
Fibonacci Heap

Thanks to Sartaj Sahni for the original version
of the slides

Dijkstra/Prim
1 make-heap
|V| insert
|V| delete-min
|E| decrease-key

Priority Queues

make-heap

Operation

insert

find-min

delete-min

union

decrease-key

delete

1

Binary

log N

1

log N

N

log N

log N

1

Binomial

log N

log N

log N

log N

log N

log N

1

Fibonacci *

1

1

log N

1

1

log N

1

Relaxed

1

1

log N

1

1

log N

1

Linked List

1

N

N

1

1

N

is-empty 1 1 1 11

Heaps

O(|E| + |V| log |V|)O(|E| log |V|)O(|V|2)

Fibonacci heaps
• Similar to binomial heaps, consists of a collection of

trees, each arranged in a heap-order (each node is
smaller than each of its children)

• Unlike binomial heaps, can have many trees of the
same cardinality, and a tree does not have to have
exactly 2i nodes.

• Main idea –lazinessis welcomed. Try to postpone
doing the hard work, until no other solution works.

General Structure
• Very similar to Bionomail heaps

• Main structure: A collection of trees, each in a heap-order.

• All root are stored in a doubly connected list, called the roots-list.

• Every node points to one of its childrens. All the children are stored
in a doubly connected list, called the sibling-list.

• A pointer min(H) always points to the min element.

6

4

9

5
8

7 3

1

9

5

6

5 9

2

8

6 7

4

roots list
sibling list

Node Structure
• Very similar to Bionomail heaps

• Each node v stores its
� degree,

� a points to its parent,

� a points to a child,

� data,

� Pointers to left and right sibling used for circular
doublylinked list of siblings, called the sibling list.

More – in next slide

Node Structure

• Each node v stores a flag ChildCut (not existing in binomial
heaps)

� True only if

• v is not a root, and

• v has lost a single child since became a child of its current
parent.

� We say that v is marked in this case.

• Will see: Extract_Minis the only operation that makes one node a
child of another, and then flag might change.

� Flag is undefined for a root node (not used)

Fibonacci Heap Representation

6

4

9

5
8

7 3

1

9

5

6

5 9

2

8

6 7

4

A

roots list

sibling list

Potential Function

Some nodes would be marked (to be explained later)
We use the potential functions for the heap H
Φ(H) = t(H) + 2 m(H)

Wheret(H) is the number of trees in H
And m(H) is the number of marked nodes in H.

Insert(x)
Create a new tree consisting of a single node v whose key is x,
Add v to the roots list. (always unmarked)

Actual time wi needed for the operation is 1

Number of trees increased by 1.

Changes in potential function
Φ(H’)-Φ(H)= ∆Φ(H) = t(H’) + 2 m(H’)- t(H) - 2 m(H)=1

So the amortized work ai = wi+ ∆Φ(H) = 2

DecreaseKey(theNode, theAmount)

If theNodeis not a root and new key < parent key,
remove subtree rooted at theNodefrom its sibling list.

Insert theNodeinto roots-list.

Perform cascading_cut from parent(theNode)

(described later)

8

7 3

1

6

5 9

2

8

6 7

4 10

4

9

5

theNode

Decreased
by 4

6

9

5

DecreaseKey(theNode, theAmount)

10

0

9

5

8

7 3

1

6

5 9

2

8

6 7

4

6

9

5

The result the tree rooted at 0 used to
be a subtree of 1.

Convince yourself that all pointers
modifications are doable in O(1)

Cascading Cut
• When theNodeis cut out of its sibling list in a decrease

key operation, follow path from parent of theNode
upward toward the root.

• Encountered nodes (other than root) with ChildCut =
true are cut from their sibling lists and inserted into
roots-list.

• Stop at first node with ChildCut = false.
• For this node, set ChildCut = true. (since it just lost

exactly one child)

• In other words, if a node lost two children since it
became a child, it must move itself from the the parent
to the roots-list.

Cascading Cut Example

8

7 3

1

6

5 9

2

8

6 7

4

9

9 8

theNode

T

T

F

Decrease key by 2.

Cascading Cut Example

8

7 3

1

6

5 9

2

6 7

4

6

9

9 8

T

T

F

Cascading Cut Example

8

7 3

1

6

5 9

2

6

7

4

6

9

9 8

T

F

Cascading Cut Example

8

7 3

1

6

5 9

2 6

7 46

9

9 8F

Note – a node that moves to the root lists
looses its mark (becomes unmarked).

Cascading Cut Example

8

7 3

1

6

5 9

2 6

7 46

9

9 8T

Actual time complexity of the cascading_cut of a path of lengthk is
Θ(k+1) (can be Θ(h) in the worst case, where h is the height)

Assume we specify the time of an elementary operations, so that this
time wi is k+1.

