
String Matching

Thanks to
Prof. Piotr Indyk and Carola Wenk

String Matching

• Input:Two strings T[1…n] (text) and P[1…m] (pattern),
containing symbols from alphabet Σ

• Goal:find all “shifts” 1≤ s ≤n-m such that T[s+1…s+m]=P
– In other words: Finds all shifts of a window of length m

inside the text T, so the context of the window is
identical to the patternP.

• Example:
– Σ={ ,a,b,…,z}
– T[1…18]=“to be or not to be”
– P[1..2]=“be”
– Shifts: 3, 16

Simple Algorithm

for s ← 0 to n-m

Match ← 1

for j ← 1 to m

if T[s+j] ≠P[j] then

Match ← 0

exit loop

if Match=1 then output s

Results

• Running time of the simple algorithm:

– Worst-case: O(nm)

– Average-case (random text): O(n)

• Is it possible to achieve O(n) for any input ?

– Knuth-Morris-Pratt’77: deterministic

– Karp-Rabin’81: randomized

Karp-Rabin Algorithm

• A very elegant use of an idea that we have encountered
before, namely…

HASHING !
• Idea:

– Hash all substrings T[1…m], T[2…m+1], T[3…m+2],
etc.

– Hash (details later) the pattern P[1…m]
– Report the substrings that hash to the same value as P

• Problem:how to hash n-m substrings, each of length m, in
O(n) time ?

Implementation

• Attempt I:
– Assume Σ={0,1}
– Think about each Ts=T[s+1…s+m]as a

number in binary representation, i.e.,
ts=T[s+1]20+T[s+2]21+…+T[s+m]2m-1

– Find a fast way of computing ts+1 given ts
– Output all s such that ts is equal to the

number p represented by P

The great formula

• How to transform
ts=T[s+1]20+T[s+2]21+ T[s+3]22 +…+T[s+m]2m-1

into
ts+1=T[s+2]20+T[s+3]21+T[s+4]23 +… T[s+m]2m-1 +T[s+m+1]2m-1?

• Three steps:
– Subtract T[s+1]20

– Divide by 2 (i.e., shift the bits by one position)
– Add T[s+m+1]2m-1

• Therefore: ts+1= (ts- T[s+1]20)/2 + T[s+m+1]2m-1

Algorithm

• Can compute ts+1from ts using 3 arithmetic
operations

• Therefore, we can compute all t0,t1,…,tn-m
using O(n) arithmetic operations

• We can compute a number corresponding to
P using O(m) arithmetic operations

• Are we done ?

Problem

• To get O(n) time, we would need to perform
each arithmetic operation in O(1) time

• However, the arguments are m-bit long (and
we have 32/64 bits machine) !

• It is unreasonable to assume that operations
on such big numbers can be done in O(1)
time

• We need to reduce the number range to
something more manageable

Warm-up
• ((x mod q) + (y mod q)) mod q = (x+y) mod q

• ((x mod q) (y mod q)) mod q = (xy) mod q

• (ax+b modq) = ((a modq) (x modq)+ (b modq)) modq

• Every integer x can be uniquely represented as
x=p1

e1p2
e2…pk

ek where

1. pi is a prime, and

2. ei is an integer

3. k≤ log2 x since each pi ≥ 2

Hashing

• We will instead compute

t’ s=T[s+1]2 0+T[s+2]2 1+…+T[s+m]2m-1mod q

where q is an “appropriate” prime number

• One can still compute t’ s+1 from t’ s :

t’ s+1= (t’ s- T[s+1]20)*2-1+T[s+m+1]2m-1 mod q

• If q is not large, i.e., has O(log n) bits, we can
compute all t’ s (and p’) in O(n) time

Problem

• Unfortunately, we can have false positives,
i.e., Ts≠P but t’ s=p’

– (to discover a single false positive, we
spend O(m) time)

• Need to use a random q

• We will show that the probability of a false
positive is small → randomized algorithm

False positives

• Consider any ts≠p. We know that both
numbers are in the range { 0…2m-1}

• How many primes q are there such that
ts mod q = p mod q ≡ (ts-p) =0 mod q ?

• Such prime has to divide x=(ts-p) ≤ 2m

• Represent x=p1
e1p2

e2…pk
ek, pi prime, ei≥1

• Since 2 ≤ pi , we have 2k ≤ x ≤ 2m→ k ≤m
• There are ≤m primes dividing x

Algorithm
• Let ∏ be a set of 2nmprimes, each having

O(log n) bits (not generated explicitly)
• Choose q uniformly at random from ∏
• Compute t’0, t’1, ….,and p’
• For each shift s, the probability that t’ s=p’ while

Ts≠P is at most log ts / | ∏| = m/2nm= 1/2n
• If t’ s=p’, we check if ts=p by checking each

char. Takes timeO(m). Altogether O(n)
• The probability of anyfalse positive is at most

(n-m)/2n ≤ 1/2

Geometric Hashing and other
problems of shape matching

• This algorithm is an example of general idea:

– Given a library of (many) shapes T1, T2…Tr .
Preprocess such that given a query pattern P, find the
most similar shape.

– Checking for given Ti if it is similar to P is expensive.

– Idea: Using hashing for filteringthe shapes that need to
be checked:

– Compute hash values h(T1)… h(Tr), and h(P), and
check ifTi matches P only if h(P)= h(Ti).

