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Searching a key in a Sorted linked list

� Searching an element x

� cell *p =head ;

� while (p->next->key < x )   p=p->next ; 

� return p ;

� Note:we return  the element proceedingeither the 
element containingx, or the largest element with a key 
smaller thanx (if x does not exists) 
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inserting a key into a Sorted linked list

To insert 35 -

� p= find(35);

� CELL *p1 = (CELL *) malloc(sizeof(CELL));

� p1->key=35;

� p1->next = p->next ; 

� p->next  = p1 ; 
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deleteing a key from a sorted list

� To delete 37 -

� p=find(37);

� CELL *p1 =p->next;

� p->next = p1->next ; 

� free(p1); 

7 14 21 32 37 71 85 117-∞ ∞head

p
p1

5

SKIP LIST - A data structure for 
maintaining keys in a sorted order

Rules:
� Consists of several levels. 
� All keys appear in level ∞
� Each level is a sorted list. 
� If key x appears in level i, then 

it also appears in all levels 
below level i
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� First element in each level has 
key  -∞ . 

� Last element has key +∞
� First element in upper level is 

pointed to by variable top.

next-pointer
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More rules 

� An element in leveli >1 points (via down pointer) to the element with 
the same key in the level below.

� Elements in the lowest level have down-pointer=NULL

� We also have a counter specifying the number of levels. 
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An empty SkipList 
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Finding an element  with key x

� p=top ;
� while(1){

� while (p->next->key < x )  p=p->next;
� if (p->down == NULL ) return p->next
� p=p->down ; 

� }

� Observe that we return  the element in the lowest level  
containing x, (if exists) , or  pred(x) if x is not in the SList
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Inserting new element x

� Determine k, defined as the number of levels in which x
participates (explained later how)

� Do find(x), but once the search path is in one of the lowest k
levels: 
� x is inserted after the elements at which the search path 

branches down or terminates.
� The next-pointerbehave like a “standrad” linked list
� The down pointerpoints between themselves. 

� Example - inserting 119. k=2
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Inserting an element - cont. 

� If k is larger than the current number of levels, add new 
levels (and update top, and num_of_levelscounter)

� Example - insert(119) when k=4
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Determining k 

� k - the number of levels at which an element x 
participate. 

� Use a random function OurRnd()--- returns 1 or 
0 (True/False) with equal probability. 

� k=1 ; 

� while( OurRnd() ) k++ ; 
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Deleteing a key x

� Find x in all the levels it participates, using find(x).  

� During the  “find”,  delete x from each level it participates using 
the standard “delete from a linked list”method.

� If one or more of the upper levels become empty, remove them 
(and update top  andnum_of_levels)
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Facts about SL

� Claim: The expected number of levels is O( log n )
� (here n is the number of keys)
� “ ≅≅≅≅ Proof” (a rigorous proof requires the use of random variables)

� The number of elements participate in the lowest level is n.
� Since the probability of an element to participates in level 2 is 

½, the expected number of elements in level 2 is n/2.
� Since the probability of an element to participates in level 3 is 

1/4, the expected number of elements in level 3 is n/4.
� …
� The probability of an element to participates in level j is 1/2j-1

so n/2j-1

� So after log(n) levels, no element is left. 
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Facts about SL

� Claim: The expected number of elements is  O( n ).

� (here n is the number of keys)

� “ ≅≅≅≅ Proof” (a rigorous proof requires the use of random 
variables)

� The total number of elements is 

n+n/2+n/4+n/8…≤ 2n

To reduce the worst case scenario, we verify 
during insertion that k (the number of levels that an 
element participates) in) is ≤ log n. 
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Facts about SL

� Thm: The expected number of elements scanned by a find 
operation  is O( log n)

� ≅≅≅≅Proof – we know that there are O( log n) levels. Will show 

– we spend O(1) time in each level. 

� Assume during find(x), we scanned t elements, (for t>8) in 
level r.  Assume first that r is not the upper level. 

Level r
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None of these 7 elements reached level r+1

Level r+1

The probability that none of these 7 elements reached 
level r+1 is 1/2t. For larger value of 7   – very slim. 16

Facts about SL

� Thm: The expected time for find/insert/deleteis O( log n)

� Proof For all 3  operations, the time is bounded by the 
number of elements need to be scan during find(x) 
operation, which is O(log n )