Note that the number of trees increases by k+1, and the number of
marked nodes decreases by either k or k+1

Amortized time
Note that the number of marked nodes decreases by k or k+1, and the
number of trees increased by k+1.

Let H’ to be H denote the heap before and after the Decrease_min
operation, then t(H’) = t(H)+k+1 and m(H’)=m(H)-k

The change in the potential function is (denoting H’ to be H after the
Decrease_min) is

Φ(H’) - Φ(H) = (t(H’) + 2m(H’) – (t(H) + 2 m(H)) = -k+2

And

ai =wi+ Φ(H’) - Φ(H) = k+(-k+2)=2

Deletion of a node v
•Perform DecreaseKey(v) to value -∞∞∞∞

•Perform ExtractMin(H) – seen next.

Extract_min

� Remember - there is a pointer (min[H]) pointing to the min.

� Set theNode= min[H]

� Moved all children of theNodeto the the roots-list.

• This is done by merging their sibling list with the root list
(constant time)

� Remove theNodefrom its sibling list.

� Free theNode.

� Perform Consolidate(H) - merging trees.

• /* This is a good time to reduce the number of trees */

Extract_min – example (1)

8

7 3

1

6

5 9

2

8

6 7

4 10

4

9

5

6

9

5

Extract_min – example (1.1)

8

7 3

1

6

5 9

2

8

6 7

4 10

4

9

5

6

9

5

Extract_min – example (2)

8

7 3

6

5 9

2

8

6 7

4 10

4

9

5

6

9

5

Next comes the consolidation

Time analysis for Extract_min operation
(not including consolidation (counted later))

• Let deg(v) is the number of children ofv.

• Lemma:(CLRS 20.3): The number of
nodes in a tree the tree rooted at v is ≥ ∅
deg(v) ≥ 1.5 deg(v)

• Conclusion 1:deg(v) =O(log n), for every
node v.

• The actual time wi needed for disconnecting
v from its children and adding them to the
roots list– O(log n)=deg(v)

• The amortized time for this operation is at

Union of two trees.
(Need for Consolidation)

•(Similar (but not identical) operation was seen in the binomial heaps)

•Degree of a treeis defined as the degree of the root of the tree.

•Given two trees with the same degree of their roots, connect the root
of one as a child of the other root.

•There is always a way to do so while maintaining the heap order:

10

4

9

5

10

0

8

6

19

The root with larger key
becomes the child of the
smaller root

Point of potential confusion: For
Binomial heaps, trees have the same
size iff they have the same degree.
Not true here

Extract_min – cont: Consolidation.
•Each extract_min is followed by the consolidationoperation:

•This operation repeatedly joins trees with same degree, using the tree-
union operation:

•Repeatedly pick two trees with the same degree, and merge them:

•…but trees are not sorted by degree, (as oppose to Binomial
heaps) and there are many of them – how can this be done
efficiently ? (on board)

•Finish when no two trees with the same degree exist.

•Recover the new minimum while doing so.

•Actual Time wi – proportional to the number of trees

•(since every operation reduces the number of tress by one, and
takes a constant time) .

Time analysis for consolidation

• The consolidation takes actual time t(H) time.

• In H’ , there at most one tree for each degree of its root
(followed from conclusion 1), so t(H’) =O(log n).

• The number of marked nodes is not changed.

• Φ(H’) - Φ(H) = (t(H’) + 2m(H’)) – (t(H) + 2 m(H)) =
t(H’)-t(H) = O(log n)- t(H)

• The amortized work is therefore

t(H)+ (O(log n) -t(H)) = O(log n)

Time analysis for Delete

• Deletion consists of
� first DecreaseKey (amortized time O(1)) and then

� ExtractMin (amortized time O(log n))

• Total amortized work: O(log n)

Toward proving lemma CLRS 20.3
• Claim:Let F0 = F1=1 and Fk+2=Fk+1+Fk . Then (induction) Fk+2 ≥ ∅ k

• Lemma 20.2:

• Proof– by induction, on the board.

• Lemma 20.1: Let x be a root, and let y1, …,yk denote its children, in the
order they joined x. Then deg[yi]≥ i-1. (i=2,3…k).

• Proof:
• When y1 joined x, its degree was exactly i.
• Since then its degree might have dropped to i-1 (this is where we needed

the rule that an internal node might loose at most one child)

i

k

i
k FF ∑

=
+ +=

0
2 1

Proving lemma CLRS 20.3

• Let sk denote the minimum number of nodes at a
tree of degree k.

• Lemma 20.3 : sk ≥ ∅ k

• Proof: Let y1, …,yk denote its children of a node x,
in the order they joined x.
� The degree ofyi is ≥ i-1,

� hence containing≥ Fi-1 nodes,

� sk = 1 (root) + sum of number of nodes in subtrees
rooted ony y

