String Matching

Thanks to
Prof. Piotr Indyk and Carola Wenk

String Matching

- Input: Two strings $\mathrm{T}[1 \ldots \mathrm{n}]$ (text) and $\mathrm{P}[1 \ldots \mathrm{~m}]$ (pattern), containing symbols from alphabet Σ
- Goal: find all "shifts" $1 \leq s \leq n-m$ such that $T[s+1 \ldots s+m]=P$ - In other words: Finds all shifts of a window of length m inside the text T, so the context of the window is identical to the pattern P.
- Example:
$-\Sigma=\{$,a,b, $, \ldots, z\}$
- T[1...18]="to be or not to be"
$-\mathrm{P}[1 . .2]=$ "be"
- Shifts: 3, 16

Simple Algorithm

for $s \leftarrow 0$ to $n-m$
Match $\leftarrow 1$
for $j \leftarrow 1$ to m
if $\mathrm{T}[s+j] \neq \mathrm{P}[j]$ then
Match $\leftarrow 0$
exit loop
if Match=1 then output s

Results

- Running time of the simple algorithm:
- Worst-case: O(nm)
- Average-case (random text): O(n)
- Is it possible to achieve $\mathrm{O}(\mathrm{n})$ for any input ?
- Knuth-Morris-Pratt'77: deterministic
- Karp-Rabin'81: randomized

Karp-Rabin Algorithm

- A very elegant use of an idea that we have encountered before, namely..

HASHING !

- Idea:
- Hash all substrings $T[1 \ldots m], T[2 \ldots m+1], T[3 \ldots m+2]$ etc.
- Hash (details later) the pattern P[1...m]
- Report the substrings that hash to the same value as P
- Problem: how to hash n-m substrings, each of length m, in $O(n)$ time ?

Implementation

- Attempt I:
- Assume $\Sigma=\{0,1\}$
- Think about each $\mathrm{T}^{\mathrm{s}}=\mathrm{T}[\mathrm{s}+1 \ldots \mathrm{~s}+\mathrm{m}]$ as a number in binary representation, i.e., $\mathrm{t}_{\mathrm{s}}=\mathrm{T}[\mathrm{s}+1] 2^{0}+\mathrm{T}[\mathrm{s}+2] 2^{1}+\ldots+\mathrm{T}[\mathrm{s}+\mathrm{m}] 2^{\mathrm{m}-1}$
- Find a fast way of computing t_{s+1} given t_{s}
- Output all s such that t_{c} is equal to the number p represented by P

The great formula

- How to transform

- Three steps:
- Subtract T[s+1]20
- Divide by 2 (i.e., shift the bits by one position)
- Add T[s+m+1]2m-1
- Therefore: $\mathrm{t}_{\mathrm{s}+1}=\left(\mathrm{t}_{\mathrm{s}}-\mathrm{T}[\mathrm{s}+1] 2^{0}\right) / 2+\mathrm{T}[\mathrm{s}+\mathrm{m}+1] 2^{\mathrm{m}-1}$

Algorithm

- Can compute $\mathrm{t}_{\mathrm{s}+1}$ from t_{s} using 3 arithmetic operations
- Therefore, we can compute all $t_{0}, t_{l}, \ldots, t_{n-m}$ using $\mathrm{O}(n)$ arithmetic operations
- We can compute a number corresponding to P using $\mathrm{O}(m)$ arithmetic operations
- Are we done ?

Problem

- To get $\mathrm{O}(n)$ time, we would need to perform each arithmetic operation in $\mathrm{O}(1)$ time
- However, the arguments are m-bit long (and we have 32/64 bits machine) !
- It is unreasonable to assume that operations on such big numbers can be done in $\mathrm{O}(1)$ time
- We need to reduce the number range to something more manageable

Warm-up

- $\quad((x \bmod q)+(y \bmod q)) \bmod q=(x+y) \bmod q$
- $\quad((x \bmod q)(y \bmod q)) \bmod q=(x y) \bmod q$
- $(a x+b \bmod q)=((a \bmod q)(x \bmod q)+(b \bmod q)) \bmod q$
- Every integer x can be uniquely represented as $x=p_{1}{ }^{e 1} p_{2}{ }^{e 2} \ldots p_{k}{ }^{e k}$ where

1. p_{i} is a prime, and
2. e_{i} is an integer
3. $k \leq \log _{2} x$ since each $p_{i} \geq 2$

Hashing

- We will instead compute
$t_{s}{ }_{s}=T[s+1] 2^{0}+T[s+2] 2^{1}+\ldots+T[s+m] 2^{m-1} \bmod q$ where q is an "appropriate" prime number
- One can still compute $t^{\prime}{ }_{s+1}$ from $t^{\prime}{ }_{s}$:
$t^{\prime}{ }_{s+1}=\left(t^{\prime}{ }_{s}-T[s+1] 2^{0}\right) * 2^{-1}+T[s+m+1] 2^{m-1} \bmod q$
- If q is not large, i.e., has $\mathrm{O}(\log n)$ bits, we can compute all $t^{\prime}{ }_{s}\left(\right.$ and $\left.p^{\prime}\right)$ in $\mathrm{O}(n)$ time

Problem

- Unfortunately, we can have false positives, i.e., $T^{s} \neq P$ but $t^{\prime}{ }_{s}=p$ '
- (to discover a single false positive, we spend $\mathrm{O}(m)$ time)
- Need to use a random q
- We will show that the probability of a false positive is small \rightarrow randomized algorithm

False positives

- Consider any $t_{s} \neq p$. We know that both numbers are in the range $\left\{0 \ldots 2^{m}-1\right\}$
- How many primes q are there such that $t_{s} \bmod q=p \bmod q \equiv\left(t_{s}-p\right)=0 \bmod q$?
- Such prime has to divide $x=\left(t_{s}-p\right) \leq 2^{m}$
- Represent $x=p_{1}{ }^{e l} p_{2}{ }^{e 2} \ldots p_{k}{ }^{e k}, \quad p_{i}$ prime, $e_{i} \geq 1$
- Since $2 \leq p_{i}$, we have $2^{k} \leq x \leq 2^{m} \rightarrow \mathrm{k} \leq \mathrm{m}$
- There are $\leq m$ primes dividing x

Algorithm

- Let Π be a set of 2 nm primes, each having $\mathrm{O}(\log n)$ bits (not generated explicitly)
- Choose q uniformly at random from Π
- Compute $t_{0}{ }_{0}, t^{\prime}{ }_{1}, \ldots$, and p '
- For each shift s, the probability that $t^{\prime}{ }_{s}=p$ ' while $\mathrm{T}^{\mathrm{s}} \neq \mathrm{P}$ is at most $\log t_{s} / \| \Pi=m / 2 \mathrm{~nm}=1 / 2 n$
- If $t^{\prime}{ }_{s}=p$, we check if $t_{s}=p$ by checking each char. Takes time $\mathrm{O}(m)$. Altogether $\mathrm{O}(n)$
- The probability of any false positive is at most $(\mathrm{n}-\mathrm{m}) / 2 \mathrm{n} \leq 1 / 2$

Geometric Hashing and other problems of shape matching

- This algorithm is an example of general idea:
- Given a library of (many) shapes $T_{1}, T_{2} \ldots T_{r}$ Preprocess such that given a query pattern P, find the most similar shape.
- Checking for given T_{i} if it is similar to P is expensive
- Idea: Using hashing for filtering the shapes that need to be checked:
- Compute hash values $h\left(T_{l}\right) \ldots h\left(T_{r}\right)$, and $h(P)$, and check if T_{i} matches P only if $h(P)=h\left(T_{i}\right)$.

