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Abstract— We present Gradient Landmark-Based Distributed
Routing (GLIDER), a novel naming/addressing scheme and as-
sociated routing algorithm, for a network of wireless communi-
cating nodes. We assume that the nodes are fixed (though their
geographic locations are not necessarily known), and that each
node can communicate wirelessly with some of its geographic
neighbors—a common scenario in sensor networks. We develop
a protocol which in a preprocessing phase discovers the global
topology of the sensor field and, as a byproduct, partitions the
nodes into routable tiles—regions where the node placement is
sufficiently dense and regular that local greedy methods can work
well. Such global topology includes not just connectivity but also
higher order topological features, such as the presence of holes.
We address each node by the name of the tile containing it and a
set of local coordinates derived from connectivity graph distances
between the node and certain landmark nodes associated with
its own and neighboring tiles. We use the tile adjacency graph
for global route planning and the local coordinates for realizing
actual inter- and intra-tile routes. We show that efficient load-
balanced global routing can be implemented quite simply using
such a scheme.

Keywords: Graph theory, System Design, Combinatorics, Al-
gebraic Topology, Topology Discovery, Landmark Routing

I. BACKGROUND

Techniques for routing information are central to all com-
munication networks. Routing algorithms are intimately cou-
pled to the way that nodes in the network are addressed
or named. Such algorithms fall somewhere in the spectrum
from proactive to reactive [15], according to the extent of
precomputation done to facilitate route discovery. In stable
networks with powerful nodes, such as the Internet, routing
tables in special router nodes are proactively maintained and
take advantage of the hierarchical structure of IP addresses
to enable route discovery. At the other end, in ad hoc sensor
and communication networks, where topology changes are fre-
quent and node hardware less powerful, reactive protocols that
discover a route on-demand become desirable. Unfortunately,
in the absence of auxiliary data structures, reactive protocols
such as AODV [12] or DSR [8], may resort to flooding the
network in order to discover the desired route.

In this paper we are primarily interested in routing on
wireless sensor networks. Such networks are often deployed
in settings where the nodes operate untethered; thus power
conservation becomes a serious concern and flooding is un-
desirable. Early uses of sensor networks were primarily data
collection applications, requiring the one-time construction of
aggregation or broadcast trees. As the sophistication of sensor

network applications increases, however, there is more de-
mand for point-to-point routing of information to support data
centric storage [14] and more complex database-like queries
and operations. Examples include multi-resolution storage,
range searching, and the like. A survey of networking and
data storage techniques for sensor networks is given in [20].
While the fragile link structure and meager node hardware of
sensor networks suggests the use of reactive routing protocols,
the energy overhead of flooding for route discovery can be
significant and needs to be mitigated whenever possible.

One such situation is when the geographic locations of
sensor nodes are known. In that case, greedy geographical
routing protocols can be used in which a packet starts at
the source node and is then successively relayed through
other nodes to its destination with as few intermediate states
as possible. At each step, the node currently holding the
packet simply forwards it to the node, among its one-hop
communication neighbors, which is closest to the destination.
Various meanings of ‘closest’ are possible. The presence of
holes in the sensor field can cause these greedy methods to
get stuck in local minima; however, a variety of methods
have been proposed for overcoming this difficulty and guar-
anteeing packet delivery, if at all possible. Probably the best
known among these, GPSR [9] builds a planar subgraph of
the connectivity graph and uses perimeter forwarding when
greedy forwarding gets stuck. The beauty of these geographic
forwarding methods is that they compute routes that are often
close to the best possible, and do so with very little overhead
in maintaining auxiliary routing structures. Effectively the
location of a node becomes its name or address, and each node
needs only to know the locations of its neighbors and that of
the destination in order to decide how to forward a packet.
Euclidean coordinates encode the global state and hence such
algorithms can operate effectively using information which is
purely local.

