
1

Alon Efrat
Computer Science Department

University of Arizona

SkipList

2

Searching a key in a Sorted linked list

� Searching an element x

� cell *p =head ;

� while (p->next->key < x) p=p->next ;

� return p ;

� Note:we return the element proceedingeither the
element containingx, or the largest element with a key
smaller thanx (if x does not exists)

7 14 21 32 37 71 85 117-∞ ∞head

find(71)

3

inserting a key into a Sorted linked list

To insert 35 -

� p= find(35);

� CELL *p1 = (CELL *) malloc(sizeof(CELL));

� p1->key=35;

� p1->next = p->next ;

� p->next = p1 ;

7 14 21 32 37 71 85 117-∞ ∞head

p 35

p1

4

deleteing a key from a sorted list

� To delete 37 -

� p=find(37);

� CELL *p1 =p->next;

� p->next = p1->next ;

� free(p1);

7 14 21 32 37 71 85 117-∞ ∞head

p
p1

5

SKIP LIST - A data structure for
maintaining keys in a sorted order

Rules:
� Consists of several levels.
� All keys appear in level ∞
� Each level is a sorted list.
� If key x appears in level i, then

it also appears in all levels
below level i

7 14 21 32 37 71 85 117

7137217

3721

Level 1

Level 2

Level 3

top

-∞

-∞

-∞ ∞

∞

∞

� First element in each level has
key -∞ .

� Last element has key +∞
� First element in upper level is

pointed to by variable top.

next-pointer

down-pointer

6

More rules

� An element in leveli >1 points (via down pointer) to the element with
the same key in the level below.

� Elements in the lowest level have down-pointer=NULL

� We also have a counter specifying the number of levels.

7 14 21 32 37 71 85 117

7137217

3721

Level 1

Level 2

Level 3

Top

-∞

-∞

-∞ ∞

∞

∞next-pointer

Down-pointer

2

7

An empty SkipList

Level 1

Top

-∞ ∞

8

Finding an element with key x

� p=top ;
� while(1){

� while (p->next->key < x) p=p->next;
� if (p->down == NULL) return p->next
� p=p->down ;

� }

� Observe that we return the element in the lowest level
containing x, (if exists) , or pred(x) if x is not in the SList

7 14 21 32 37 71 85 117

7137217

3721

Level 1

Level 2

Level 3

Top

-∞

-∞

-∞ ∞

∞

∞next-pointer

down-pointer

find(117), find(118)

9

Inserting new element x

� Determine k, defined as the number of levels in which x
participates (explained later how)

� Do find(x), but once the search path is in one of the lowest k
levels:
� x is inserted after the elements at which the search path

branches down or terminates.
� The next-pointerbehave like a “standrad” linked list
� The down pointerpoints between themselves.

� Example - inserting 119. k=2

7 14 21 32 37 71 85

7137217

3721

Level 1

Level 2

Level 3

Top

-∞

-∞

-∞ ∞

∞

∞next-pointer

Down-pointer

119

119

find(119)

10

Inserting an element - cont.

� If k is larger than the current number of levels, add new
levels (and update top, and num_of_levelscounter)

� Example - insert(119) when k=4

7 14 21 32 37 71 85

7137217

3721

Level 1

Level 2

Level 3

Top

-∞

-∞

-∞ ∞

∞

∞

119

119

119

119 ∞-∞

11

Determining k

� k - the number of levels at which an element x
participate.

� Use a random function OurRnd()--- returns 1 or
0 (True/False) with equal probability.

� k=1 ;

� while(OurRnd()) k++ ;

12

Deleteing a key x

� Find x in all the levels it participates, using find(x).

� During the “find”, delete x from each level it participates using
the standard “delete from a linked list”method.

� If one or more of the upper levels become empty, remove them
(and update top andnum_of_levels)

7 14 21 32 37 71 85 117

7137217

3721

Level 1

Level 2

Level 3

Top

-∞

-∞

-∞ ∞

∞

∞next-pointer

down-pointer

delete(71)

3

13

Facts about SL

� Claim: The expected number of levels is O(log n)
� (here n is the number of keys)
� “ ≅≅≅≅ Proof” (a rigorous proof requires the use of random variables)

� The number of elements participate in the lowest level is n.
� Since the probability of an element to participates in level 2 is

½, the expected number of elements in level 2 is n/2.
� Since the probability of an element to participates in level 3 is

1/4, the expected number of elements in level 3 is n/4.
� …
� The probability of an element to participates in level j is 1/2j-1

so n/2j-1

� So after log(n) levels, no element is left.

14

Facts about SL

� Claim: The expected number of elements is O(n).

� (here n is the number of keys)

� “ ≅≅≅≅ Proof” (a rigorous proof requires the use of random
variables)

� The total number of elements is

n+n/2+n/4+n/8…≤ 2n

To reduce the worst case scenario, we verify
during insertion that k (the number of levels that an
element participates) in) is ≤ log n.

15

Facts about SL

� Thm: The expected number of elements scanned by a find
operation is O(log n)

� ≅≅≅≅Proof – we know that there are O(log n) levels. Will show

– we spend O(1) time in each level.

� Assume during find(x), we scanned t elements, (for t>8) in
level r. Assume first that r is not the upper level.

Level r

≥≥≥≥ x

≥≥≥≥ x

None of these 7 elements reached level r+1

Level r+1

The probability that none of these 7 elements reached
level r+1 is 1/2t. For larger value of 7 – very slim. 16

Facts about SL

� Thm: The expected time for find/insert/deleteis O(log n)

� Proof For all 3 operations, the time is bounded by the
number of elements need to be scan during find(x)
operation, which is O(log n)

