Fibonacci Heap

Thanks to Sartaj Sahni for the original version of the slides

Fibonacci heaps

- Similar to binomial heaps, consists of a collection of trees, each arranged in a heap-order (each node is smaller than each of its children)
- Unlike binomial heaps, can have many trees of the same cardinality, and a tree does not have to have exactly 2^{i} nodes.
- Main idea - laziness is welcomed. Try to postpone doing the hard work, until no other solution works.

General Structure

- Very similar to Bionomail heaps
- Main structure: A collection of trees, each in a heap-order.
- All root are stored in a doubly connected list, called the roots-list.
- Every node points to one of its childrens. All the children are stored in a doubly connected list, called the sibling-list.
- A pointer $\min (H)$ always points to the min element.

Node Structure

- Very similar to Bionomail heaps

- Each node v stores its
- degree,
- a points to its parent,
- a points to a child,
- data,
- Pointers to left and right sibling used for circular doubly linked list of siblings, called the sibling list.

More - in next slide

Node Structure

- Each node v stores a flag ChildCut (not existing in binomial heaps)
- True only if
- v is not a root, and
- v has lost a single child since became a child of its current parent.
- We say that v is marked in this case.
- Will see: Extract_Min is the only operation that makes one node a child of another, and then flag might change.
- Flag is undefined for a root node (not used)

Potential Function

Some nodes would be marked (to be explained later) We use the potential functions for the heap H $\Phi(H)=t(H)+2 m(H)$

Where $t(H)$ is the number of trees in H
And $m(H)$ is the number of marked nodes in H.

$\operatorname{Insert}(x)$

Create a new tree consisting of a single node v whose key is x, Add v to the roots list. (always unmarked)

Actual time w_{i} needed for the operation is 1
Number of trees increased by 1 .
Changes in potential function
$\Phi\left(H^{\prime}\right)-\Phi(H)=\Delta \Phi(H)=t\left(H^{\prime}\right)+2 m\left(H^{\prime}\right)-t(H)-2 m(H)=1$
So the amortized work $a_{i}=w_{i}+\Delta \Phi(H)=2$

DecreaseKey(theNode, theAmount)

Cascading Cut

- When theNode is cut out of its sibling list in a decrease key operation, follow path from parent of theNode upward toward the root.
- Encountered nodes (other than root) with ChildCut = true are cut from their sibling lists and inserted into roots-list.
- Stop at first node with ChildCut $=$ false.
- For this node, set ChildCut = true. (since it just lost exactly one child)
- In other words, if a node lost two children since it became a child, it must move itself from the the parent to the roots-list.

Actual time complexity of the cascading_cut of a path of length k is $\Theta(k+1)$ (can be $\Theta(h)$ in the worst case, where h is the height)

Assume we specify the time of an elementary operations, so that this time w_{i} is $k+1$.

Note that the number of trees increases by $k+1$, and the number of marked nodes decreases by either k or $k+1$

Amortized time

Note that the number of marked nodes decreases by k or $k+1$, and the number of trees increased by $k+1$.
Let H ' to be H denote the heap before and after the Decrease_min operation, then $t\left(H^{\prime}\right)=t(H)+k+1$ and $m\left(H^{\prime}\right)=m(H)-k$

The change in the potential function is (denoting H ' to be H after the Decrease_min) is
$\Phi\left(H^{\prime}\right)-\Phi(H)=\left(t\left(H^{\prime}\right)+2 m\left(H^{\prime}\right)-(t(H)+2 m(H))=-k+2\right.$
And

$$
a_{i}=w_{i}+\Phi\left(H^{\prime}\right)-\Phi(H)=k+(-k+2)=2
$$

Deletion of a node v

\bullet-Perform DecreaseKey (v) to value $-\infty$
\bullet-Perform $\operatorname{ExtractMin}(H)$ - seen next.

