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Abstract

In the emerging area of sensor-based systems, a significant challenge is to develop scalable, fault-tolerant methods
to extract useful information from the data the sensors collect. An approach to this data management problem is the
use of sensor “database” systems, which allow users to perform aggregation queries on the readings of a sensor
network. Due to power and range constraints, centralized approaches are generally impractical, so most systems
use in-network aggregation to reduce network traffic. However, these aggregation strategies become bandwidth-
intensive when combined with the fault-tolerant, multi-path routing methods often used in these environments. In
order to avoid this expense, we investigate the use ofapproximatein-network aggregation using small sketches
and we survey robust and scalable methods for computing duplicate-sensitive aggregates.

1 Introduction

As computation-enabled devices shrink in scale and proliferate in quantity, a relatively recent research direction
has emerged to contemplate future applications of these devices and services to support them. A canonical exam-
ple of such a device is asensor mote, a device with measurement, communication, and computation capabilities,
powered by a small battery [21]. Individually, these motes have limited capabilities, but when a large number of
them are networked together into asensor network, they become much more capable. Indeed, large-scale sensor
networks are now being applied experimentally in a wide variety of areas — some sample applications include
environmental monitoring, surveillance, and traffic monitoring.

In a typical sensor network, each sensor produces a stream ofsensory observations across one or more sens-
ing modalities. But for many applications and sensing modalities, such as reporting temperature readings, it is
unnecessary for each sensor to report its entire data streamin full fidelity. Moreover, in a resource-constrained
sensor network environment, each message transmission is asignificant, energy-expending operation. For this
reason, and because individual readings may be noisy or unavailable, it is natural to use data aggregation to sum-
marize information collected by sensors. As a reflection of this, a database approach to managing data collected
on sensor networks has been advocated [24, 29], with particular attention paid to efficient query processing for
aggregation queries [24, 29, 31].

In the TAG system [24], users connect to the sensor network using a workstation or base station directly
connected to a sensor designated as the sink. Aggregate queries over the sensor data are formulated using a
simple SQL-like language, then distributed across the network. Aggregate results are sent back to the worksta-
tion over a spanning tree, with each sensor combining its owndata with results received from its children. If
there are no failures, this in-network aggregation technique is both effective and energy-efficient for distributive
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and algebraic aggregates [19] such as MIN, MAX, COUNT and AVG. However, as shown in [7], this technique
is much less effective in sensor network scenarios with moderate node and link failure rates. Node failure is
inevitable when inexpensive, faulty components are placedin a variety of uncontrolled or even hostile environ-
ments. Similarly, link failures and packet losses are common across wireless channels because of environmental
interference, packet collisions, and low signal-to-noiseratios [31]. For example, [31] reports on experiments in
which more than 10% of the links suffered average loss rate greater than 50%.

When a spanning tree approach is used for aggregate queries,as in TAG, a single failure results in an entire
subtree of values being lost. If this failure is close to the sink, the change in the resulting aggregate can be
significant. Retransmission-based approaches are expensive in this environment, so solutions based upon multi-
path routing were proposed in [24]. For aggregates such as MIN and MAX which are monotonic and exemplary,
this provides a fault-tolerant solution. But for duplicate-sensitive aggregates such as COUNT or AVG that give
incorrect results when the same value is counted multiple times, existing methods are not satisfactory.

In this paper, we survey robust and scalable methods for computing duplicate-sensitive aggregates across
faulty sensor networks. Guaranteeing exact solutions in the face of losses is generally impractical, so we focus
on approximate methods that are robust to both link and node failures, but are inexact. For example, we de-
scribe the application of well-known sketches to handle SUMand COUNT aggregates [14, 4] to this problem
The methods we present combine duplicate insensitive sketches with multi-path routing techniques to produce
accurate approximations with low communication and computation overhead.

2 Related Work

In-network Aggregate Query Processing: A simple approach to evaluate an aggregation query is to reliably
route all sensed values to the base station and compute the aggregate there. Although this approach is simple, the
number of messages and the power consumption can be large. A better approach is to leverage the computational
power of the sensor devices and compute aggregates in-network. Aggregates that can be computed in-network
include all decomposable functions [24]. Using decomposable functions, the value of the aggregate function
can be computed for disjoint subsets, and these values can beused to compute the aggregate of the whole using
an appropriate merging function. Our discussion is based onthe Tiny Aggregation (TAG) framework used in
TinyDB [24]. However, similar approaches are used to compute aggregates in other systems [29, 31, 22].

In TAG, the in-network query evaluation has two phases, thedistribution phase and thecollectionphase.
During the distribution phase, the query is flooded in the network and the nodes are organized into anaggregation
tree. The base station broadcasting the query is theroot of the tree. The query message has a counter that is
incremented with each retransmission and counts the hop distance from the root. In this way, each node is
assigned to a specific level equal to the node’s hop distance from the root. Also, each sensor chooses one of its
neighbors with a smaller hop distance from the root to be its parent in the aggregation tree.

