
1

CS545
Introduction to Algorithms

Some slides are courtesy of

Piotr Indyk and Carola Wenk

Instructor: Alon Efrat

L1.2

Polices

• From course webpage

L1.3

Why study algorithms and performance?

• Performance often draws the line between what is
feasible and what is impossible.

• Algorithmic mathematics provides a languagefor
talking about program behavior.

•(e.g., by using big-O –notation)

• In real life, many algorithms, though different from
each other, fall into one of several paradigms
(discussed shortly).

• These paradigms can be studied, and applied for new
problems

L1.4

Why these particular algorithms ??

In this course, we will discuss problems, and
algorithms for solving these problems.

There are so many algorithms – why focus on the
ones in the syllabus ?

L1.5

Why these algorithms (cont.)

1. Main paradigms:
a) Greedy algorithms
b) Divide-and-Conquers
c) Dynamic programming
d) Brach-and-Bound (mostly in AI)
e) Etc etc.

2. Other reasons:
a) Relevance to many areas:

• E.g., networking, internet, search engines…
b) Coolness

L1.6

The problem of sorting

Input: sequence 〈a1, a2, …, an〉 of numbers.

Example:

Input: 8 2 4 9 3 6

Output: 2 3 4 6 8 9

Output: permutation 〈a'1, a'2, …, a'n〉 such
that a'1 ≤ a'2 ≤ … ≤ a'n .

2

L1.7

Insertion sort
i j

keysorted

A:
1 n

Invariants : A[1..j-1] is sorted

1 5 7 10 12 189 100 200

Consider A[j]=9. Not in the correct place.
Need to make room for 9.
We shift all elements right, starting from 10.

1 5 7 10 12 18 100 200

1 5 7 9 10 12 18 100 200
L1.8

Insertion sort
INSERTION-SORT (A, n) //input: A[1 . . n]

for j ← 2 to n //outer loop
do key ← A[j]

i ← j – 1
while i > 0 and A[i] > key //inner loop

do { A[i+1] ← A[i]
i ← i – 1}

A[i+1] = key

“pseudocode”

i j

keysorted

A:
1 n

L1.9

Example of insertion sort

8 2 4 9 3 6

L1.10

Example of insertion sort

8 2 4 9 3 6

L1.11

Example of insertion sort

8 2 4 9 3 6

2 8 4 9 3 6

L1.12

Example of insertion sort

8 2 4 9 3 6

2 8 4 9 3 6

3

L1.13

Example of insertion sort

8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

L1.14

Example of insertion sort

8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

L1.15

Example of insertion sort

8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

2 4 8 9 3 6

L1.16

Example of insertion sort

8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

2 4 8 9 3 6

L1.17

Example of insertion sort

8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

2 4 8 9 3 6

2 3 4 8 9 6

L1.18

Example of insertion sort

8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

2 4 8 9 3 6

2 3 4 8 9 6

4

L1.19

Example of insertion sort

8 2 4 9 3 6

2 8 4 9 3 6

2 4 8 9 3 6

2 4 8 9 3 6

2 3 4 8 9 6

2 3 4 6 8 9 done

L1.20

Running time

• The running time depends on the input: an
already sorted sequence is easier to sort.

•Parameterize the running time by the
size of the input n
•Seek upper bounds on the running time
T(n) for the input size n, because
everybody likes a guarantee.

L1.21

Kinds of analyses

Worst-case: (usually)
• T(n) = maximum time of algorithm

on any input of size n.
Average-case: (sometimes)

• T(n) = expected time of algorithm
over all inputs of size n.

• Need assumption of statistical
distribution of inputs.

Best-case: (bogus)
• Cheat with a slow algorithm that

works fast on someinput.
L1.22

Machine-independent time

What is insertion sort’s worst-case time?
• It depends on the speed of our computer:

• relative speed (on the same machine),
• absolute speed (on different machines).

BIG IDEA:
• Ignore machine-dependent constants.
• Look at growth of T(n) as n→ ∞ .

“Asymptotic Analysis”

L1.23

ΟΟΟΟ-notation

• Drop low-order terms; ignore leading constants.
• Example: 3n3 + 90n2 – 5n + 6046 = Ο(n3)

we say that T(n)= Ο(g(n)) iff
there exists positive constants c1, and n0 such that
0 ≤ T(n) ≤ c1 g(n) for all n ≥ n0

Usually T(n) is running time, and n is size of input

Engineering:

Math:

L1.24

Ω-notation

• Drop low-order terms; ignore leading constants.
• Example: 3n3 + 90n2 – 5n + 6046 = Ω (n3)

we say that T(n)= Ω(g(n)) iff
there exists positive constants c2, and n0 such that
0 ≤ c1 g(n) ≤ T(n) for all n ≥ n0

Engineering:

Math:

5

L1.25

ΟΟΟΟ-notation - cont

So if T(n)= Ο(n2) then we are also sure that
T(n)= Ο(n3) and that
T(n)= Ο(n3.5) and
T(n)= Ο(2n)

But it might or might not be true that T(n)= Ο(n 1.5).