Although geographical location gives the nodes natural
names and enables efficient routing, it is in many cases difficult
or expensive to obtain accurately. GPS receivers can be costly
and lead to cumbersome node form factors; furthermore,
they do not work indoors, or under heavy foliage, etc. As
a consequence, in most settings, it is only feasible to have
a few nodes equipped with a GPS receiver. Various localiza-
tion algorithms have been developed [16], [17] and must be
invoked to localize the rest of the nodes. In these methods,
the geographic location of a set of anchor nodes is assumed
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Fig. 1. Landmarks are shown by triangles. Sensor nodes are shown as small circles. The nodes are divided into tiles. The dark nodes are the boundaries of
the tiles. (i) The landmark Voronoi complex; (ii) The combinatorial Delaunay triangulation.

to be known, either manually or through GPS. Other nodes
determine their location by estimating their distances to three
or more of these anchors and then become anchors themselves;
and so on. However, such localization algorithms are still quite
expensive in terms of computation or communication, and
often insufficiently accurate. Unfortunately, these inaccuracies
can have deleterious effects on routing algorithms based on
location information [18].

The idea of geographic forwarding is so compelling that a
number of authors have tried to use geographic coordinates
even when actual node locations are not available. The idea is
to produce virtual node coordinates on which to use protocols
such as GPSR. These are obtained by embedding the link
connectivity graph of the nodes in the plane [10], [11], [13]
so that nodes that can communicate directly are embedded
near each other and those that do not are further away.
Unfortunately such global embeddings can be time-consuming
to compute and may not reflect well the actual geometry of the
node layout. For example, in the presence of communication
obstacles (such as walls), nodes that are geographically close
may actually be distant in the communication graph. Also,
when the actual node deployment is in 3-D, as in monitoring
buildings, forcing a 2-D layout will cause large distortions with
the consequence that the planarization required by GPSR and
related protocols will necessarily ignore much of the actual
connectivity present.

II. TOPOLOGY-ENABLED ROUTING

We present a novel routing scheme, named GLIDER, that,
like the virtual coordinate schemes above, depends only on

node connectivity and not on any knowledge of node posi-
tions. The key idea is to divide the problem into a global
preprocessing step and a local routing problem (for which
we present a specific solution). In the preprocessing step we
discover the global topology of the sensor field. This gives
us information about connected components and holes in the
sensor field layout. In the process we partition the field into
tiles. We regard these as having trivial topology, so that greedy
forwarding methods based on local coordinates are likely to
work well within each tile.

Our intuition is that, in many of the real-world situations
where sensor networks may be deployed, the topological
features of the layout (e.g. holes) will be few and will mostly
reflect the underlying structure of the environment (e.g. obsta-
cles). Moreover, this relatively simple global topology is likely
to remain stable: nodes may come and go, but such changes are
unlikely to destroy or create large-scale topological features. It
follows, if the global topology is stable, that we can afford to
carry out proactive routing at an abstract combinatorial level.
These high-level routes can then be realized as actual paths in
the network by using reactive protocols.

For example, the node distribution shown in Figure 1 has
a large hole in the middle. If two nodes are situated on
opposite sides of the hole, there are two ways of reaching
one node from the other: clockwise and counter-clockwise
around the hole. This is a fopological statement. Having made
the topological decision whether to go clockwise or counter-
clockwise, we can use local decisions to select the specific
path on a node-by-node basis. In this way, we have broken
the routing problem into two phases: a global planning phase,



in which the combinatorial structure of the path is determined
using global information; and a local phase, in which the
combinatorial path is implemented as an actual sequence of
hops, selected using local greedy methods.

For this second phase, we define sets of local coordinates
that depend only on the link connectivity of the nodes.
Gradient descent on these coordinates will naturally follow
local geodesics of the layout. However, our procedure is
less sensitive to sensor geometry than is classical geographic
routing. For example, suppose we have a collection of sensors
densely deployed in two big rooms connected by a long narrow
corridor, as shown in Figure 2. The geometry of the sensor
field is curved, so greedy geographic routing between the
rooms will almost certainly fail if it is based directly on the
coordinate system implied by the diagram. On the other hand,
the topology of this sensor field is fundamentally the same as
the topology of an array of sensors deployed densely inside
a convex shape such as a disk. Our global-local scheme will
thread the route through the corridor without difficulty. This
works because we limit the local greedy processes to certain
regions (the tiles) whose topological structure is known to
be sufficiently nice. Our knowledge of the global network
topology allows our routing scheme to avoid some of the more
common pitfalls and limitations of current global coordinate-
based schemes; such as the limitation to two dimensions, or the
need to construct a planar graph to bypass local minima [9],
[1], or the explicit discovery of holes [5].
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Fig. 2. A narrow corridor connects two rooms. GLIDER discovers
a route that goes through the corridor, following naturally defined
gradients.

