
Fibonacci Heap

Thanks to Sartaj Sahni for the original version 
of the slides 

Dijkstra/Prim  
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Fibonacci heaps
• Similar to binomial heaps, consists of a collection of 

trees, each arranged in a heap-order  (each node is 
smaller than each of its children)

• Unlike binomial heaps, can have many trees of the 
same cardinality, and a tree does not have to have 
exactly 2i nodes.  

• Main idea –lazinessis welcomed. Try to postpone 
doing the hard work, until no other solution works. 

General Structure
• Very similar to Bionomail heaps

• Main structure: A collection of trees, each in a heap-order. 

• All root are stored in a doubly connected list, called  the roots-list.

• Every node points to one of its childrens. All the children are stored 
in a doubly connected list, called  the sibling-list.

• A pointer min(H) always points to the min element. 
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Node Structure
• Very similar to Bionomail heaps

• Each node  v  stores its 
� degree, 

� a points to its parent, 

� a points to a child, 

� data, 

� Pointers to left and right sibling used for circular 
doublylinked list of siblings, called the sibling list.

More – in next slide

Node Structure

• Each node  v  stores a flag  ChildCut (not existing in binomial 
heaps)

� True only if 

• v is not a root, and 

• v has lost a single child since became a child of its current  
parent.  

� We say that v is marked in this case. 

• Will see:  Extract_Minis the only operation that makes one node a 
child of another, and then flag might change.

� Flag is undefined for a root node (not used) 



Fibonacci Heap Representation
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Potential Function

Some nodes would be marked (to be explained later)
We use the potential functions for the heap H
Φ(H) = t(H) + 2 m(H)

Wheret(H) is the number of trees in H
And m(H) is the number of marked nodes in H. 

Insert(x)
Create a new tree consisting of a single node v whose key is x, 
Add v to the roots list.  (always unmarked) 

Actual time wi needed  for the operation is 1

Number of trees increased by 1. 

Changes in potential function
Φ(H’)-Φ(H)= ∆Φ(H) = t(H’) + 2 m(H’)- t(H) - 2 m(H)=1

So the amortized work ai = wi+ ∆Φ(H)  = 2

DecreaseKey(theNode, theAmount)

If theNodeis not a root and new key < parent key, 
remove subtree rooted at theNodefrom its sibling list.

Insert theNodeinto roots-list. 

Perform cascading_cut from  parent(theNode) 

(described later)
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The result the tree rooted at 0 used to 
be a subtree of 1. 

Convince yourself that all pointers 
modifications are doable in O(1) 

Cascading Cut
• When theNodeis cut out of its sibling list in a decrease 

key operation, follow path from parent of theNode
upward toward the root.

• Encountered nodes (other than root) with ChildCut = 
true are cut from their sibling lists and inserted into 
roots-list.

• Stop at first node with ChildCut = false.
• For this node, set ChildCut = true. (since it just lost 

exactly one child) 

• In other words, if a node lost two children since it 
became a child,  it must move itself  from the the parent 
to the roots-list.



Cascading Cut Example
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Cascading Cut Example
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Cascading Cut Example
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Cascading Cut Example
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Note – a node that moves to the root lists 
looses its mark (becomes unmarked).

Cascading Cut Example
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Actual time complexity of  the cascading_cut of a path of lengthk is
Θ(k+1)  ( can be Θ(h) in the worst case, where h is the height )

Assume we specify the time of an elementary operations, so that this 
time wi is  k+1.

Note that the number of  trees increases by k+1, and the number of 
marked nodes decreases by either k or k+1

Amortized time
Note that the number of marked nodes decreases by k or k+1, and the 
number of trees increased by k+1.

Let H’ to be H denote the heap before and after the Decrease_min
operation, then t(H’) = t(H)+k+1   and m(H’)=m(H)-k 

The change in the  potential function is (denoting H’ to be H after the 
Decrease_min ) is 

Φ(H’) - Φ(H) = ( t(H’) + 2m(H’) – ( t(H) + 2 m(H) ) =    -k+2

And

ai =wi+ Φ(H’) - Φ(H) = k+(-k+2)=2



Deletion of a node v
•Perform DecreaseKey(v) to value -∞∞∞∞

•Perform ExtractMin( H) – seen next.

