
Fractionally Cascaded Information in a Sensor Network

Jie Gao∗ Leonidas J. Guibas∗ John Hershberger† Li Zhang‡

ABSTRACT
We address the problem of distributed information aggrega-
tion and storage in a sensor network, where queries can be
injected anywhere in the network. The principle we propose
is that a sensor should know a “fraction” of the information
from distant parts of the network, in an exponentially decay-
ing fashion by distance. We show how a sampled scalar field
can be stored in this distributed fashion, with only a mod-
est amount of additional storage and network traffic. Our
storage scheme makes neighboring sensors have highly corre-
lated world views; this allows smooth information gradients
and enables local search algorithms to work well. We study
in particular how this principle of fractionally cascaded in-
formation can be exploited to answer range queries about
the sampled field efficiently. Using local decisions only we
are able to route the query to exactly the portions of the
field where the sought information is stored. We provide
a rigorous theoretical analysis showing that our scheme is
close to optimal.

Categories and Subject Descriptors
H.3.3 [Information Systems]: information storage and re-
trieval—information search and retrieval ; F.2.2 [Theory of
Computation]: analysis of algorithms and problem com-
plexity—non-numerical algorithms and problems

General Terms
Algorithms, Design

∗Department of Computer Science, Stanford Uni-
versity, Stanford, CA 94305, USA Email: {jgao,
guibas}@cs.stanford.edu
†Mentor Graphics, 8005 S.W. Boeckman Road, Wilsonville,
OR 97070, USA Email:john hershberger@mentor.com
‡Hewlett-Packard Labs, 1501 Page Mill Road, Palo Alto,
CA 94304, USA Email: l.zhang@hp.com

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IPSN’04,April 26–27, 2004, Berkeley, California, USA.
Copyright 2004 ACM 1-58113-846-6/04/0004 ...$5.00.

Keywords
Sensor networks, information aggregation and storage, frac-
tional cascading, range searching

1. INTRODUCTION
Sensor network technology is in a rapid state of evolu-

tion, especially at the hardware level. Sensors are becom-
ing smaller, more power efficient, and less expensive [5].
Networking for sensor networks is also quickly developing,
with certain protocols such as directed diffusion [11] al-
ready widely deployed and sensor-net specific adaptations
of the network stack drilling down all the way to the MAC
layer [23, 10]. But for sensor nets to attain their true po-
tential, equal strides must be made at the application level,
facilitating the deployment and use of a sensor network for
a variety of purposes by many simultaneous and geographi-
cally distributed users. To this end, a more abstract view of
the sensor network is useful, and the view that has received
the most attention to date is that of the sensor network as
a distributed database [8].

The advantage of the database approach is that it offers
a separation between the logical view (naming, access, op-
erations) of the data held by the sensor net and the actual
implementation of these operations on the physical network.
Though any such abstraction comes with some loss of effi-
ciency, it compensates by increased ease of use. Sensor net
users can focus on the logical structure of the queries they
want to ask and are relatively isolated from the details of
physical storage and data networking on the volatile physi-
cal infrastructure of the network (sensors can fail, links come
and go, etc.).

Standard distributed database technology, however, can-
not be ported as-is to sensor networks because both the log-
ical structure of the data and the economics of the physical
medium are different. At the logical level, one major dif-
ference is that sensor data are typically measurements from
the physical world and as such there is always the potential
of error. Thus exact queries are not so meaningful in the
sensor network context—instead it is more appropriate to
use probabilistic queries [6], or range queries, where we ask
that the values of certain attributes lie in certain ranges.
Furthermore, sensors often sample a physical quantity at
discrete time intervals and thus generate a stream of data.
Whatever index structure we plan to build must therefore
be able to accommodate a stream of continuous updates, as
we go forward in time. Furthermore, the cost of processing
a query is likely to be dominated more by the communica-
tion costs of getting to all the relevant data than by the data

processing or aggregation cost. While in a classical database
we worry about what and how much to store in an index, in
the sensor net setting the dominant worry is where to store
the distributed index.

In this paper we investigate a new lightweight distributed
mechanism for storing data in a sensor network that allows
range queries injected anywhere in the network to be served
efficiently. The key idea of our approach is to store at each
sensor information about data available elsewhere in the net-
work, but in such a way that a sensor knows only a “frac-
tion” of the information from distant parts of the network, in
an exponentially decaying fashion by distance. The precise
way in which information is to be subsampled, compressed,
or aggregated to meet this constraint will be application de-
pendent. This accomplishes three goals simultaneously:

• the total amount of information duplication across all
sensors is kept small, because of the geometric decrease
with distance,

• the communication cost required to build this index
and its update cost remain reasonable, as on the aver-
age information travels only short distances, and

• neighboring sensors have highly-correlated world views;
this allows for smooth information gradients and en-
ables local search algorithms to work well.

Because our method is effectively a broadcast with geometric
decay of the information, we call the technique fractional
cascading.

Although several prior works, as discussed below, have
also given distributed indices for range queries in sensor
networks, our approach highlights an important aspect of
queries in a sensor network that has not been discussed
much up to now. This is the issue of locality : when we
make queries to a sensor network, we are more likely to ask
about recent events in nearby places. Fractional cascading
automatically adapts the resolution at which information is
stored so that more detailed information is available about
data obtained in the spatio-temporal locality of the sensor
where the query is injected—but without sacrificing the abil-
ity to query distant regions or times as well. Furthermore,
this is accomplished with load-balancing across the entire
network field.