Both phases of our algorithm—global topology discovery
and local coordinates—are based on the selection of an ap-
propriate subset of the nodes designated as landmarks. We
use combinatorial Voronoi/Delaunay techniques to extract a
topological complex whose vertices are the landmarks and
whose topology captures the topology of the underlying sensor
field. At the same time, we generate a set of local coordinates

for each node which are derived from the node’s link distances
to nearby landmarks. These coordinates are easy to generate
since they depend only on local information—we make no
attempt to provide a global geometric embedding for the entire
network.

The idea of using landmarks for routing is of course not
new to the networking community. Tsuchiya [19] proposed
a hierarchical landmark-based scheme for generating node
names or addresses. Our use of landmarks for addressing
and route generation is quite different—we use landmarks to
partition the sensor field into geographically routable tiles.
Recently, we became aware of another paper currently under
review that uses distances to landmarks as coordinates [7]
and provides extensive simulation results. Our work differs
in that we do not use all the landmarks to provide coordinates
for all the nodes. It follows that our scheme scales better
to large networks. Moreover, we have a different method
for generating the virtual local coordinate systems, which is
guaranteed to route correctly in the continuous domain and
which empirically works well in practice.

In a quite different subject area, nonlinear dimensionality
reduction (NLDR), landmarking techniques were introduced
in [4] to simplify expensive calculations by using a sparse
approximate representation of the global geometry of a data
set. The goal in NLDR is to find explicit low-dimensional
coordinates for viewing high-dimensional nonlinear data. The
local landmark coordinates used by GLIDER are closely related
to the coordinate embedding functions derived in [4].

As an aside, it is somewhat unfortunate that the current
usage of the term topology discovery in the networking com-
munity refers only to the discovery of local link relationships
between nodes and to the lowest-order topological invariant,
namely path connectivity. Our use of the term topology dis-
covery in this paper refers more broadly to an understanding of
the global topology of the sensor field in the sense of algebraic
topology; for example, we consider higher order topological
features such as holes in 2-D, tunnels and voids in 3-D, and
SO on.

We note that in traditional algebraic topology the objects
of study are continuous spaces rather than discrete collections
of points or nodes. That being so, when we talk about the
topology of a finite set of points sampled from an underlying
object, we really mean the topology of the underlying object
itself. To recover this from the points alone, we can concep-
tually transform the discrete cloud of points into a continuous
space by putting a small ball around each point, making
sure that the balls associated to nearby points have sufficient
overlap. From this one can build discrete structures, namely
simplicial complexes, that provably capture the topology of
the underlying continuous object [2] under mild conditions.
The same idea can be applied to the task of understanding the
topology of a field of communication nodes. However, the lack
of positional information, the need to minimize computational
costs, and the desire to perform topology estimation in a
distributed way, all make the network case more challenging.



III. OVERVIEW OF GLIDER

As mentioned earlier, our scheme for route discovery and
node naming/addressing is based purely on link connectivity
information, and it works by separating the global topology
and the local connectivity. Formally, suppose that G = (V, E)
is a communication graph on the sensor nodes V. The edges F
are unweighted: they identify which pairs of nodes have direct
communication but not the geometric distance between those
nodes. The graph distance between two nodes is simply the
number of edges (or hop count) in the shortest path between
them.

Given the graph G, we assign a name to each node in V.
We also construct an auxiliary atlas M (G) which is shared by
all the nodes. A local name-based route discovery scheme is a
relay scheme which functions as follows. For any destination v
specified by name, and for any node u, the scheme specifies a
successor node chosen from the neighbors of u. By jumping
repeatedly from node to successor, the destination v is even-
tually reached. The choice of successor depends only on the
names of v, v and the neighbors of u, and on the auxiliary
atlas M.

An alternative view is that the communication graph G is
decomposed into two parts: the common auxiliary atlas M
which encodes global connectivity information that is ac-
cessible to each node, and the node names which encode
node specific information stored distributedly in each node.
In a trivial way, one can simply let M equal G or (in the
other extreme) arrange for each name to encode the entire
communication graph and the position of the node. Our goal is
to reduce the size of M and the length of names by exploiting
the fact that G is a communication graph of sensors deployed
within some geometric space.

