. B. Saxe. *Decomposable searching problems I: Static-to-dynamic transformations*. Journal of Algorithms, 1:301-358, 1980

Making the structure semi-dynamic

Need a semi-dynamic structure, so that we can

Add a new site to S in **amortized** time $O(\log^2 n)$

Find the nearest site to a query point q, in time O($\log^2 n$)

We use Voronoi Diagram only for a demonstration – applies for many data structures.

Idea: We decompose S into a disjoint collection of sets

 $S = \{ S_0 \cup S_1 \cup ... \cup S_k \}$, (some might be empty) where $|S_i| = 2^i$ So – at most one set of size 1, at most one of size 2, one of size 4, and so on. So $k = O(\log n)$.

We construct $VD(S_i)$, $\forall i$

Performing a query

Given $VD(S_0)$, $VD(S_i)$... $VD(S_k)$, to find the neatest site to a query point q, we just perform a query in each $VD(S_i)$ and find the nearest.

Time: $O(\log n)$ per VD, altogether $O(\log^2 n)$.

Handling insertions of sites: Given $S = \{S_0 \cup S_1 \cup S_k\}$, add new site s'

Rule: During the insertion process, we can <u>temporally</u> have 2 sets both containing 2ⁱ sites, but then they gave to be merged. **Algorithm:**

Create a new set $S'_0 = \{s'\}$.

While (there are two sets S_i , S'_i both containing 2^i sites) { Merge S_i , S'_i to form a new set S'_{i+1} containing 2^{i+1} sites Discard S_i , S'_i ;

Compute new VD for all new sets.

When done , we have at most one set of size $2^i \forall i$

Running time analysis

Recall that constructing new VD of m sites (where $m \le n$) costs

$O(m \log m) \leq O(m \log n)$

When inserting a new site, we equipped it with $O(\log^2 n)$ dollars.

The constant is the same constant as the constant in the $O(\)\,$ of the VD construction time.

Every time that a new VD of m sites is constructed, its sites pays for the construction. We collect $O(m \log m)$ dollars, so the construction leaves us with a positive balanced.

Every cite is involved in $\leq \log_2 n$ different VD's, so it is charged no more than $O(\log^2 n)$ dollars, as required.

Thm: Starting with an empty set, an sequence of n insertions takes time $O(n \log^2 n)$.

Running time analysis

Recall that constructing new VD of m sites (where $m \le n$) costs

$O(m \log m) \leq O(m \log n)$

When inserting a new site, we equipped it with $O(\log^2 n)$ dollars.

The constant is the same constant as the constant in the $O(\)\,$ of the VD construction time.

Every time that a new VD of m sites is constructed, its sites pays for the construction. We collect $O(m \log m)$ dollars, so the construction leaves us with a positive balanced.

Every cite is involved in $\leq \log_2 n$ different VD's, so it is charged no more than $O(\log^2 n)$ dollars, as required.

Goal: Maintain insertions into an array, s.t. the array is small (with respect to the input)

Applications: Hashing tables, when the number of keys is not known in advanced.

Problem: What if we don't know the number of insertions in advance?

Solution: Dynamic tables.

IDEA: Whenever the table overflows, "grow" it by allocating (via **malloc** or **new**) a new, larger table. Move all items from the old table into the new one, and free the storage for the old table.

Worst-case analysis

Consider a sequence of *n* insertions. The worst-case time to execute one insertion is $\Theta(n)$. Therefore, the worst-case time for *n* insertions is $n \cdot \Theta(n) = \Theta(n^2)$.

WRONG! In fact, the worst-case cost for *n* insertions is only $\Theta(n) \neq \Theta(n^2)$.

Let's see why.

Accounting analysis (continued)

Key invariant: Bank balance never drops below 0. Thus, the sum of the amortized costs provides an upper bound on the sum of the true costs.

What about deletions ?

If *m* is the size of the table containing *n* elements Doubling: Copy all elements the size into a table of size 2m, if n > m.

Shrinking: Copy all elements the size into a table of size m/2 if n < m/4.

Then still the amortized time per operation is O(1)

(homework)