To illustrate the potential of fractional cascading we dis-
cuss in this paper the simple scenario of a dense uniform
sensor network sampling a smooth scalar field, such as tem-
perature. A typical range query for us would be to give a
query region (specified as a rectangle parallel with the axes)
plus a threshold temperature and then ask for all the “hot
spots”, i.e., the sensors in the query region where the tem-
perature is above this threshold. We perform a theoretical
analysis of such queries and give asymptotic upper and lower
bounds on the cost of serving these queries. If we have n
sensors then the overall storage taken by the fractionally
cascaded index is O(n log n). If there are k hot sensors in
a query region of area A and perimeter P at distance D
from the sensor where the query is injected, then the cost
of the query can be expressed as some fixed overhead cost
f(D, P, A, n) plus an additional cost f(D, P, A, n, k) that de-
pends on the number of hot spots. The parameters, D, P ,
A, represent the locality, i.e., how far away the informa-
tion about the query is from the sensor where the query is
injected. Roughly speaking, our upper bounds show that

fractional cascading performs with overhead O(D + P) up
to logarithmic factors, and the cost related to the number
of hot spots is O(

√
Ak). In a simplified model we can ar-

gue that these bounds are essentially best possible for any
method that uses comparable storage.

Since the temperature field is smooth, hot spots in general
will tend to be clustered. A variant of our range query then
might ask for the isocontours of the temperature field at the
desired threshold. If s is the number of sensors bordering
these contours, we show that we can exploit this coherence
in the field and return these boundary sensors at a cost of
O(
√

As), without having to visit all the hot sensors inside
the contours.

The idea of our method is to cover the underlying space
by a quad-tree and then store the summarized information
of each quadrant with the sensors in the sibling quadrants.
While our method resembles previous methods, we are the
first to rigorously analyze the performance of such a method
as well as analyze the limitations of any distributed range
query method.

2. PRIOR WORK
It seems that any kind of index on distributed data re-

quires some type of hierarchical structure that aggregates
information from different portions of the attribute space or
from different regions of the network. Prior work in range
searching for sensor networks has addressed a number of
important issues in constructing such hierarchies. One of
these is efficient data summarization. Wavelet transforms
provide one way to compress and summarize information
for both temporal and spatial signals, and are widely used
in signal and image processing. Wavelet encodings can be
used with a standard hierarchical structure, such as a spa-
tial quad tree, to provide data summarization across spatial
regions of the network. More detailed information can be
accessed as needed by a top down traversal of the hierar-
chy tree, using geographic routing [12] to visit the sensors
holding the relevant information. This has been used in a
number of prior systems, including DIMENSIONS [7] and
TinyDB [16, 17, 18].

Any hierarchical structure has the problem that sensors
that hold information corresponding to high levels in the
hierarchy become traffic bottlenecks, as they need to be ac-
cessed by many queries. This overload can be avoided by
structured replication of information [21]. In the case of
a scalar field such as our temperature, another solution is
to partition the information about large geographic regions
into subsets according to smaller allowed ranges of the field
value, and store these subsets in different nodes. This is the
approach taken in the DIFS system [9], where each node in a
quad-tree has multiple parents, according to a finer partition
based on smaller field ranges. Thus the wider the spatial ex-
tent an index node knows about, the more constrained the
value range it covers.

Many of the above systems use hashing to select geo-
graphic locations for the sensors that will hold parts of the
index, according to the attribute values stored in that part
of the index. This is the original idea of geographic hash
tables [21]—a hash function based on data type and value is
used to select where the data will be stored, so as to provide
a rendezvous point for those producing and those seeking
the data. In the DIM system [15] a locality preserving hash
function is used to map portions of a multidimensional at-

tribute space to sensors so that all data needed to answer a
range searching query can be located conveniently.

Although in DIMS there is an attempt to place the index
for nearby portions of the attribute space in nearby sensors,
none of these systems explicitly tries to place the index for
information close to where the information was generated.
This is one of the novel aspects of our fractionally cascaded
index that should benefit queries that exhibit locality.

This principle of fractionally cascaded information was
first introduced in a very different context, in our work on
speeding up geometric data structures [2, 3]. In that con-
text each node stores an ordered list of keys, shares a well-
distributed sample of that list with its neighbors, a sample
of the sample with the neighbors two away, and so on. Each
node then simply merges together all lists it owns or receives.
As shown in [2], without significantly increasing storage, this
method can be used to speed up a key search in a sequence
of nodes along a path by making the key lists of nearby
nodes highly correlated. The principle of fractional cascad-
ing has been widely used by the computational geometry
community since then [4, 19, 22].

Similar ideas have arisen in other contexts as well. Fish-
eye state routing [20] is a proactive routing protocol that
reduces the frequency of topology updates to distant parts
of the network. Also, the spatial gossip protocol [13] is a
gossip protocol in which each node in a peer-to-peer net-
work chooses to talk to another node with a probability
that decreases polynomially with the distance between the
two nodes.

3. RANGE SEARCH QUERIES
In this section, we provide a formal description of the

problem we are to solve. Assume there is a continuous
scalar field, say temperature, and a set of n sensors S in the
plane; each sensor s ∈ S reads the temperature information
t(s) at its location. We assume the sensors are uniformly
and densely distributed in a square. More formally, suppose
that the communication range of each sensor is normalized
to 1. Two sensors can directly communicate with each other
if they are within communication range. Then, we require
that each point in the square must be within distance 1 to
some sensor and the minimum number of hops of the path
to connect any two sensors p, q is at most a small constant
times the Euclidean distance between p, q. The communi-
cation between two sensors is done by multi-hop routing,
for example, a geographic forwarding scheme. We assume
that the routing scheme gives reasonably short paths, e.g.,
comparable to the Euclidean distance.

