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Abstract

In the emerging area of sensor-based systems, a signifibatiénge is to develop scalable, fault-tolerant methods
to extract useful information from the data the sensorsembllAn approach to this data management problem is the
use of sensor “database” systems, which allow users to perfiggregation queries on the readings of a sensor
network. Due to power and range constraints, centralizegfa@gches are generally impractical, so most systems
use in-network aggregation to reduce network traffic. Hevethese aggregation strategies become bandwidth-
intensive when combined with the fault-tolerant, multifp@uting methods often used in these environments. In
order to avoid this expense, we investigate the usgppfoximatdn-network aggregation using small sketches
and we survey robust and scalable methods for computingahigisensitive aggregates.

1 Introduction

As computation-enabled devices shrink in scale and pratiéein quantity, a relatively recent research direction
has emerged to contemplate future applications of thedeeteand services to support them. A canonical exam-
ple of such a device issensor motea device with measurement, communication, and computatipabilities,
powered by a small battery [21]. Individually, these motagehlimited capabilities, but when a large number of
them are networked together int@@nsor networkhey become much more capable. Indeed, large-scale sensor
networks are now being applied experimentally in a wideetgrof areas — some sample applications include
environmental monitoring, surveillance, and traffic moriitg.

In a typical sensor network, each sensor produces a streaemsbry observations across one or more sens-
ing modalities. But for many applications and sensing mitida) such as reporting temperature readings, it is
unnecessary for each sensor to report its entire data stretuth fidelity. Moreover, in a resource-constrained
sensor network environment, each message transmissiosigaificant, energy-expending operation. For this
reason, and because individual readings may be noisy oailalle, it is natural to use data aggregation to sum-
marize information collected by sensors. As a reflectiorisf ta database approach to managing data collected
on sensor networks has been advocated [24, 29], with plattiattention paid to efficient query processing for
aggregation queries [24, 29, 31].

In the TAG system [24], users connect to the sensor netwdrigus workstation or base station directly
connected to a sensor designated as the sink. Aggregatesjoger the sensor data are formulated using a
simple SQL-like language, then distributed across the odtwAggregate results are sent back to the worksta-
tion over a spanning tree, with each sensor combining its @aga with results received from its children. If
there are no failures, this in-network aggregation tealmig both effective and energy-efficient for distributive
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and algebraic aggregates [19] such as MIN, MAX, COUNT and AMGwever, as shown in [7], this technique

is much less effective in sensor network scenarios with maddenode and link failure rates. Node failure is
inevitable when inexpensive, faulty components are plécedvariety of uncontrolled or even hostile environ-
ments. Similarly, link failures and packet losses are comanyoss wireless channels because of environmental
interference, packet collisions, and low signal-to-noatgos [31]. For example, [31] reports on experiments in
which more than 10% of the links suffered average loss raatgr than 50%.

When a spanning tree approach is used for aggregate quesigsTAG, a single failure results in an entire
subtree of values being lost. If this failure is close to thek sthe change in the resulting aggregate can be
significant. Retransmission-based approaches are expenshis environment, so solutions based upon multi-
path routing were proposed in [24]. For aggregates such Akavitl MAX which are monotonic and exemplary,
this provides a fault-tolerant solution. But for duplicansitive aggregates such as COUNT or AVG that give
incorrect results when the same value is counted multipiegj existing methods are not satisfactory.

In this paper, we survey robust and scalable methods for atngpduplicate-sensitive aggregates across
faulty sensor networks. Guaranteeing exact solutionsdriabe of losses is generally impractical, so we focus
on approximate methods that are robust to both link and naillerds, but are inexact. For example, we de-
scribe the application of well-known sketches to handle Shid COUNT aggregates [14, 4] to this problem
The methods we present combine duplicate insensitive lsdetewith multi-path routing techniques to produce
accurate approximations with low communication and comian overhead.

2 Reated Work

In-network Aggregate Query Processing: A simple approach to evaluate an aggregation query is tahigli
route all sensed values to the base station and computedhegade there. Although this approach is simple, the
number of messages and the power consumption can be largeted &pproach is to leverage the computational
power of the sensor devices and compute aggregates indetggregates that can be computed in-network
include all decomposable functions [24]. Using decompleséinctions, the value of the aggregate function
can be computed for disjoint subsets, and these values casebleio compute the aggregate of the whole using
an appropriate merging function. Our discussion is basetheiny Aggregation (TAG) framework used in
TinyDB [24]. However, similar approaches are used to compugigregates in other systems [29, 31, 22].

