CS 545
Finding the closest pair of
points
Alon Efrat

Samir Khuller, Yossi Matias:
A Simple Randomized Sieve Algorithm for the Closest-Pair Problem
Inf. Comput. 118(1): 34-37 (1995)

Problem definition

Given: A set $S=\left\{p_{l}, \ldots p_{n}\right\}$ of n points in the plane
Problem: Find the pair $\mathrm{p}_{\mathrm{i}} \mathrm{p}_{\mathrm{j}}$ that minimizes $d\left(p_{,} p_{j}\right)$, where $d\left(p_{i}, p_{j}\right)$ is the Euclidean distance between p_{i} and p_{j}.

$\mathrm{O}\left(n^{2}\right)$ time algorithm - trivial
$\Omega(n \log n)$ bound for any deterministic algorithm.
In this talk - a randomized algorithm whose expected running time is $O(n)$

Notation
Let $S_{i}=\left\{p_{1}, p_{2}, \ldots p_{i}\right\}$
Let $d\left(S_{i}\right)$ denote the distance between the closest pair in S_{i}
Clearly $d\left(S_{2}\right) \geq d\left(S_{3}\right) \geq d\left(S_{4}\right) \geq \ldots \geq d\left(S_{n}\right)$
Idea - incremental algorithm - compute $d\left(S_{i+1}\right)$ from $d\left(S_{i}\right)$

Let $\Gamma\left(S_{i}\right)$ denote an axis-parallel grid, where the edge-length of each grid-cell is $d\left(S_{i}\right) / 2$, and one of its corner is on the point $(0,0)$

Locating points.

Finishing the analysis

So in the i 'th stage we are spending $O(1)$ time with probability $(i-1) /(i+1)$, and $\mathrm{O}(i)$ time with probability $2 /(i+1)$, so the expected work in this stage is $\mathrm{O}(i) 2 /(i+1)=O(1)$.

Hence the total expected time is $\mathrm{O}(n)$.
This argument can be done more formal using random variables.

Expected time

Let T_{i} denote the expected time at stage i. Then
$T_{i}=l$ with probability $(i-1) /(i+1)$ and $T_{i}=i$ with probability 2/(i+1)

$$
E\left(T_{i}\right)=\sum_{i=1}^{\infty} i \operatorname{Pr}\left(T_{i}=i\right)=1 \operatorname{Pr}\left(T_{i}=i\right)+i \operatorname{Pr}\left(T_{i}=i\right)=2
$$

Hence the total time is

$$
\begin{aligned}
& \text { otal time is } \\
& E\left(\sum_{i=3}\left(T_{i}\right)\right)=\sum_{i=3}^{n} E\left(T_{i}=i\right)=\sum_{i=3}^{n} 2=O(n),
\end{aligned}
$$

