* SkipList

Alon Efrat
Computer Science Department
University of Arizona

=@ @ 06 0.0 e

= Searching an element x

find(71)
= cell *p =head ;
= while (p->next->key < x) p=p->next;
= returnp ;

= Note:we return the elemeproceedingeither the
element containing, or the largest element with a key
smaller tharx (if x does not exists)

- @-@ @ -@- < @ .00

To insert 35 - pl

= p=find(35);

s CELL *p7 = (CELL *) malloc(sizeof(CELL));
n pl->key=35;

w pl->next = p->next;

n p->next =pl;

=-@-@ @@

= To delete 37 - o/
= p=find(37);

» CELL *pI =p->next;

w p->next = pl->next;

= free(pl);

®o6eo0o

pl

SKIP LIST - A data structure for
maintaining keys in a sorted order

Rules:

= Consists of severédvels.
All keys appear in level key - .

Each level is a sorted list. = Last element has key-

If key x appears in levél then , First element in upper level is

it also appears in all levels pointed to by variableop.
below leveli

= First element in each level ha

Level 3 : , gown-poril:txet;pointer ’
Level 2 ’_. ’_,—’,
Level 1 .—’.—’.—» .—’._... ._. ._,.

* More rules

= An element in level >1 points (via down pointer) to the element w|
the same key in the level below.

= Elements in the lowest level hasewn-pointer=NULL
= We also have a counter specifying the number afléev

m: - vﬁm — ’ next-pointer .
Level 2 ’_. ’_,—’.
Level 1 .—’.—’.—» .—’._... ._. ._,.

* An empty SkipList

Level 1 . .

Finding an element with key x

= p=top;
= while(1){
= while (p->next->key <x) p=p->next
= if (p->down == NULL) return p->next
= p=p->down;
=}
= Observe that we return the element in the loveastl|
containingy, (if exists) , orpred) if x is not in the SList

find(117), find(118)

Level 3 next-pointer .

lown-pointer

Level 2 ’—. @
Lol &&&:&@Q ©-0

‘_- &nserting new element x

= Determinek, defined as the number of levels in which
participates (explained later how)

. Po find(x), but once the search path is in one of the lowest
evels:

= X is inserted after the elements at which the sepatin
branches down or terminates.

= Thenext-pointetbehave like a “standrad” linked list
= Thedown pointempoints between themselves.

find(119) Example - insertind.19.k=2

Level 3 . next-pointer .

Down-pointer v

- -4

Inserting an element - cont.

= If kis larger than the current number of levels, add ne
levels (and updat®p, andnum_of_levelsounter)

= Example - inserf(19) whenk=4

S o o—¢o
v

- #9-4-4

* Determining &

= k - the number of levels at which an element
participate.

= Use a random functioBurRnd()--- returns 1 or
0 (True/False) with equal probability.

s k=1)
= While(OurRnd() k++ ;

* Deleteing a key x

= Findxin all the levels it participates, using fingl(

= During the “find”, deletex from each level it participates using
the standarddelete from a linked listtnethod.

= If one or more of the upper levels become empiyoie them
(and updatéop andnum_of_level3

next-pointer .

Level 3
down-pointer
Level 2

et ede

i Facts about SL

= Claim: The expected number of levelsdg logn)

= (heren is the number of keys)

= “0OProof” (a rigorous proof requires the use of random viéesb
The number of elements participate in the lowestllesn.
Since the probability of an element to participatelevel 2 is
%, the expected number of elements in level22s

Since the probability of an element to participatelevel3 is
1/4, the expected number of elements in I&sin/4.

The probability of an element to participates ielg is 1/211
son/2*t

So afterlog(n) levels, no element is left.

i Facts about SL

= Claim: The expected number of elementgd¢n).
= (herenis the number of keys)

= “0OProof” (arigorous proof requires the use of rando
variables)

= The total number of elements is
n+n/2+n/4+n/8...<2n

To reduce the worst case scenario, we verify
during insertion thakt (the number of levels that a
element participates) in) islog n.

14

i Facts about SL

= Thm: The expected number of elements scanned by a find
operation is O(log)

= [Proof — we know that there are O(log n) levels. Will show
— we spend O(1) time in each level.

= Assume during find(x), we scanned ¢ elements, (for £>8) in
level . Assume first that 7 is not the upper level.

Level r+1 -@ =X
i/ 6-0-0-0-0-0-0-0-0
-

None of these 7 elements reached level r+1

The probability that none of these 7 elements reached
level r+1is 1/2% For larger value of 7 — very slim. 15

i Facts about SL

= Thm: The expected time for find/insert/deletds O(log 77)

= Proof For all 3 operations, the time is bounded by the
number of elements need to be scan during find(x)
operation, which is O(log 77)

16