We consider the following range query problem in such
a sensor network: a query consists of three components
(q, R, T) where q is the sensor that initiates the query, R is
an a×b rectangular range within the square, and T = [T1, T2]
is a temperature range. As in standard geometric range
query problems [1], we study three versions of the problem:

• counting problem: we want to know the number of
sensors with temperature reading between T1 and T2

in the region R;

• reporting problem: we want to collect a list of sensors
inside the range R with temperature readings inside
the temperature interval T = [T1, T2]. In some appli-
cations, we may need to construct a spanning tree to
connect the query sensor and the qualified sensors;

• isometric contour problem: assuming the approximate
temperature field can be constructed by interpolation
from the sample readings of the sensors, we want to
get the isometric contour with temperature reading T
inside the query range R.

The answer of each query should be returned to the query
sensor. The cost of a query is measured by the total number
of steps, including both the communication and computa-
tion it requires to get the answer.

The most obvious solution to answer such a query is by
sending the query to all the sensors in the network and hav-
ing a sensor respond if its position is within the query range
and its sensor value is within the query interval. The an-
swers can be combined as they propagate back to the query
sensor. A little bit more sophisticated scheme is to flood the
query only to the query range with some geographic routing
algorithm. The advantage of such a scheme is its simplicity:
there is no need for any precomputation, and each sensor
stores only its own sensor value. However, the query cost
of such an algorithm can be high: it is proportional to the
number of sensors in the query range. In the case when one
needs to perform multiple queries, it is often more cost ef-
fective to first perform an information aggregation stage to
reduce the query cost.

The most straightforward information aggregation scheme
is to construct global warehouses, i.e., let all the sensors send
their data to some “warehouse” nodes. We then build a stan-
dard range query data structure at each warehouse. Each
query is sent to a warehouse and answered by using the pre-
computed data structure. In this approach, the query can be
answered very efficiently, given that the query sensor is not
too far from some warehouse. However, such an approach
requires warehouses capable of holding all the data and the
construction of the range query data structure. Further, we
need to distribute multiple warehouses evenly in the net-
work, so that each query sensor is guaranteed to be not too
far from a warehouse.

In this paper, we provide a solution in which every sensor
stores only a small amount of aggregated information, and
the query can be answered much more efficiently than with-
out aggregation. Furthermore, we show that our method is
quite close to the optimum. A formal comparison between
our method and the flooding and global warehouse methods
can be found at the end of this paper.

4. LOWER BOUNDS
Before we describe the fractional cascading scheme, we

first show several query time lower bounds that hold when
each sensor is allowed to store only a small amount of in-
formation. Our lower bounds are based on information-
theoretical arguments. By those lower bounds, we can un-
derstand the limitation of any distributed range query al-
gorithm when each sensor is only allowed to have limited
information storage.

For the lower bounds, it suffices to consider a simpler
problem in which the sensors are located on a regular

√
n×√

n grid, and the sensor value is binary, 0 or 1. A sensor is
“hot” if its value is 1. A query is to count the number of
hot sensors in a query range. We assume that each sensor
can store at most m bits after the information aggregation
stage. In practice, m needs to be small. We can think it is
bounded by O(log n) or O(polylog n).

There are two factors that affect the query complexity.
One is the distance from the query sensor to the query
range, and the other is the size of the query range. We con-
sider those two factors separately by considering two types
of queries. In the Type I queries, each query rectangle sin-
gles out a sensor, i.e., the query is a pair of sensors (q, r),
and we wish to get the value of r to q. In the Type II queries,
we require the query range R to contain the query sensor q.

Q2

q

Q1

r

D

D√
πm

Q3

q

A

r

√
A

πm

(a) (b)

Figure 1. (a) Type I query; (b) Type II query.

For the Type I query, the näıve method of sending a mes-
sage from r to q takes O(D) steps, where D is the shortest
distance between q and r. We will show that this is close
to the best we can hope for. Let Q1 denote the set of sen-
sors that are within distance D from q and Q2 the set of
sensors within distance D√

πm
from q. Then we know that

the number of sensors in Q1 is more than D2. On the other
hand, there are at most D2/m sensors in the region Q2 and
therefore at most D2 bits stored in the sensors in Q2. Thus,
there exist two different assignments t1, t2 of sensor values
to the more than D2 sensors in Q1 that result in the same
information being stored in the sensors in Q2. Let r be a
sensor at which t1(r) 6= t2(r). Then the query (q, r) has to
take Ω(D√

m
) steps, because otherwise we would not be able

to distinguish t1(r) and t2(r) by querying only the sensors
in Q2.

Now we consider Type II queries. For any two sensors
q, r, denote by R(q, r) the rectangle with q, r as two diag-
onally opposite vertices. Suppose that t1, t2 are any two
different assignments of the sensor values to the sensors
in R. It can be verified that there always exists a sensor
r ∈ R such that t1(r) 6= t2(r) but for all the other sensors
r′ ∈ R(q, r), t1(r

′) = t2(r
′). Thus, the query (q, R(q, r))

will receive different answers for the assignments t1 and t2.
Therefore, if the query range has area A, i.e., contains A
sensors, then there are 2A different assignments that need
to be distinguished. By the same argument as before, we
need an amount of memory at least equal to A to differenti-
ate those different assignments. Let Q3 be the set of sensors

within distance
√

A
πm

from q. So q has to ask a sensor out-

side Q3 to answer the query. This requires Ω(
√

A
πm

) steps

in the worst case.
By combining the above two cases, we have that the lower

bound is Ω(max(D√
m

,
√

A
m

)) = Ω(D+
√

A√
m

) where D is the

shortest distance from the query node to the query range,
and A the area of the query range.