However, if T(n)= Ω (n2) then it is not true that
T(n)= Ο(n 1.5)

Proofs: In the Homework
L1.26

ΘΘΘΘ-notation

• Drop low-order terms; ignore leading constants.
• Example: 3n3 + 90n2 – 5n + 6046 = Θ(n3)

Math:
we say that T(n)= Θ(g(n)) iff

there exist positive constants c1, c2, and n0 such that
0 ≤ c1 g(n) ≤ T (n) ≤ c2 g(n) for all n ≥ n0

In other words
T(n)= Θ(g(n)) iff T(n)= Ο(g(n)) and T(n)= Ω (g(n))

Engineering:

L1.27

Asymptotic performance

n

T(n)

n0

• We shouldn’t ignore
asymptotically slower
algorithms, however.

• Real-world design
situations often call for a
careful balancing of
engineering objectives.

• Asymptotic analysis is a
useful tool to help to
structure our thinking.

When n gets large enough, a Θ(n2) algorithm
alwaysbeats a Θ(n3) algorithm.

Θ(n3)

Θ(n2)

L1.28

Insertion sort analysis
Worst case:Input reverse sorted.

()∑
=

Θ=Θ=
n

j

njnT
2

2)()(

Is insertion sort a fast sorting algorithm?
• Moderately so, for small n.
• Not at all, for large n.

[arithmetic series]

T(n)=2c+3c+4c+…+c(n-1) = cn(n-1)/2

L1.29

Merge sort
(divide-and-conquer algorithm)

MERGE-SORT A[1 . . n]
1. If n = 1, done.
2. Recursively sort A[1 . . n/2]

and A[n/2+1 . . n] .
3. “Merge” the 2 sorted lists.

Key subroutine:MERGE

L1.30

Merging two sorted arrays

20

13

7

2

12

11

9

1

6

L1.31

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

L1.32

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

L1.33

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

L1.34

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

L1.35

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

L1.36

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

7

L1.37

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

9

L1.38

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

9

20

13

12

11

L1.39

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

9

20

13

12

11

11

L1.40

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

9

20

13

12

11

11

20

13

12

L1.41

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

9

20

13

12

11

11

20

13

12

12

L1.42

Merging two sorted arrays

20

13

7

2

12

11

9

1

1

20

13

7

2

12

11

9

2

20

13

7

12

11

9

7

20

13

12

11

9

9

20

13

12

11

11

20

13

12

12

Time = Θ(n) to merge a total
of n elements (linear time).

8

L1.43

Analyzing merge sort

MERGE-SORT A[1 . . n]
1. If n = 1, done.
2. Recursively sort A[1 . . n/2]

and A[n/2+1 . . n] .
3. “Merge” the 2 sorted lists

T(n)
Θ(1)
2T(n/2)

Θ(n)
Abuse

Sloppiness: Should be T(n/2) + T(n/2) ,
but it turns out not to matter asymptotically.

L1.44

Recurrence for merge sort

T(n) =
Θ(1) if n = 1;

2T(n/2) + Θ(n) if n > 1.

• We shall usually omit stating the base
case when T(n) = Θ(1) for sufficiently
small n, but only when it has no effect on
the asymptotic solution to the recurrence.

• CLRS provides several ways to find a
good bound on T(n).

L1.45

Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

L1.46

Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

T(n)

L1.47

Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

T(n/2) T(n/2)

cn

L1.48

Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

T(n/4) T(n/4) T(n/4) T(n/4)

cn/2 cn/2

9

L1.49

Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Θ(1)

…

L1.50

Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Θ(1)

…

h = log2 n

L1.51

Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Θ(1)

…

h = log n

cn

L1.52

Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Θ(1)

…

h = log n

cn

cn

L1.53

Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Θ(1)

…

h = log n

cn

cn

cn

…

L1.54

Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Θ(1)

…

h = log n

cn

cn

cn

#leaves = n Θ(n)

…

10

L1.55

Recursion tree

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

cn

cn/4 cn/4 cn/4 cn/4

cn/2 cn/2

Θ(1)

…

h = log n

cn

cn

cn

#leaves = n Θ(n)

Total = Θ (n log n)

…
L1.56

Conclusions

• Θ(n log n) grows more slowly than Θ(n2).

• Therefore, merge sort asymptotically beats
insertion sort in the worst case.

• In practice, merge sort beats insertion sort
for n > 30 or so.

• Go test it out for yourself!

