SkipList

Alon Efrat
Computer Science Department
University of Arizona

Determining k

- k - the number of levels at which an element x participate.
- Use a random function OurRnd() --- returns 1 or 0 (True/False) with equal probability.
- $k=1$;
- while(OurRnd()) k++ ;

Deleteing a key x

- Find x in all the levels it participates, using find (x).
- During the "find", delete x from each level it participates using the standard "delete from a linked list" method.
- If one or more of the upper levels become empty, remove them (and update top and num_of_levels)

Facts about SL

- Claim: The expected number of levels is $\mathrm{O}(\log n)$
- (here n is the number of keys)
- "œProof" (a rigorous proof requires the use of random variables)
- The number of elements participate in the lowest level is n.
- Since the probability of an element to participates in level 2 is $1 / 2$, the expected number of elements in level 2 is $\mathbf{n} / 2$.
- Since the probability of an element to participates in level 3 is $1 / 4$, the expected number of elements in level 3 is $n / 4$.
-
- The probability of an element to participates in level j is $1 / 2^{j-1}$ so $n / 2^{j-1}$
- So after $\log (n)$ levels, no element is left.

Facts about SL

- Claim: The expected number of elements is $\mathrm{O}(n)$.
- (here n is the number of keys)
- "œ Proof" (a rigorous proof requires the use of random variables)
- The total number of elements is
$n+n / 2+n / 4+n / 8 \ldots \leq 2 n$

To reduce the worst case scenario, we verify during insertion that k (the number of levels that an element participates) in) is $\leq \log n$.

Facts about SL

- Thm: The expected number of elements scanned by a find operation is $\mathrm{O}(\log n)$
- \cong Proof - we know that there are $O(\log n)$ levels. Will show - we spend $O(1)$ time in each level.
- Assume during find (x), we scanned t elements, (for $t>8$) in level r. Assume first that r is not the upper level.

The probability that none of these 7 elements reached level $r+1$ is $1 / 2^{\mathrm{t}}$. For larger value of 7 - very slim.

Facts about SL

- Thm: The expected time for find/insert/delete is $\mathrm{O}(\log n)$
- Proof For all 3 operations, the time is bounded by the number of elements need to be scan during find (x) operation, which is $\mathrm{O}(\log n)$