To compute the auxiliary atlas M, we estimate the global
topology of the sensor field by partitioning the nodes into
routable tiles and extracting the adjacency relations between
these tiles. The goal is for each routable tile to have trivial
topology, so that simple greedy routing will work well within
the tile. Meanwhile, the global connectivity structure of the
set of tiles provides a compact high-level atlas of the sensor
field. Our particular partition is defined by selecting a small
set of well-dispersed nodes to be landmarks, and letting the
tiles be the Voronoi cells of the landmarks, where the Voronoi
cell of a landmark u is the set of nodes whose nearest
landmark is u (in the hop-count metric). Ties are permitted,
so a node may belong to more than one tile. The cell complex
associated to such a partition is called the landmark Voronoi
complex (LVC). The dual complex of the LVC has been called
the combinatorial Delaunay triangulation (CDT) [3]. It is
this which serves as our auxiliary atlas M. The details of
constructing LVC and CDT are described in Section IV.

The name of each node consists of two parts: the global
tile name and the local landmark coordinates. The global
tile name of a node is simply the identity (unique ID) of its
closest landmark; this identifies the tile containing the node.
(If the node belongs to more than one tile, one can be chosen

arbitrarily.) The local landmark coordinates are derived from
the set of distances from the node to its nearby landmarks.
Specifically, we use ‘centered squared-distance coordinates,’
which we describe in Section V. It turns out that gradient
descent on the Euclidean distance function in these coordinates
gives an effective greedy routing algorithm. More precisely,
in the continuous domain we can prove under mild conditions
that this algorithm always succeeds. In the discrete case, our
experiments show that this scheme has high success rate even
for sparse sensor deployment. In Section V, we describe the
local landmark coordinate system in detail.

In summary, the preprocessing phase discovers the global
topology by building the landmark Voronoi complex, and
constructs the local coordinate system for each tile. Every node
is given a name reflecting these components; and every node
has knowledge of the combinatorial Delaunay triangulation,
which captures the global topology of the sensor field in a
compact lightweight structure. When a node is presented with
a routing request, it first calculates from the combinatorial
Delaunay triangulation a sequence of tiles for the routing path.
Then, to select the next node in the route, the node uses greedy
gradient descent towards the next tile in the path, or towards
the final destination (if the final tile has been reached). The
details are given in Section VII-B.

The success of our approach depends on making a reason-
able choice for the set of landmarks. We discuss this further
in Section IV-B. In many common situations we can expect
that the complexity of the topological features of our complex
will reflect the complexity of the topological features of the
environment in which the sensor nodes are deployed, such
as physical obstacles that prevent node placement. We expect
these to be large-scale features and few in number. As a
consequence, the number of landmark nodes needed will also
be small—as this number is proportional to the topological
complexity of the field. Thus the combinatorial Delaunay
complex is a small structure and it is reasonable to assume
that it can be stored at, or easily accessible from, every node.

IV. LANDMARK VORONOI COMPLEX (LVC)

For a set of nodes V and a communication graph G, the
landmark Voronoi complex captures the global topology of the
network using only the local link connectivity. We may assume
that G is connected, since we can otherwise just consider each
connected component separately. We denote by 7(u,v) the
topological length (hop count) of the shortest path between
u, v in the communication graph.

A. Definition

The landmark Voronoi and Delaunay complexes are the
natural extension of the geometric Voronoi diagram, and its
dual Delaunay triangulation, to the case of a graph with the
shortest-path metric. For a graph G = (V, E) and a subset
of landmarks L C V, define the Voronoi cell T'(v) of a node
v € L to be the set of nodes whose nearest landmark is v (ties
are allowed). See Figure 1(i). Formally:

Tw)={ueV |VYweL, m(u,v) <7(u,w)}



We note the following property of a Voronoi cell.

Lemma 1. For any node u € T(v), the shortest path from u to
v is completely contained in T (v).

Proof. 1If the lemma were false, there would exist w & T'(v)
on the shortest path from u to v. Since w ¢ T'(v), there exists
x € L such that 7(w, ) < 7(w,v). Thus, 7(u, z) < 7(u,w)+
T(w,z) < 7(u,w) + 7(w,v) = 7(u,v). This contradicts the
hypothesis that u € T'(v); so the lemma must be true. O

One implication of this lemma is that the spanning graph
on each Voronoi cell is connected. Thus, the Voronoi cells
of a set of landmarks provide a natural partitioning of the
sensor field into connected tiles. A stronger requirement is
that the tiles have trivial topology in all dimensions (not
just connectivity). When the sensor field has large holes,
we find that appropriately-chosen landmarks can effectively
fragment the sensor field into subsets with simple topology.
See Figure 1(i).