Extract_min

- Remember - there is a pointer $(\min [H])$ pointing to the min.
- Set theNode= min $[H]$
- Moved all children of theNode to the the roots-list.
- This is done by merging their sibling list with the root list (constant time)
- Remove theNode from its sibling list.
- Free theNode.
- Perform Consolidate (H)-merging trees.
- /* This is a good time to reduce the number of trees */

Time analysis for Extract_min operation (not including consolidation (counted later))

- Let $\operatorname{deg}(v)$ is the number of children of v.
- Lemma: (CLRS 20.3): The number of nodes in a tree the tree rooted at v is $\geq \varnothing$ $\operatorname{deg}(v) \geq 1.5 \operatorname{deg}(v)$
- Conclusion 1: $\operatorname{deg}(v)=\mathrm{O}(\log n)$, for every node v.
- The actual time w_{i} needed for disconnecting v from its children and adding them to the roots list -
$\mathrm{O}(\log \mathrm{n})=\operatorname{deg}(\mathrm{v})$
Union of two trees.
(Need for Consolidation)
-(Similar (but not identical) operation was seen in the binomial heaps)
- Degree of a tree is defined as the degree of the root of the tree.
- Given two trees with the same degree of their roots, connect the root
of one as a child of the other root.
- There is always a way to do so while maintaining the heap order:

Time analysis for consolidation

- The consolidation takes actual time $t(H)$ time.
- In H^{\prime}, there at most one tree for each degree of its root (followed from conclusion 1), so $\mathrm{t}\left(H^{\prime}\right)=\mathrm{O}(\log \mathrm{n})$.
- The number of marked nodes is not changed.
- $\Phi\left(H^{\prime}\right)-\Phi(H)=\left(t\left(H^{\prime}\right)+2 m\left(H^{\prime}\right)\right)-(t(H)+2 m(H))=$ $t\left(H^{\prime}\right)-t(H)=O(\log n)-t(H)$
- The amortized work is therefore

$$
t(H)+(\mathrm{O}(\log n)-t(H))=\mathrm{O}(\log n)
$$

Extract_min - cont: Consolidation.

-Each extract_min is followed by the consolidation operation:
\cdot This operation repeatedly joins trees with same degree, using the treeunion operation:
-Repeatedly pick two trees with the same degree, and merge them:
-...but trees are not sorted by degree, (as oppose to Binomial heaps) and there are many of them - how can this be done efficiently? (on board)
-Finish when no two trees with the same degree exist.
-Recover the new minimum while doing so.

- Actual Time $w_{i}-$ proportional to the number of trees
\bullet (since every operation reduces the number of tress by one, and takes a constant time).

Time analysis for Delete

- Deletion consists of
- first DecreaseKey (amortized time $\mathrm{O}(1)$) and then
- ExtractMin (amortized time O(logn))
- Total amortized work: $O(\log n)$

Toward proving lemma CLRS 20.3

- Claim: Let $F_{0}=F_{1}=1$ and $F_{k+2}=F_{k+1}+F_{k}$. Then (induction) $F_{k+2} \geq \varnothing^{\mathrm{k}}$
- Lemma 20.2: $\quad F_{k+2}=1+\sum_{i=0}^{k} F_{i}$
- Proof - by induction, on the board.
- Lemma 20.1: Let x be a root, and let $y_{l, \ldots} y_{k}$ denote its children, in the order they joined x. Then $\operatorname{deg}\left[y_{i}\right] \geq i-l . \quad(i=2,3 \ldots k)$.
- Proof:
- When y_{I} joined x, its degree was exactly i.

Since then its degree might have dropped to $i-l$ (this is where we needed
the rule that an internal node might pose the rule that an internal node might loose at most one child)

Proving lemma CLRS 20.3

- Let s_{k} denote the minimum number of nodes at a tree of degree k.
- Lemma $20.3: \mathrm{s}_{\mathrm{k}} \geq \varnothing^{\mathrm{k}}$
- Proof: Let $y_{l, \ldots,} y_{k}$ denote its children of a node x, in the order they joined x.
- The degree of y_{i} is $\geq i-1$,
- hence containing $\geq F_{i-1}$ nodes,
- $\mathrm{s}_{\mathrm{k}}=l$ (root) + sum of number of nodes in subtrees