In TAG, the in-network query evaluation has two phases,dis&ibution phase and theollection phase.
During the distribution phase, the query is flooded in thevoet and the nodes are organized inteaggregation
tree The base station broadcasting the query isrtioe of the tree. The query message has a counter that is
incremented with each retransmission and counts the haoandis from the root. In this way, each node is
assigned to a specific level equal to the node’s hop distanog the root. Also, each sensor chooses one of its
neighbors with a smaller hop distance from the root to bedtsmt in the aggregation tree.

During the collection phase, each leaf node produces aesitngle and forwards this tuple to its parent.
The non-leaf nodes receive the tuples of their children ardhine these values. Then, they submit the new
partial results to their own parents. This process runsmootisly and aftef. steps, wheré is the height of the
aggregation tree, the total result will arrive at the roatotder to conserve energy, sensor nodes sleep as much
as possible during each step where the processor and radidler When a timer expires or an external event
occurs, the device wakes up and starts the processing anduication phases. At this point, it receives the
messages from its children and then submits the new valte(s) parent. After that, if no more processing is
needed for that step, it enters again into the sleeping nizigje [

Best-Effort Routing in Sensor Networks: Recent years have seen significant work on best-effortrguti

sensor and other wireless networks. Due to high loss ratep@mer constraints, a common approach is to use
dispersity multi-path routing, where more than one copydeket is sent to the destination over different paths.
For example, directed diffusion [22] uses a flood to disc@hart paths which sensors would use to send back



responses. Various positive and negative reinforcemenhamsms are used to improve path quality. Braided
diffusion [15] builds on directed diffusion to use a set dietwined paths for increased resilience. A slightly
different approach is used by GRAB [30], where paths are rpligtly chosen in advance, but the width of
the upstream broadcast is controlled. The techniques waidesare meant to complement and leverage any
of these routing techniques [7]. We note that combiningdhmgthods with duplicate-insensitive in-network
aggregation will allow some of the overhead of these tealesdgo be amortized and shared amongst data items
from many different sensors.

Counting Sketches: A counting sketch for the purpose of quickly estimating thenber of distinct items
on a stream (the COUNT aggregate) in one pass while usingeosigall amount of space, was introduced by
Flajolet and Martin (FM) in [14]. Since then, there has bearcmwork developing and generalizing counting
sketches (e.g., [1, 2, 8, 13, 16, 18, 5, 9]). The original Fktchkes are particularly well-suited to sensor network
applications, since they are very concise and accurateatipe. We describe them in more detail in Section 3,
and show how to extend these sketches for computing SUM gaig®

The Count-Min sketch, a counting sketch for computing tlegdiency of elements on a stream (per element
or for ranges of elements), was introduced by Cormode andhidkuishnan [9]. We show how the Count-Min
sketch can be made duplicate-insensitive for exploitindtifpath routing in sensor networks. Even though
other frequency counting techniques have been proposdaipast [5, 26, 17, 12, 11], the Count-Min sketch
is robust, small in size, and provides error guarantees. taildd analysis of the Count-Min sketch appears in
Section 3.

3 Sketch Theory

One of the core ideas behind our work is that duplicate-isitiga sketches will allow us to leverage the redun-
dancy typically associated with multi-path routing. We nprgsent some of the theory behind such sketches
and extend it to handle more interesting aggregates. Mespresent details of the FM sketches of [14] along
with necessary parts of the theory behind them. Then, werglirethese sketches to handle summations, and
show that they have the same accuracy as FM sketches. Fwwallgresent the Count-Min sketch of [9] and
show how it can be combined with FM sketches to produce a chtglinsensitive frequency counting sketch
that can provide frequency esimates for both a single eleam@hranges of elements on a stream.

3.1 FM Sketches

Given amulti-set ofitem8/ = {xz1, z2, x3, ...}, thedistinct countingoroblem is to compute = |distinct(M)].
The FM sketch of\/, denotedS(M ), is a bitmap of lengttk. The entries o (M), denotedS(M)[0, ..., k—1],
are initialized to zero and are set to one using a “randoményimash functiorh applied to the elements aff.
Givenz € M and an integef, thenh(x,7) = 1 with probability 0.5 andh(x, i) = 0 otherwise (with the same
probability). Formally,

S(M)[i] =1iff Jz € M s.t. min{j | h(z,j) =1} =1i.

By this definition, each item: is capable of setting a single bit i5((A/) to one — the minimum for which
h(z,i) = 1. This gives a simple serial implementation which is very fagractice and requires two invocations
of h per item on average. It has been shown that a single elemertecaserted into an FM sketch (1)
expected time. We now describe some interesting propaertiEM sketches observed in [14].

Property 1: The FM sketch of the union of two multi-sets is the bit-wise ORheir FM sketches. That is,
S(My U Ma)[i] = (S(M1)[i] v S(Ma)]i]).



Property 2: S(M) is determined only by the distinct items.f. Duplication and ordering do not affe§t /).