Last, we note that if we require that all the hot sensors

in the query range be visited at least once, then there is
an intrinsic lower bound of Ω(

√
kA + P) for just touring k

hot sensors, where P and A are, respectively, the perimeter
and the area of the query range. The lower bound is real-
ized by distributing k hot sensors evenly in the square. To
summarize, we have that:

Theorem 4.1. Suppose that each sensor stores at most m
bits. Let D denote the shortest distance from the query
sensor to the query range and P, A denote the perimeter
and the area of the query range, respectively. Then in the

worst case, it takes Ω(D+
√

A√
m

) steps to answer the query. If

we need to connect the query sensor to the k hot sensors,
then it requires Ω(D + P +

√
kA) steps.

We should note that the lower bounds above are fairly gen-
eral, since they depend only on the amount of information
stored at each sensor and are independent of how the infor-
mation aggregation is done. If we take into account the com-
munication and computation cost in the aggregation stage,
we may obtain even higher lower bounds. However, these
lower bounds are actually quite tight even we take the com-
munication and computation costs into account — in the
next section, we show that for the reporting problem and
for the counting problem in ranges with constant bounded
aspect ratio, the query cost of our algorithm matches the
lower bounds up to a multiplicative logarithmic factor.

5. FRACTIONALLY CASCADED
INFORMATION

We describe our method for reporting query (q, R, [T,∞)),
i.e., report all the sensors inside range R with temperature
higher than T . The other types of queries will be discussed
later as variants.

5.1 Aggregation algorithm
We first build a standard (virtual) quadtree T on the sen-

sors. The root node is associated with a bounding box that
covers all the sensors. The quadtree is defined recursively
such that each internal node is divided into four equal size
squares. Every leaf node contains at most one sensor. De-
note by p(u) the parent node of a quadtree node u. We also
associate with each node u in the quadtree its bounding box
B(u). Without loss of generality, we assume the smallest
square of the quadtree is a unit square. The side length of
B(u) is denoted as L(u). The side length of the root node is
denoted by L. A quadtree node u of height i has a bounding
box B(u) with side length 2i. Since the number of sensors
is n and the sensors are uniformly distributed, the height of
the quadtree is O(log L) = O(log n).

For a centralized algorithm, the quadtree can be used to
answer range search queries efficiently. Each internal node
u of the quadtree saves the maximum temperature, denoted
by t(u), among all the sensors in its subtree. Given a query
rectangle R, we traverse the quadtree starting from the root.
If the current node’s maximum temperature is lower than
the threshold or the current node’s bounding box is com-
pletely outside the query range, we discard it. If the current
node is a leaf node, we report the sensor. Otherwise we visit
its 4 children recursively.

The centralized approach does not fit the sensor network
scenario in several ways. Firstly we don’t want to have any

sensor storing the whole quadtree, for reasons of fault toler-
ance. Furthermore, this approach is not scalable, since the
sensors are normally memory constrained. Second, in a sen-
sor network, getting the value of a certain sensor requires
communication. If the query range is near the source where
the query is injected, we expect to answer the query locally,
rather than communicating with a far away server.

In the following we show how to store the virtual quadtree
implicitly on the sensors, in a fractionally cascaded fashion.
In the remainder of the paper, when we write “quadtree
node” we are referring to the logical quadtree structure. The
value of a quadtree node is saved at physical sensors, with
the storage scheme as follows. For each quadtree node u,
the maximum temperature t(u), is stored in all the sensors
in B(p(u)), where p(u) is the parent node of u. We calculate
t(u) in a bottom-up approach. We only need to show how to
calculate the maximum temperature of a quadtree node u,
when the maximum temperatures of the 4 children nodes vi,
i = 1, 2, 3, 4, of u have been calculated and stored. Accord-
ing to the induction hypothesis, every sensor in B(u) has the
maximum temperatures of all the children nodes of u. One
of them1, say p in B(u), does the aggregation and calculates
the maximum temperature in B(u) by t(u) = max4

i=1 t(vi)
and saves the information in all the sensors in u and u’s
siblings by broadcasting. In short, each sensor p saves the
maximum temperature t(u), where u is a sibling node of
a quadtree node on the path from p to the root. A sen-
sor’s view of the world is divided into tiles. A sensor saves
only the summarized information of each tile. The further
away the tile is from the sensor, the larger the tile could be.
Figure 2 (b) shows an example. We bound the amount of

p

(a) (b)

Figure 2. (a) Leaves of the quadtree; (b) a sensor p’s view of
the world.

storage and communication cost by the following two theo-
rems.

Theorem 5.1. A sensor stores O(log n) information.

Proof. A sensor p saves the maximum temperature t(u)
for all the quadtree nodes u that are siblings of a quadtree
node on the path from p to the root. Since the quadtree has
height O(log n), the total amount of information stored at
any sensor is O(log n). ¤

Theorem 5.2. The total communication cost of construct-
ing the implicit quadtree is O(n log n), where n is the total
number of sensors.

1The sensor that does the aggregation can be chosen ran-
domly, or rotated periodically for load balancing.