During the collection phase, each leaf node produces a single tuple and forwards this tuple to its parent.
The non-leaf nodes receive the tuples of their children and combine these values. Then, they submit the new
partial results to their own parents. This process runs continuously and afterh steps, whereh is the height of the
aggregation tree, the total result will arrive at the root. In order to conserve energy, sensor nodes sleep as much
as possible during each step where the processor and radio are idle. When a timer expires or an external event
occurs, the device wakes up and starts the processing and communication phases. At this point, it receives the
messages from its children and then submits the new value(s)to its parent. After that, if no more processing is
needed for that step, it enters again into the sleeping mode [25].

Best-Effort Routing in Sensor Networks: Recent years have seen significant work on best-effort routing in
sensor and other wireless networks. Due to high loss rates and power constraints, a common approach is to use
dispersity multi-path routing, where more than one copy of apacket is sent to the destination over different paths.
For example, directed diffusion [22] uses a flood to discovershort paths which sensors would use to send back
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responses. Various positive and negative reinforcement mechanisms are used to improve path quality. Braided
diffusion [15] builds on directed diffusion to use a set of intertwined paths for increased resilience. A slightly
different approach is used by GRAB [30], where paths are not explicitly chosen in advance, but the width of
the upstream broadcast is controlled. The techniques we describe are meant to complement and leverage any
of these routing techniques [7]. We note that combining these methods with duplicate-insensitive in-network
aggregation will allow some of the overhead of these techniques to be amortized and shared amongst data items
from many different sensors.

Counting Sketches: A counting sketch for the purpose of quickly estimating the number of distinct items
on a stream (the COUNT aggregate) in one pass while using onlya small amount of space, was introduced by
Flajolet and Martin (FM) in [14]. Since then, there has been much work developing and generalizing counting
sketches (e.g., [1, 2, 8, 13, 16, 18, 5, 9]). The original FM sketches are particularly well-suited to sensor network
applications, since they are very concise and accurate in practice. We describe them in more detail in Section 3,
and show how to extend these sketches for computing SUM aggregates.

The Count-Min sketch, a counting sketch for computing the frequency of elements on a stream (per element
or for ranges of elements), was introduced by Cormode and Muthukrishnan [9]. We show how the Count-Min
sketch can be made duplicate-insensitive for exploiting multi-path routing in sensor networks. Even though
other frequency counting techniques have been proposed in the past [5, 26, 17, 12, 11], the Count-Min sketch
is robust, small in size, and provides error guarantees. A detailed analysis of the Count-Min sketch appears in
Section 3.

3 Sketch Theory

One of the core ideas behind our work is that duplicate-insensitive sketches will allow us to leverage the redun-
dancy typically associated with multi-path routing. We nowpresent some of the theory behind such sketches
and extend it to handle more interesting aggregates. First,we present details of the FM sketches of [14] along
with necessary parts of the theory behind them. Then, we generalize these sketches to handle summations, and
show that they have the same accuracy as FM sketches. Finally, we present the Count-Min sketch of [9] and
show how it can be combined with FM sketches to produce a duplicate-insensitive frequency counting sketch
that can provide frequency esimates for both a single element and ranges of elements on a stream.

3.1 FM Sketches

Given a multi-set of itemsM = {x1, x2, x3, . . .}, thedistinct countingproblem is to computen ≡ |distinct(M)|.
The FM sketch ofM , denotedS(M), is a bitmap of lengthk. The entries ofS(M), denotedS(M)[0, . . . , k−1],
are initialized to zero and are set to one using a “random” binary hash functionh applied to the elements ofM .
Givenx ∈ M and an integeri, thenh(x, i) = 1 with probability0.5 andh(x, i) = 0 otherwise (with the same
probability). Formally,

S(M)[i] ≡ 1 iff ∃x ∈ M s.t. min{j | h(x, j) = 1} = i.

By this definition, each itemx is capable of setting a single bit inS(M) to one – the minimumi for which
h(x, i) = 1. This gives a simple serial implementation which is very fast in practice and requires two invocations
of h per item on average. It has been shown that a single element can be inserted into an FM sketch inO(1)
expected time. We now describe some interesting propertiesof FM sketches observed in [14].

Property 1: The FM sketch of the union of two multi-sets is the bit-wise ORof their FM sketches. That is,
S(M1 ∪ M2)[i] = (S(M1)[i] ∨ S(M2)[i]).
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Property 2: S(M) is determined only by the distinct items ofM . Duplication and ordering do not affectS(M).