Property 1 allows each sensor to compute a sketch of locally items and send the small sketch for
aggregation elsewhere. Since aggregation via union opesais cheap, it may be performed in the network
without significant computational burden. Property 2 aliave use of multi-path routing of the sketches for
robustness without affecting the accuracy of the estimaiesexpand upon these ideas in Section 4.

The next lemma provides key insight into the behavior of FMtcskes and will be the basis of efficient
implementations of summation sketches later.

Lemma3: Fori < logy n—2log,logy n, S(M)[i] = 1 with probabilityl—O(ne‘lOgg”). Fori > 3 log, n+d,
with § > 0, S(M)[i] = 0 with probability1 — O (2.2).

The lemma implies that given an FM sketchroflistinct items, one expects an initial prefix of all ones and
a suffix of all zeros, while only the setting of the bits arousyd\/)[log, n] exhibit much variation. This gives
a bound on the number of bitsrequired forS(M) in general:k = 3 log, n bits suffice to represeri(1)
with high probability. It also suggests that just considgrihe length of the prefix of all ones in this sketch can
produce an estimate af Formally, letR,, = min{i | S(M)[i] = 0} whenS (M) is an FM sketch of distinct
items. That is,R,, is a random variable marking the location of the first zer&{@/). In [14], the following
relationship betweetk,, andn is proven:E[R,,] = log,(¢n) £ 1075 + o(1). Thus, after ignoring small terms,
R,, can be used as an unbiased estimatdogf on. The authors also prove that the variancdgis slightly
more than one, which is a concern, as it implies that estisnaite will often be off by a factor of two or more
in either direction. However, standard methods for redydhe variance exist, including those discussed in
detail in [7]. Furthermore, using results from [16], FM skes can give afk, §)-approximation method for
estimating the distinct items of a multi-set usifg-; log(3) log(n)) space.

3.2 Summation FM Sketches

In order to make the application of FM sketches practicaidemetwork query processing in sensor networks,
approximate counting sketches can be generalized to handinations. Lefl/ be a multi-set of the form
{x1,x9,23,...} Wherex; = (k;,¢;) ande; is a non-negative integer. Tlaistinct summatiorproblem is to
caleulate:n = 3~ gistinct((ks,c;) e M) Ci-

For small values of;, it is practical to just count; different items based updn andc;, e.g., by considering
the stream obub-items (k;, c;, 1),. .., (ki, ¢, ¢;). Since this is merely; invocations of the counting insertion
routine, the analysis for FM sketches applies, and the ngntime of an insertion i€)(c;) expected time. But
for large values of;, this approach is impractical, leading us to consider moa¢able alternatives. The basic
idea is to set the bits in the summatias if we had performed; successive insertions into an FM sketch, but
without actually performing them. Such an emulationcpfnsertions can be done by sampling uniformly at
random (repeatably for a givefk;, ¢;)) from the distribution of sketches produced whegrkeys are chosen
uniformly at random and inserted into an empty sketch.

A key observation behind our faster sampling proceduredstriiost of the simulated insertions attempt to
set the same low-order bits, and repeated attempts atgs#itee bits have no further effect. We observe that if
a prefix of the firsy bits in the sketch is already set to 1, then the probabilitgroinserted sub-item modifying
a bit (i.e., setting a zero bit to one) is at mast’. By sampling the Bernoulli distribution with the correct
value ofd corresponding to the current state of the sketch, we carkiguétnulate whether the insertion of a
sub-item will change the sketch. If not, we do nothing elsbemwise we determine (again in O(1) expected
time), precisely which bit is set. Also, by exploiting the marylessness of the sampling procedure, we can
quickly simulate “skipping ahead” to identify sub-itemsialihactually change the sketch. With this approach,
and using fast lookup tables to implement Walker’s aliashmétfor sampling an arbitrary probability density



function in O(1) time and small space [28], insertion can tieieved inO(log ¢;) expected time. Full details
appear in [6].

3.3 Duplicate-Insensitive Count-Min Sketches

The CM sketch is a data structure that can be used to to estithatfrequency of individual elements or
ranges of elements on a stream [9]. Let a multi$et {s;,...,sy} denote the stream. The CM structure
consists of & x m matrix CM of counters, and a set @f hash functiong;(-) : {1---|distinct(S)|} —
{1---m}. Aninsertion to the sketch evaluates &(-) on everys € S and increases by one the counters with
indicesC M i, h;(s)]. In total, exactlyk counters are associated with every element. If the hashifumscare
independent, then with high probability no two elements akh to exactly the same set of counters. After the
sketch is constructed, the estimated frequency of elemiargiven by (s) = min; (CM][i, hi(s)]),1 < i < k.
Essentially the counter with the smallest frequency edtirisathe one that is the least affected by hash function
collisions from other elements.