Proof. The communication cost of calculating the max-
imum temperature t(u) of a quadtree node u is O(n(p(u))),
where n(v) is the number of sensors inside B(v) and p(u) is
the parent node of u. The total communication cost is

∑
u

O(n(p(u))) =

log L∑
i=0

∑

L(u)=2i

O(n(u)).

Since
∑

L(u)=2i O(n(u)) = n, the total amount of communi-

cation is bounded by O(n log L) = O(n log n). ¤

5.2 Query algorithm
For a query range R, we call a node u of the quadtree a

canonical piece if B(u) is entirely inside R but B(p(u)) is
not inside R. The algorithm for answering the query is as
follows:

• Send a message from the source to the query range;

• Visit all the canonical pieces;

• For each canonical piece, traverse the subtree to report
all the hot sensors.

The following theorem bounds the cost of the reporting
query.

Theorem 5.3. The cost of the reporting query (q, R, [T,∞))

is O(D +
√

Ak + P log P), where k is the number of sensors
in the answer, D is the length of the shortest path from the
source to the query range R, and P and A are, respectively,
the area and perimeter of R.

Proof. Let a, b denote the side lengths of the query rect-
angle. Suppose that R is represented by the union of a set C
of disjoint canonical pieces in the quadtree. For any u ∈ C,
we denote by L(u) the side length of B(u) and k(u) the
number of hot sensors inside B(u). We bound the cost of
visiting all the canonical pieces and the recursive traversal
inside each canonical piece separately.

For each canonical piece, we need to visit only one sensor
inside its range. We can visit the canonical pieces in a spiral
order as shown in Figure 3. Since the largest canonical piece
has perimeter no more than 4 min(a, b), and there are at
most log(min(a, b)) different sizes of canonical pieces, the
cost of visiting all the canonical pieces is

∑
u∈C

L(u) =

log(min(a,b))∑
i=0

∑

u∈C,L(u)=2i

L(u).

One observation is that the canonical pieces with size L(u) =
1 must be adjacent to the boundary of the query range. If a
canonical piece with size 1 is of distance at least 1 away from
the boundary, then it should be able to merge with its neigh-
bors to form a larger canonical piece, thus violating the def-
inition of canonical pieces. Therefore

∑
u∈C,L(u)=1 L(u) ≤

2(a+b). Recursively we know
∑

u∈C,L(u)=2i L(u) ≤ 2(a+b).

Thus the cost of visiting all the canonical pieces is O((a +
b)(log(min(a, b)) + 1)).

To bound the communication cost of traversing the canon-
ical pieces, we first prove a lemma.

Lemma 5.4. The communication cost of traversing the sub-
tree Tu of a canonical piece u is O(L(u)

√
k(u)), if the side

length of B(u) is L(u) and the number of hot sensors in
B(u) is k(u).

(a) (b)

Figure 3. (a) Query range and canonical pieces; (b) Visit all
the canonical pieces in a spiral order.

Proof. We traverse the quadtree tree Tu as follows. If
the maximum temperature saved at the current quadtree
node x is lower than the threshold, we stop. Otherwise,
we visit each child of x recursively. Assume y is a child
quadtree node of x. Since the maximum temperature of
quadtree node x is stored in any sensor in B(p(x)), where
p(x) is the parent node of x, obtaining the maximum tem-
perature of node y requires a cost of walking from a sensor
in B(p(x)) to a sensor B(x). Therefore we can bound the
cost of going from a quadtree node x to y by O(L(u)/2i),
if x is i hops away from the root u in the logical quadtree.
In other words, we define the weight of the quadtree edge
from x to its children to be O(L(u)/2i). What remains is to
bound the total weight of the quadtree edges that have to
be traversed.

During the traversal of the tree, only the edges that are
on the paths from hot sensors to the root are visited. We
prune the tree Tu at the nodes with log(

√
k(u)) hops away

from u. We bound the weight of the traversed edges close
to the root and the weight of the traversed edges far away
from the root separately. Firstly, there are at most 4i edges
that are exactly i hops away from the root u, and their
total weight is 4i · O(L(u)/2i) = O(L(u)2i). So the to-

tal weight of the traversed edges within log(
√

k(u)) hops
from the root u is bounded by the total weight of all the
edges within log(

√
k(u)) hops from u, which is no more

than O(L(u)
√

k(u)). On the other hand, for the part of

the tree with more than log(
√

k(u)) hops away from the
root u, the traversed edges are on at most k(u) paths, each

with total weight O(L(u)/
√

k(u)). Therefore, the weight
of the edges far away from the root can be bounded by
k(u) · O(L(u)/

√
k(u)) = O(L(u)

√
k(u)). Thus the total

communication cost is bounded by O(L(u)
√

k(u)). ¤

By Lemma 5.4, the cost of traversing all the canonical
pieces is

∑
u∈C

L(u)
√

k(u),

where
∑

u∈C L(u)2 = ab,
∑

u∈C k(u) = k. By the Cauchy-
Schwartz inequality,

∑
u∈C L(u)

√
k(u) ≤

√∑
u∈C L(u)2

∑
u∈C(

√
k(u))2

=
√

abk.