L1.57

More examples –
iterative method (1)

NoNeed(n){
• If (n<1) return ;
• Print(*)
• NoNeed(n-1)

}

Recursion formula: T(n)=c+T(n-1),where T(1)=c. We can solve
it using the iteration method:
T(n)= c+T(n-1)=

c+{c+T(n-2)} = 2c+T(n-2) =
2c+{ c+T(n-3) } = 3c+T(n-3) =… = (pick k<n)
kc+T(n-k) = (settingk = n-1) …
(n-1)c+T(1)=nc

L1.58

More examples (2)
1) NoNeed(n){

I. if (n<1) return ;
II. for(i=1 ; i<n ; i++) print(*)
III. NoNeed(n-1)

2) }

Recursion formula: T(n)=cn+T(n-1),where T(1)=c. We can solve it
using the iteration method:
T(n)= cn+T(n-1)=

cn+{c(n-1)+T(n-2)} =
c[n+(n-1)]+{c(n-2)+T(n-3)}

=c[n+n-1+n-2+n-3]+T(n-3) =… = (pick k<n)
=c[n+n-1+n-2+ n-3+…+n-k]+T(n-k-1) =

(settingk = n-1) …
c[n+ n-1+n-2 + n-3+…+1]+T(1)=

c[1+2+3+… +n]+T(1)= cn(n+1)/2 = Θ (n2)

L1.59

More examples (3)
I. Read(n); k=1 ;
II. while(k ≤ n) k=2k ;

•We know that each iteration takes O(1) times. Need to find the
number of iterations.

•After the first iteration k=2=21

•After the 2nd iteration k=4=22

•After the 3rd iteration k=8=2 3
•….

•After the j’th iteration k=2 j
•Assume j iterations occurs until the loop exits. After the last one we

have that k=2 j <2n.
•Taking log2 from both sides, we have that

log2 k = log2(2j) < log2(2n) or..
j log2 2< log2(2) + log2(n) or..
j< log2n +1 or j=O (log2 n). T(n)=O(log n)

•Homework: Prove T(n)= Θ(log n)

Recall: log(ab)=log(a)+log(b)
log(a b) = b log a
loga (x) = logb (x) / logba

L1.60

More examples (a bit tricky)
read(n)
for(i=1 ; i < n ; i++)
for(j=i ; j <n ; j += i)

print(“*”) ;
•Naïve analysis:

•The outer loop (on i) runs exactly n-1 times
•The inner loop (on j) runs O(n) times.
•Together O(n 2) times.

•More “sensitive” analysis:
•For i=1 we run through j=1,2,3,4...n, total n times.
•For i=2 we run through j=2,4,6,8,10…n, total n/2 times.
•For i=3 we run through j=3,6,9,12…n, total n/3 times .
•For i=4 we run through j=4,8,12,16…n, total n/4 times.
•For i=n we run through j=n , total n/n=1 time.

•Summing up: T(n)=n+n/2+n/3+n/4+…n/n =
n(1+1/2+1/3+1/4+...1/n) ≈ n ln n

Harmonic sum

11

L1.61

More examples: Geometric sum
read(n) ; a=0.31415926
while(n>1) {

For(j=1; j<n ; j++) print(“*”)
n=a*n ; }

•The first time the outer loop is called, the “print” is called n times.
•The 2nd time the outer loop is called, the “print” is called an times.
•The 3rd time the outer loop is called, the “print” is called a2n times…
•The k’th time the outer loop is called, the “print” is called ak n times

•Let t be the number of iterations of the outer loop. Then the total time
= n + an + a2n+ a3n+…atn = n(1 + a + a2+ a3+…at) <

n(1 + a + a2+ a3+…a t +…)=n / (1-a) = O(n).

•Same analysis holds for any a<1

Recall:1+a+a2+…+at= (1-a t+1)/(1-a).
If a<1 then 1+a+a2+…+ at +… = 1/(1-a)

L1.62

Properties of big-O
• Claim: if T1(n)=O(g 1(n)) and T2(n)=O(g2(n)) then

T1(n)+T2(n)=O(g1(n) + g2(n))

• Example: T1(n)=O(n2), T2(n)=O(n log n) then
T1(n)+T2(n)=O(n2 + n log n) =O(n2)

• Proof: We know that there are constants n1, n2, c1, c2 s.t.
• for every n>n1 T1(n) < c1 g1(n). (definition of big-O)
• for every n>n2 T2(n) < c2 g2(n). (definition of big-O)

• Now set n’ =max{ n1, n2 }, and c’=c1+c2, then
• for every n>n’ we have that
• T1(n)+T2(n) < c1 g1(n) + c2 g2(n) ≤

c’ g1(n) + c’ g2(n) =
c’ (g1(n) + g2(n))

L1.63

More properties of big-O

•Claim: if T1(n)=O(g 1(n)) and T2(n)=O(g2(n)) then
T1(n) T2(n)=O(g1(n) g2(n))

•Example: T1(n)=O(n2), T2(n)=O(n log n) then

T1(n) T2(n)=O(n3 log n)

•Proof: Homework

•Similar properties hold for Θ, Ω