Extract_min 

� Remember  - there is a pointer (min[H] )  pointing to the min.

� Set   theNode= min[H]

� Moved  all children of theNodeto the the roots-list. 

• This is done by merging their sibling list with the root list 
(constant time) 

� Remove theNodefrom its sibling list.

� Free theNode.  

� Perform Consolidate( H )  - merging trees. 

• /* This is a good time to reduce the number of trees */

Extract_min – example (1)
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Extract_min – example (1.1)
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Extract_min – example (2)
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Next comes the consolidation

Time analysis for  Extract_min operation 
(not including consolidation (counted later) )   

• Let deg(v)  is the number of children ofv.

• Lemma:(CLRS 20.3):  The number of 
nodes in a tree the tree rooted at v is  ≥ ∅
deg(v) ≥ 1.5 deg(v)  

• Conclusion 1:deg(v) =O(log n), for every 
node v.

• The actual time wi needed for disconnecting
v from its children and adding them to the  
roots list– O(log n)=deg(v)

• The amortized time for this operation is at 



Union of two trees.
(Need for Consolidation)

•(Similar (but not identical) operation was seen in the binomial heaps)

•Degree of a treeis defined as the degree of the root of the tree. 

•Given two trees with the same degree of their roots, connect the root 
of one as a child of the other root. 

•There is always a way to do so while maintaining the heap order:
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The root with larger key 
becomes the child of the 
smaller root

Point of potential confusion: For 
Binomial heaps, trees have the same 
size iff they have the same degree.
Not true here

Extract_min – cont: Consolidation.
•Each extract_min is followed by the consolidationoperation: 

•This operation repeatedly joins trees with same degree, using the tree-
union operation: 

•Repeatedly pick two trees with the same degree, and merge them:

•…but trees are not sorted by degree, (as oppose to Binomial 
heaps)  and there are many of them – how can this be done 
efficiently ? (on board)

•Finish when no two trees with the same degree exist. 

•Recover the new minimum while doing so.

•Actual Time wi – proportional to the number of trees

•(since every operation reduces the number of tress by one, and 
takes a constant time) . 

Time analysis  for consolidation

• The consolidation takes actual time t(H) time. 

• In H’ , there at most one tree for each degree of its root 
(followed from conclusion 1), so t(H’ ) =O(log n). 

• The number of marked nodes is not changed. 

• Φ(H’) - Φ(H) = ( t(H’) + 2m(H’))  – ( t(H) + 2 m(H) ) =   
t(H’)-t(H) = O( log n)- t(H) 

• The amortized work is therefore 

t(H)+ ( O(log n) -t(H) ) = O(log n) 

Time analysis  for Delete

• Deletion consists of 
� first DecreaseKey (amortized time O(1) ) and then

� ExtractMin (amortized time O(log n) ) 

• Total amortized work: O(log n)

Toward proving lemma CLRS 20.3
• Claim:Let F0  = F1=1 and Fk+2=Fk+1+Fk . Then (induction) Fk+2 ≥ ∅ k

• Lemma 20.2:                                     

• Proof– by induction, on the board. 

• Lemma 20.1: Let x be a root, and let y1, …,yk denote its children, in the 
order they joined x.  Then deg[yi]≥ i-1. (i=2,3…k).

• Proof:
• When y1 joined x, its degree was exactly i. 
• Since then its degree might have dropped to i-1 (this is where we needed 

the rule that an internal node might loose at most one child)
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Proving lemma CLRS 20.3

• Let sk denote the minimum number of nodes at a 
tree of degree k.

• Lemma 20.3 : sk ≥ ∅ k

• Proof: Let y1, …,yk denote its children of a node x, 
in the order they joined x. 
� The degree ofyi is ≥ i-1, 

� hence containing≥ Fi-1 nodes, 

� sk = 1 (root) + sum of  number of nodes in subtrees
rooted ony y