Therefore the total cost of the query is O(D +
√

abk + (a +

b)(log(min(a, b)) + 1)) = O(D +
√

Ak + P log P). ¤

Clearly, the bound of the above algorithm applies to count-
ing and isometric contour problems as well. However, in
the above method, it is wasteful to traverse the whole “hot
area” if what we care is just the number of hot nodes or the
boundary of the hot area. Indeed, by slight modification of
the above algorithm, we can obtain algorithms with query
cost bounded by the number of hot nodes on the boundary
rather than the number of hot nodes. For any given T , con-
sider the nodes with reading at least T , and the unit-disk
graph GT spanned by those hot nodes. Each “hot island”
is then a connected component of GT . A node is on the
boundary of a hot island if it is adjacent to some “cold”
node, a node with temperature reading lower than T . The
perimeter of a hot area is then the number of nodes on the
boundary of the hot areas. In what follows, we show that
for counting and isometric contour problems, the query cost
of a slightly changed algorithm is only dependent on the
perimeter of the hot area. Of course, in the worst case, the
number of boundary nodes can be in the same order as the
number of hot nodes. This happens when the hot area con-
sists of many isolated small “islands”, or when it is thin and
long. However, for many scalar fields we encounter in prac-
tice, such as temperature field, we would expect that the
boundary usually contains much fewer nodes than the hot
area.

Corollary 5.5. The cost of the counting query (q, R, [T,∞))

is O(D +
√

As + P log P), where s is the number of sensors
on the boundary of the set of sensors within R with tem-
perature above T , D is the shortest path from the source to
the query range R, and P and A are, respectively, the area
and perimeter of R.

Proof. We save for a quadtree node u the number of sen-
sors inside B(u), as well as the maximum and minimum tem-
perature. The only difference in the proof is in Lemma 5.4.
We just need to count the hot sensors. When we traverse a
tree Tu of a canonical piece u, if the current node x has a
minimum temperature above the threshold, we output the
number of sensors in B(x) and don’t recurse. We call such a
node x a maximal node, because p(x) must have a minimum
temperature higher than T . So by the same argument as in
Lemma 5.4, the communication cost of traversing the sub-
tree Tu is therefore O(L(u)

√
s(u)), where s(u) is number of

maximal quadtree nodes inside B(u). Since the temperature
field is continuous, the collection of points with temperature
beyond T are composed of a collection of regions correspond-
ing to the maximal quadtree nodes. We also observed that

∑
u∈C

s(u) = O(s),

where s is the perimeter of the hot regions inside the range.
So by the same argument in Theorem 5.3, the total cost of
the counting query is bounded by O(D+

√
As+P log P). ¤

To answer the isometric contour query, we assume that
the temperature field is approximated by interpolating the
sample readings of the sensors in any standard way. For
example, we construct a triangulation of the sensors. The
temperature field within a triangle is calculated by interpo-
lating the temperatures of its three vertices. For an isomet-
ric contour query (q, R, T), we denote by c the number of
triangles intersected by the isometric contour inside R.

Corollary 5.6. The cost of the query (q, R, T) reporting
the isometric contour of temperature T inside R is O(D +√

Ac + P log P), where c is the number of triangles inter-
sected by the isometric contour inside R, D is the shortest
path from the source to the query range R, and P and A
are, respectively, the area and perimeter of R.

Proof. The same as the proof of Corollary 5.5. ¤

6. DISCUSSION
In this section, we discuss several variants of our algo-

rithm. We also compare it with other schemes.

6.1 Reducing the counting cost
As shown in Theorem 4.1 and 5.3, our algorithm for vis-

iting all the sensors almost matches the best possible lower
bound when we require each sensor not to store too much
information. However, for the counting problem, our al-
gorithm has a multiplicative factor of

√
k compared to the

lower bound. The reason is that at each quadtree node,
we store only the maximum of all the sensor values in the
quadtree cell. Under such a scheme, we have to traverse
to reach all the “hot” sensors (or “hot” areas) before we
are sure how many hot sensors are contained in a quadtree
cell. If we are able to improve the counting query for each
quadtree cell u more efficiently, say in O(L(u)) steps, we can
then improve our bound for counting to close to the lower
bound.

Here, we sketch two ways to accomplish this goal. One
method applies to the situation when there are not many
different sensor values. In this case, we can use a distributed
hash table to forward each sensor value to a particular sen-
sor and then compute the number of sensors with sensor
value above each possible value. Then, for each query, we
simply direct the query to the sensor according to the hash
value of the query. This suggests the approach in [15]. The
other method applies when the sensor values are in an un-
known range or with high accuracy. In this case, we sort
the sensor values and store them on the sensors. The sort-
ing can be done by using the distributed sorting algorithm
on meshes [14] by taking advantage of the uniform distribu-
tion of the sensors. Then the query can be done by a binary
search on the mesh. In both methods, we can achieve O(L)
query steps for a cell with side length L. This way, we can
improve the counting cost to O(D + P log P), independent
of k. This bound is close to the lower bound when the query
range has small aspect ratio, in which case P is close to

√
A.

6.2 Answering temperature range queries
The storage scheme described in Subsection 5.1, where

each quadtree node keeps the maximum/minimum temper-
ature among its sensors, can be used to answer reporting
queries for the “hot” sensors with temperature above T (or
symmetrically, the “cold” sensors with temperature below
T) with a total cost matching the lower bound. We no-
tice that this is not true for either reporting or counting
sensors within temperature range [T1, T2]. If we only keep
the maximum/minimum temperature of the sensors on each
quadtree node, it is possible that a quadtree node has a
very high maximum temperature and a very low minimum
temperature but no sensors inside the quadtree node fall in
the temperature range [T1, T2]. This problem arises due to
the discrete sampling and sparse deployment of the sensors.