Property 1 allows each sensor to compute a sketch of locally held items and send the small sketch for
aggregation elsewhere. Since aggregation via union operations is cheap, it may be performed in the network
without significant computational burden. Property 2 allows the use of multi-path routing of the sketches for
robustness without affecting the accuracy of the estimates. We expand upon these ideas in Section 4.

The next lemma provides key insight into the behavior of FM sketches and will be the basis of efficient
implementations of summation sketches later.

Lemma 3: Fori < log2 n−2 log2 log2 n, S(M)[i] = 1 with probability1−O(ne− log2

2
n). Fori ≥ 3

2 log2 n+δ,

with δ ≥ 0, S(M)[i] = 0 with probability1 − O
(

2−δ√
n

)
.

The lemma implies that given an FM sketch ofn distinct items, one expects an initial prefix of all ones and
a suffix of all zeros, while only the setting of the bits aroundS(M)[log2 n] exhibit much variation. This gives
a bound on the number of bitsk required forS(M) in general:k = 3

2 log2 n bits suffice to representS(M)
with high probability. It also suggests that just considering the length of the prefix of all ones in this sketch can
produce an estimate ofn. Formally, letRn ≡ min{i | S(M)[i] = 0} whenS(M) is an FM sketch ofn distinct
items. That is,Rn is a random variable marking the location of the first zero inS(M). In [14], the following
relationship betweenRn andn is proven:E[Rn] = log2(ϕn) ± 10−5 + o(1). Thus, after ignoring small terms,
Rn can be used as an unbiased estimator oflog2 ϕn. The authors also prove that the variance ofRnis slightly
more than one, which is a concern, as it implies that estimates of n will often be off by a factor of two or more
in either direction. However, standard methods for reducing the variance exist, including those discussed in
detail in [7]. Furthermore, using results from [16], FM sketches can give an(ǫ, δ)-approximation method for
estimating the distinct items of a multi-set usingO( 1

ǫ2
log(1

δ
) log(n)) space.

3.2 Summation FM Sketches

In order to make the application of FM sketches practical forin-network query processing in sensor networks,
approximate counting sketches can be generalized to handlesummations. LetM be a multi-set of the form
{x1, x2, x3, . . .} wherexi = 〈ki, ci〉 and ci is a non-negative integer. Thedistinct summationproblem is to
calculate:n ≡

∑
distinct(〈ki,ci〉∈M) ci.

For small values ofci, it is practical to just countci different items based uponki andci, e.g., by considering
the stream ofsub-items: 〈ki, ci, 1〉, . . . , 〈ki, ci, ci〉. Since this is merelyci invocations of the counting insertion
routine, the analysis for FM sketches applies, and the running time of an insertion isO(ci) expected time. But
for large values ofci, this approach is impractical, leading us to consider more scalable alternatives. The basic
idea is to set the bits in the summationas if we had performedci successive insertions into an FM sketch, but
without actually performing them. Such an emulation ofci insertions can be done by sampling uniformly at
random (repeatably for a given〈ki, ci〉) from the distribution of sketches produced whenci keys are chosen
uniformly at random and inserted into an empty sketch.

A key observation behind our faster sampling procedure is that most of the simulated insertions attempt to
set the same low-order bits, and repeated attempts at setting those bits have no further effect. We observe that if
a prefix of the firstδ bits in the sketch is already set to 1, then the probability ofan inserted sub-item modifying
a bit (i.e., setting a zero bit to one) is at most2−δ. By sampling the Bernoulli distribution with the correct
value ofδ corresponding to the current state of the sketch, we can quickly emulate whether the insertion of a
sub-item will change the sketch. If not, we do nothing else, otherwise we determine (again in O(1) expected
time), precisely which bit is set. Also, by exploiting the memorylessness of the sampling procedure, we can
quickly simulate “skipping ahead” to identify sub-items which actually change the sketch. With this approach,
and using fast lookup tables to implement Walker’s alias method for sampling an arbitrary probability density
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function in O(1) time and small space [28], insertion can be achieved inO(log ci) expected time. Full details
appear in [6].

3.3 Duplicate-Insensitive Count-Min Sketches

The CM sketch is a data structure that can be used to to estimate the frequency of individual elements or
ranges of elements on a stream [9]. Let a multi-setS = {s1, . . . , sN} denote the stream. The CM structure
consists of ak × m matrix CM of counters, and a set ofk hash functionshi(·) : {1 · · · |distinct(S)|} →
{1 · · ·m}. An insertion to the sketch evaluates allhi(·) on everys ∈ S and increases by one the counters with
indicesCM [i, hi(s)]. In total, exactlyk counters are associated with every element. If the hash functions are
independent, then with high probability no two elements will hash to exactly the same set of counters. After the
sketch is constructed, the estimated frequency of elements is given byf̂(s) = mini (CM [i, hi(s)]), 1 ≤ i ≤ k.
Essentially the counter with the smallest frequency estimate is the one that is the least affected by hash function
collisions from other elements.