The Voronoi cells form the landmark Voronoi complex
(LVC). Following [3], we use a dual combinatorial Delaunay
triangulation (CDT) to record the adjacency relation between
Voronoi cells.! For our purposes, the combinatorial Delaunay
triangulation D(L) is a modified dual of the LVC, defined as
follows. Write w ~ w’ to mean that nodes w, w’ share an edge
in G or are the same node. Then the vertices vy, ..., v, span
a simplex in D(L) if and only if there exist nodes wy, ..., wy
such that w; € T'(v;) for all ¢ and w; ~ w; for all 7, j.

Under favorable conditions (a dense distribution of nodes,
reasonably simple topology, a small number of well-separated
landmarks) suitable variations of the LVC and CDT complexes
successfully capture the global topology of the communication
network [3]. These constructions give us the potential to detect
and exploit high-order topological characters of a sensor field.
Having said that, in this paper we are mainly interested in
the connectivity graph D(L) of the landmarks, i.e. the 1-
dimensional skeleton of CDT (Figure 1(ii)). The edge vy
belongs to D(L) iff there exist nodes wy,wy with wy ~ ws
and w; € T(v;) for i = 1,2. The nodes w; are referred to as
witnesses to the edge vivs.

For connectivity, we have the following easy result:

Theorem 2. If G is connected, then the combinatorial De-
launay graph D(L) for any subset of landmarks L is also
connected.

Proof. 'We must show that there is a path in D(L) between
any pair of landmarks w,v. Since G is connected, there is
certainly a path from u to v within G. Let us suppose this
path visits nodes wq, w1, ..., w, in sequence, where wy = u
and wi = v. Each node w; belongs to some Voronoi cell
T'(x;) where each x; € L. We may assume that o = wy = u
and z; = wg = v. We claim that the sequence zg, x1, ..., Tk
represents a valid path in D(L) from u to v. Specifically, for
each 0 < i < k, we claim that ; ~ x;41 in the graph D(L).

'Our definitions diverge slightly from the definitions in [3]. The problem
in both cases is to ensure that CDT maintains the connectivity of the original
graph; something that is not quite true with the natural definitions. We deal
with this in a different way than [3].

This is clear, since w;, w;41 are witnesses for the edge z;z;11
in the case that z; # x;41. O

The proof of Theorem 2 amounts to the stronger assertion
that every path in G can be ‘lifted’ to a path in D(L).
Conversely, every path in D(L) can be realized as a path in G.
This follows from the case of a single edge v1ve2 € D(L). Let
wi,we be witnesses for vive. For each ¢ the shortest path
from v; to w; lies entirely within T'(v;), by Lemma 1. We can
concatenate these paths to obtain a path vy ... wyws ... v2 in G
which lifts to the length-1 path vyvg in D(L).

These last assertions provide strong corroboration of one of
the main claims in this paper, which is that the CDT graph is
an appropriate simplification of the communication graph G
for determining a global routing strategy.

We summarize the main points of this section: For a set of
chosen landmark nodes, the Voronoi cells of the landmarks
provide a partitioning of the sensors. Each Voronoi cell is
connected and has ‘simple’ topology when the landmarks
are well-chosen. The combinatorial Delaunay triangulation
encodes adjacency information between Voronoi cells, and
provides a compact high-level atlas for the sensor field which
is suitable for global route-planning.

B. Landmark selection

While the definition and properties of LVC and CDT hold
for any subset of landmarks, careful selection of landmarks is
crucial for the effectiveness and efficiency of routing. Since
CDT serves as the auxiliary atlas provided to every node, it
should be as small as possible so that it can be replicated in
the network with minimal cost. On the other hand, we need
enough landmarks to ensure that each Voronoi cell has simple
(i.e. ‘hole-free’) topology. These are the two opposing goals.