In fact, for range searching in continuous temperature field,
if the temperature range of a quadtree node overlaps the
query range [T1, T2], the query is not empty and therefore
the cost of the traversal of the quadtree node can be justi-
fied accordingly. This is no longer true for a discrete sensor
field. Therefore, to answer queries on temperature ranges we
should have each quadtree node store a summarized distri-
bution of its sensor readings such that more effective pruning
can be made during the traversal of the quadtree.

6.3 Reducing the storage
The algorithm we described requires O(log n) values stored

at each sensor or O(n log n) storage overall. This is because
each sensor stores O(log n) maximum values, one for each
quadtree cell it is in. The advantage of such a scheme is that
it avoids assigning a leader to each quadtree cell and forcing
each query to communicate with the leader. This way, we
can achieve better fault tolerance and load balance, and sim-
plicity of the query algorithm. However, in the cases when
the memory or storage size on a sensor is a more impor-
tant factor, we may switch back to the scheme that assigns
leaders to each quadtree cell, i.e., for a quadtree node u, we
save the maximum temperature t(u) at the centers of itself
and its sibling quadtree nodes. See Figure 4 for an exam-
ple. This is done in the same way as the geographic hash

Figure 4. Memory efficient storage scheme: the maximum tem-
perature of the pink quadtree node is hashed to the centers of
itself and its sibling quadtree nodes.

table (GHT) [21], except that the hashed locations are not
random. Routing to the locations of the leaders from an ar-
bitrary sensor could be done by geographic routing since the
locations can be calculated from the quadtree node they rep-
resent. Since the value t(u) is stored in a constant number
of sensors, the total storage necessary is O(n). On average
each sensor stores only O(1) values. The query cost in the
memory efficient model is still bounded by Theorem 5.3.

6.4 Pruning the query range
The cost of a range search query, as bounded in Theo-

rem 5.3, is the worst case cost. In fact, as the source q sends
out a message toward the query range by geographic for-
warding, the intermediate sensors on the routing path can
start to try to prune the query range based on the values
stored on them. For example, if the maximum value t(u)
of a quadtree cell u stored at sensor p is below the query
threshold T , and B(u) covers the query range R completely,
then there cannot be any hot sensors inside R. Sensor p
can thus answer the query by responding a message of “no
hot sensors” to the source q. If B(u) covers only part of
the query range, then B(u)

⋂
R can be chopped off, and the

Flooding Global Warehouses Fractional Cascading
Max storage O(1) O(n) O(log n)

Query cost D + A O(
√

n/w) D + O(
√

Ak + P log P)
Update cost O(1) O(wn

√
n) O(n log n)

Figure 5. Comparison of the performance of three information storage/retrieval schemes: flooding, global warehouses and fractionally
cascaded information.

query range is reduced to R \ B(u). Such pruning of the
query range can continue until the (updated) query range is
reached. Since the sensors closer to the query range R have
more detailed information about R, we can imagine that
as the query gets closer and closer to the query range, the
pruning becomes more and more effective. Although such
heuristics will not improve the worst case performance, as
shown by our lower bound results, it may help reduce the
query cost on average.

6.5 Handling dynamic updates
In all the previous discussion, we did not mention how

dynamic updates are done. Since the sensor values are con-
stantly changing, it is important for the information aggre-
gation algorithm to deal with such changes efficiently. In
our algorithm, when the value of a sensor changes, we need
to propagate the change up the quadtree. The propagation
stops when the maximum value of a quadtree node no longer
changes. In the worst case, the update can go up all the way
to the root. However, we expect the overall amortized cost
to be low. In our original scheme, the change of a maximum
value needs to propagate to all the sensors in the quadtree
node and its siblings. It may take some time for the propa-
gation to finish before a new query arrives. One solution is
to associate a time stamp with each maximum value stored
in each sensor. When a query reaches a sensor, if the time
stamp indicates the value is out of date, then the query will
be routed toward the leaders of the quadtree node until a
“fresh” value is encountered.

6.6 Comparison
In Section 3, we informally described the performance of

the flooding and global warehouse methods. Here, we pro-
vide a quantitative comparison between the fractional cas-
cading approach with those two methods in terms of storage,
query cost and the total amount of information propagated
per update. Assume the query range has area A and perime-
ter P , and k is the number of hot sensors inside the query
range R.

Flooding. The source q sends a message to the query region
and floods all the sensors inside the query region to collect
the answer.

Global warehouses.In this setting w sensors are selected
to save the information about the temperature readings of
all the sensors. For example, each of the warehouses saves
a complete quadtree structure. The best way to place the
global warehouses is to put them uniformly so that any sen-
sor has a warehouse within distance O(L/

√
w), if the sensors

are located in a box of side length L, L ∼ √
n. Notice that

there’s no aggregation during the transmission of informa-
tion to the warehouses. Each sensor sends O(1) bits of in-
formation to every warehouse. When the sensors have new
readings, the total amount of information transferred during

an update scheme is O(Lnw) = O(wn
√

n) in the worst case.
Figure 5 summarizes the maximum storage, query cost,

and update cost for these three methods. We can see that
the flooding method works better when the query range is
small, while the warehouse method provides better worst
case complexity with an appropriately chosen w. Our method
uses much less storage compared with the global warehouse
method. Compared with the flooding method, our method
is less dependent on the query range size.

7. CONCLUSION
In this paper, we proposed a quadtree based algorithm

for fractionally cascading information in sensor networks.
Our method allows efficient range query in sensor networks.
We provide rigorous analysis of the performance of our al-
gorithm and show that it is close to the optimum under a
reasonable cost model.