It can be easily shown that the CM sketch of the union of twatiasedts is the simple matrix addition of their
individual CM sketches. Ideally, we would like the CM sketohbe duplicate-insensitive in terms of the union
operation. Note that double-counting of CM sketches in aliined sketch, can yield unbounded errors in the
estimated frequencies, subject to the total number of daf@iadditions that occurred. Duplicate-insensitivity
can be achieved by replacing every counter in the CM matrbk whe Summation FM sketch, and taking
advantage of the union property of FM sketches. EssentihlySummation FM sketches are used to estimate
the original magnitude of each counter. For this new coostm, an element frequency can be estimated, in the
worst case, as the minimum estimate of any of its associdtedketches. More details can be found in [20].

4 Approximate Estimation of Duplicate-Sensitive Aggregates

We now discuss how to use duplicate-insensitive sketchbailt a robust, loss-resilient framework for aggre-
gation. The framework leverages two main observationst,Rlie wireless communication of sensor networks
gives the ability to broadcast a single message to multiplghibors simultaneously. Second, the duplicate-
insensitive sketches discussed in Section 3 allow a seasmmbine all of its received sketches into a single
message to be sent. Given proper synchronization, thislldllv us to robustly aggregate data with each sensor
sending just one broadcast.

We adapt the basic communication model of TAG [24] for camtus queries (one-shot queries simply
terminate earlier). Given a new continuous query, the cdatjoun proceeds in two phases. In the first phase,
the query is distributed across the sensor network, oftergsome form of flooding. During this phase, each
node also computes its level (i.e., its hop distance fronrdlad), and notes the level values of its immediate
neighbors. The second phase is divided into a seriepothsspecified by the query. The specified aggregate
will be computed once for each epoch.

At the beginning of each epoch, each node constructs a skéith local values for the aggregate. The
epoch is then sub-divided into a series of rounds, one fdr leael, starting with the highest level (farthest from
the root). In each round, the nodes at the correspondingbevadcast their sketches, and the nodes at the next
level receive these sketches and combine them with thdictsi® in progress. In the last round, the root receives
the sketches of its neighbors, and combines them to prodhacnial aggregate. Duplicate-insensitivity of the
sketching methods prevents double-counting from ocogirridy similar communication model for computing
aggregates, the rings overlay, was proposed by Nath etAl. [2

The tight synchronization described so far is not actuaigessary. Our methods can also be applied us-
ing gossip-style communication - the main advantage oftaymization and rounds is that better scheduling is
possible and power consumption can be reduced. Howevenpda receives no acknowledgments of its broad-



cast, it may be reasonable in practice to retransmit. Moreigdly, loosening the synchronization increases
the robustness of the final aggregate as paths taking moeednepused to route around failures. (Similar ideas
appear in the W.D FIRE protocol proposed by Bawa et al. [3].) This increased rofess comes at the cost of
power consumption, since nodes broadcast and receive rfiere(due to values arriving later than expected)
and increased time (and variability) to compute the finafregate. As mentioned earlier, this general principle
allows us to make use of any best-effort routing protocal.(d22, 15]), with the main performance metric of
interest being the delivery ratio. Other approaches aredbas detecting frequent message losses and changes
in network conditions, and adapting the topology hopingetduce the loss rate [27]. With this protocol a node
is allowed to jump to different levels of the tree, based omouss heuristics according to the number of times
that nodes from higher level have successfully includedkttch in the last few epochs, and the number of
transmissions that the node can overhear from neighbosivejd.

Alternatively, it may be possible to use CM sketches to agprate a consecutive sequence of values that
each sensor generates, and then perform the computatiprabtiie end of the sequence. In that case, each
sensor computes a CM sketch of its [&stalues and then forwards this sketch to the upper levelsaditi@ntage
of this approach is the reduction in the number of messagea tactor of "). However, at the same time the
error in the approximation will increase. Another intemggtdirection is to combine sketch-based with tree-
based methods intaybrid approach. Furthermore, it will be interesting to combinsusi sketch-based methods
with model-based approaches proposed recently [10, 23].

5 Conclusions

We have presented new methods for approximately computipficaite-sensitive aggregates across distributed
datasets. Our immediate motivation comes from sensor mkgwavhere energy consumption is a primary con-
cern, faults occur frequently, and exact answers are noiregjor expected. An elegant building block which
enables our techniques are the duplicate-insensitivetséenf Flajolet and Martin, which give us considerable
freedom in our choices of how best to route data and wherertgpute partial aggregates. In particular, use of
this duplicate-insensitive data structure allowed us t&kemase of dispersity routing methods to provide fault
tolerance that would introduce inappropriate errors otiss.
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