The landmark selection problem bears some resemblance to
the sampling problem for mesh generation—we particularly
desire to have several landmarks lying close to topological
features, such as hole boundaries. Hand-picked landmarks
are one option, since in many cases the presence of holes
may be known a priori to those deploying the network. It
is also possible to automatically discover hole-boundaries [6],
or at any rate a few nodes on the boundary [13]. With such
information, we can arrange for nodes near the boundary to
be selected as landmarks with higher probability than interior
nodes. In general we expect the number of landmarks to be
proportional to the number of holes (or topological features) of
the sensor domain. We are usually interested in domains with
a small number of large holes, in which case the landmark set
and hence the CDT complex will be small enough to distribute
to the entire set of nodes.

V. LocAL LANDMARK COORDINATES

Under ideal circumstances with well-chosen landmarks, the
nodes in each cell of the landmark Voronoi complex will be
nicely distributed. By this we mean that the shortest-distance
metric in each tile approximates the metric in a finite sample
of a convex Euclidean region. One general strategy for routing
on such network is to supply a coordinate system to the nodes,



and then perform greedy routing by forwarding packets to
a neighbor which is closer to the destination according to
these coordinates. The use of the Euclidean coordinates of
the sensors is one natural choice but these coordinates may
be difficult or expensive to obtain. Here we propose a virtual
coordinate system which is easy to compute, is guaranteed to
be free of local minima in the continuous plane, and which in
practice works well in the discrete case. These are the local
landmark coordinates. We first describe these coordinates in
continuous Euclidean space, and then extend the definitions to
the discrete case.

A. Continuous version

It is easiest to understand our coordinate system (we will
define it shortly) in the continuous case. The goal is to
construct a set of coordinate functions depending only on
the distances to some fixed set of landmark points, in such a
way that gradient descent on the distance function to a target
point always reaches the target successfully. In other words,
the distance function should have no local minima other than
the global minimum.

Let {u;} be a set of k& landmarks in the plane. The natural
first guess is to assign to each point p the virtual coordinate
vector A(p) = (lp — wl,|p — uzl|,...,|p — ug|), where
|p — u;| is the Euclidean distance between p and wu,. The
virtual distance in this coordinate system between points p, g
is then d(p, g) = [A(p) — A(q)[* = X1 (Ip— | — g —ual)?.
Given a destination ¢, the greedy routing algorithm operates
by gradient descent on this function with respect to p.

There are simple examples with three landmarks which
show that this process can get stuck in local minima. One can
do slightly better with the squared-distance vector B(p) =
(Ip—u1|? |[p—u2l? ..., |p—wux|?). It can be shown that there
are no local minima when 3 < k£ < 9 and when the destination
is inside the landmark convex hull. When £ > 9 or when
the destination is outside the convex hull, there is no such
guarantee. Figure 3(i) shows an example where the gradient
flow can get trapped in a local minimum. For this reason
we introduce centered landmark-distance coordinates C(p).
The i-th coordinate is defined by [C(p)]; = [B(p)]: — B(p),
where B(p) is the mean of the entries of B(p). The modified
virtual-distance function is then d(p, q¢) = |C(p)—C(q)|*. The
advantage of this is made clear by the following lemma.

Lemma 3. In the continuous Euclidean plane, gradient descent
on the function p — d(p,q) always converges to the target q,
provided that there are at least three non-collinear landmarks.
Proof. We can explicitly evaluate

[B(p))i = IpI* = 2p - wi + |uil?,
and hence
[C(p)]i = —2p - (ui — 1) + w;,

where @ = £ 3~ u; and w; = u|* — £ 3 |uj|*.
The function p — C(p) is therefore an affine linear
transformation. Under the assumption that there are at least

three non-collinear landmarks, we now show that the map
is one-to-one. The idea is to find at least one point in the
plane which is determined uniquely by its coordinates, because
then (for an affine map) the same must be true for all points
in the plane. The circumcenter of any three non-collinear
landmarks is such a point, since it is uniquely determined
by the property that the corresponding three coordinates are
equal. This establishes that the map is one-to-one, in addition
to being affine linear. It follows that gradient of the distance
function is nowhere zero except at the destination itself. []

In k-dimensional Euclidean space, the minimum require-
ment is £+ 1 landmarks not contained in any k—1-dimensional
affine subspace. In other words, the affine span of the land-
marks must be the entire k-space.

We note that the straight line path to the target is a
descending trajectory for the distance function d. In general
it is not the path of steepest descent. Figure 3(ii) shows the
same configuration as in Figure 3(i), but with the distance to
target measured in the centered landmark-distance coordinates.
In that case there is no local minimum.