This paper studied the worst-case performance bound of
the aggregation and query scheme in a sensor network. It
will be interesting future work to study the average case
performance bound or probabilistic performance.

Acknowledgements: Research by Jie Gao and Leonidas
Guibas was supported by the NSF grant CCR-0204486, the
DARPA Sensor Information Technology Program under con-
tract F30602-00-C-0139, ONR MURI grant N00014-02-1-
0720, and a grant from the Stanford Networking Research
Center. Jie Gao is also supported by an IBM Ph.D. fellow-
ship.

8. REFERENCES
[1] P. K. Agarwal. Range searching. In J. E. Goodman

and J. O’Rourke, editors, Handbook of Discrete and
Computational Geometry, chapter 31, pages 575–598.
CRC Press LLC, Boca Raton, FL, 1997.

[2] B. Chazelle and L. J. Guibas. Fractional cascading: I.
A data structuring technique. Algorithmica,
1(3):133–162, 1986.

[3] B. Chazelle and L. J. Guibas. Fractional cascading: II.
Applications. Algorithmica, 1:163–191, 1986.

[4] F. Dehne, A. Ferreira, and A. Rau-Chaplin. Parallel
fractional cascading on hypercube multiprocessors.
Comput. Geom. Theory Appl., 2(3):141–167, 1992.

[5] L. Doherty, B. Warneke, B. Boser, and K. Pister.
Energy and performance considerations for smart
dust. In International Journal of Parallel Distributed
Systems and Networks, pages 121–133, 2001.

[6] A. Faradjian, J. E. Gehrke, and P. Bonnet. GADT: A
Probability Space ADT for Representing and
Querying the Physical World. In Proceedings of the
18th International Conference on Data Engineering
(ICDE 2002), San Jose, California, February 2002.

[7] D. Ganesan, B. Greenstein, D. Perelyubskiy,
D. Estrin, and J. Heideman. An implementation of

multi-resolution search and storage in
resource-constrained sensor networks. In Proceedings
of the First ACM Conference on Embedded Networked
Sensor Systems (SenSys 2003), 2003.

[8] R. Govindan, J. Hellerstein, W. Hong, S. Madden,
M. Franklin, and S. Shenker. The sensor network as a
database. Technical Report CS-02-771, University of
Southern California, 2002.

[9] B. Greenstein, D. Estrin, R. Govindan, S. Ratnasamy,
and S. Shenker. DIFS: A distributed index for features
in sensor networks. In Proceedings of First IEEE
International Workshop on Sensor Network Protocols
and Applications, Anchorage, Alaska, May 2003.

[10] IEEE. Draft standard for part 15.4: Wireless medium
access control and physical layer specifications for low
rate wireless personal area networks (lr-wpans). 2002.

[11] C. Intanagonwiwat, R. Govindan, and D. Estrin.
Directed diffusion: a scalable and robust
communication paradigm for sensor networks. In
ACM Conf. on Mobile Computing and Networking
(MobiCom), pages 56–67, 2000.

[12] B. Karp and H. T. Kung. GPSR: greedy perimeter
stateless routing for wireless networks. In Proc. 6th
Annual ACM Mobile Computing and Networking
(MobiCom ’00), pages 243–254, 2000.

[13] D. Kempe, J. M. Kleinberg, and A. J. Demers. Spatial
gossip and resource location protocols. In ACM
Symposium on Theory of Computing, pages 163–172,
2001.

[14] T. Leighton. Parallel Algorithms and Architectures.
Morgan Kaufmann, 1992.

[15] X. Li, Y.-J. Kim, R. Govindan, and W. Hong.
Multi-dimensional range queries in sensor networks. In
Proceedings of the First ACM Conference on
Embedded Networked Sensor Systems (SenSys 2003),
2003.

[16] S. Madden, M. Franklin, J. Hellerstein, and W. Hong.
TAG: A Tiny AGgregation Service for Ad-Hoc Sesnor
Networks. In Proceedings of the Fifth Symposium on
Operating Systems Design and Implementation (OSDI
2002), Boston, Massachusetts, December 2002.

[17] S. Madden, M. J. Franklin, J. M. Hellerstein, and
W. Hong. TAG: a tiny aggregation service for ad-hoc
sensor networks. ACM SIGOPS Operating Systems
Review, 36(SI):131–146, 2002.

[18] S. Madden, M. J. Franklin, J. M. Hellerstein, and
W. Hong. The design of an acquisitional query
processor for sensor networks. In Proceedings of the
2003 ACM SIGMOD international conference on on
Management of data, pages 491–502. ACM Press,
2003.

[19] K. Mehlhorn and S. Näher. Dynamic fractional
cascading. Algorithmica, 5:215–241, 1990.

[20] G. Pei, M. Gerla, and T.-W. Chen. Fisheye state
routing in mobile ad hoc networks. In ICDCS
Workshop on Wireless Networks and Mobile
Computing, pages D71–D78, 2000.

[21] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin,
R. Govindan, and S. Shenker. GHT: A geographic
hash table for data-centric storage in sensornets, 2002.

[22] R. Tamassia and J. S. Vitter. Optimal cooperative
search in fractional cascaded data structures.
Algorithmica, 15(2), 1996.

[23] W. Ye, J. Heidemann, and D. Estrin. An
energy-efficient MAC protocol for wireless sensor
networks. In Proc. 21st Int. Ann. Joint Conf. IEEE
Comput. Comm. Soc. (INFOCOM), pages 3–12, 2002.