It can be easily shown that the CM sketch of the union of two multi-sets is the simple matrix addition of their
individual CM sketches. Ideally, we would like the CM sketchto be duplicate-insensitive in terms of the union
operation. Note that double-counting of CM sketches in a combined sketch, can yield unbounded errors in the
estimated frequencies, subject to the total number of duplicate additions that occurred. Duplicate-insensitivity
can be achieved by replacing every counter in the CM matrix with one Summation FM sketch, and taking
advantage of the union property of FM sketches. Essentially, the Summation FM sketches are used to estimate
the original magnitude of each counter. For this new construction, an element frequency can be estimated, in the
worst case, as the minimum estimate of any of its associated FM sketches. More details can be found in [20].

4 Approximate Estimation of Duplicate-Sensitive Aggregates

We now discuss how to use duplicate-insensitive sketches tobuild a robust, loss-resilient framework for aggre-
gation. The framework leverages two main observations. First, the wireless communication of sensor networks
gives the ability to broadcast a single message to multiple neighbors simultaneously. Second, the duplicate-
insensitive sketches discussed in Section 3 allow a sensor to combine all of its received sketches into a single
message to be sent. Given proper synchronization, this willallow us to robustly aggregate data with each sensor
sending just one broadcast.

We adapt the basic communication model of TAG [24] for continuous queries (one-shot queries simply
terminate earlier). Given a new continuous query, the computation proceeds in two phases. In the first phase,
the query is distributed across the sensor network, often using some form of flooding. During this phase, each
node also computes its level (i.e., its hop distance from theroot), and notes the level values of its immediate
neighbors. The second phase is divided into a series ofepochsspecified by the query. The specified aggregate
will be computed once for each epoch.

At the beginning of each epoch, each node constructs a sketchof its local values for the aggregate. The
epoch is then sub-divided into a series of rounds, one for each level, starting with the highest level (farthest from
the root). In each round, the nodes at the corresponding level broadcast their sketches, and the nodes at the next
level receive these sketches and combine them with their sketches in progress. In the last round, the root receives
the sketches of its neighbors, and combines them to produce the final aggregate. Duplicate-insensitivity of the
sketching methods prevents double-counting from occurring. A similar communication model for computing
aggregates, the rings overlay, was proposed by Nath et al. [27].

The tight synchronization described so far is not actually necessary. Our methods can also be applied us-
ing gossip-style communication - the main advantage of synchronization and rounds is that better scheduling is
possible and power consumption can be reduced. However, if anode receives no acknowledgments of its broad-
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cast, it may be reasonable in practice to retransmit. More generally, loosening the synchronization increases
the robustness of the final aggregate as paths taking more hops are used to route around failures. (Similar ideas
appear in the WILD FIRE protocol proposed by Bawa et al. [3].) This increased robustness comes at the cost of
power consumption, since nodes broadcast and receive more often (due to values arriving later than expected)
and increased time (and variability) to compute the final aggregate. As mentioned earlier, this general principle
allows us to make use of any best-effort routing protocol (e.g., [22, 15]), with the main performance metric of
interest being the delivery ratio. Other approaches are based on detecting frequent message losses and changes
in network conditions, and adapting the topology hoping to reduce the loss rate [27]. With this protocol a node
is allowed to jump to different levels of the tree, based on various heuristics according to the number of times
that nodes from higher level have successfully included itssketch in the last few epochs, and the number of
transmissions that the node can overhear from neighboring levels.

Alternatively, it may be possible to use CM sketches to approximate a consecutive sequence of values that
each sensor generates, and then perform the computation only at the end of the sequence. In that case, each
sensor computes a CM sketch of its lastT values and then forwards this sketch to the upper levels. Theadvantage
of this approach is the reduction in the number of messages (by a factor ofT ). However, at the same time the
error in the approximation will increase. Another interesting direction is to combine sketch-based with tree-
based methods in ahybridapproach. Furthermore, it will be interesting to combine robust sketch-based methods
with model-based approaches proposed recently [10, 23].

5 Conclusions

We have presented new methods for approximately computing duplicate-sensitive aggregates across distributed
datasets. Our immediate motivation comes from sensor networks, where energy consumption is a primary con-
cern, faults occur frequently, and exact answers are not required or expected. An elegant building block which
enables our techniques are the duplicate-insensitive sketches of Flajolet and Martin, which give us considerable
freedom in our choices of how best to route data and where to compute partial aggregates. In particular, use of
this duplicate-insensitive data structure allowed us to make use of dispersity routing methods to provide fault
tolerance that would introduce inappropriate errors otherwise.
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