B. Discrete version

In a graph setting, the discrete version of the greedy
routing algorithm uses hop counts to the landmarks as a
replacement for Euclidean distances. In situations where the
nodes are densely distributed, the minimum number of hops to
a landmark is a fair approximation to the Euclidean distance
to that landmark.

For a set of landmarks {uy,us, ..., ux} and for any node p,
let 7(p,u;) denote the graph distance (i.e. the minimal hop
count) between p and u;. Let 7(p) = Zle 7(p,u;)?/k. We
then assign to p the centered virtual coordinate vector

C(p) = (r(p,w1)* = 7(p); - .., 7(p,ur)* — 7(p)) -

The centered virtual distance between two points p, ¢ is then
d(p,q) = |C(p) — C(q)|? just as in the continuous Euclidean
case. Given a destination ¢, our greedy routing algorithm
chooses the neighbor r of p which minimizes d(r,q). In
other words, we move packets by greedy minimization of
the Euclidean distance to the target, measured in the virtual
coordinate system. This algorithm is local and efficient since
only the virtual coordinates of the neighbor nodes are needed.

In the discrete version, we can no longer guarantee that
local minima do not exist. A packet may hit a node for
which all the neighbor nodes have virtual distances further
away from the destination. However, when the nodes are
dense enough, the shortest distance metric approximates the
Euclidean metric closely enough to reduce the chance of local
minima. Another cause of instability is the eccentricity of the
affine transformation in Lemma 3. When the landmarks are
nearly collinear—e.g. when 7(u,v) 4+ 7(v, w) & 7(u, w) with
three landmarks wu, v, w—the gradient field in the continuous
case is quite shallow in certain directions. This can be seen
quite clearly in Figure 3(ii). Under these circumstances the
discrete approximation is more likely to suffer from local
minima.
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Fig. 3. The distance function for landmark-based greedy routing. There are 3 landmarks marked by snowflakes. The destination is marked by a + sign. The
color of a point represents its distance to the destination with respect to (i) uncentered coordinates; (ii) centered coordinates. Note the local minimum in the

uncentered case.

Local landmark coordinates are only used for routing
between nodes in the same tile, so we can define these
coordinates in terms of a small set of nearby landmarks called
reference landmarks. Specifically, for the nodes in the Voronoi
cell T'(v) of a landmark v, the reference landmarks are v itself
and the neighbors of v in D(L). For technical reasons, when
we compute distances between each node and its reference
landmarks we do not use shortest paths within G; instead
we define a neighborhood distance metric as follows. For
each landmark v € L, its Voronoi neighborhood is defined
as U(v) = T(v) UU(y)ep(r) T'(w), ie. as the union of the
Voronoi cells of v and its neighbors. By Lemma 1, U(v) is
connected. For a landmark v and a node u € U(v), their
neighborhood distance is defined as the graph distance from
u to v measured in the subgraph spanned by U (v).

We refer to the resulting (centered squared neighborhood
distance) coordinates as local landmark coordinates.

VI. NAMING AND ROUTING

In this section, we describe the naming and routing scheme
in GLIDER by using the landmark Voronoi complex and local
landmark coordinates. We will describe our implementation of
the scheme in Section VII.

A. Naming of nodes

We distinguish the ID and the name of a node. The ID
of a node is a number or string that uniquely identifies a
node. It is usually assigned to each node before the network
is formed, e.g. when the nodes are manufactured. A node’s
name is assigned after preprocessing, and it depends on the
connectivity of the network and other information such as
the choice of landmarks. The name is used to distinguish
and address network nodes for the purpose of routing or
other higher-level applications such as information gathering.
Usually the node names need not be unique, provided that

ambiguity can be quickly resolved—e.g. if nodes with the
same name are within close vicinity.

In GLIDER, once the Voronoi complex is constructed, each
node belongs to a Voronoi cell. We call that cell the resident
tile of the node, and we call its landmark the home landmark.
The name of a node includes the ID of its home landmark. In
addition, each node includes the list of neighborhood distances
to its reference landmarks, as defined in Section V-B. For
a node v, let h(v) denote the name of its home landmark,
and A(v) its vector of neighborhood distances. As defined
earlier, the local landmark coordinate vector C'(v) is obtained
from A(v) by squaring and centering.

We note that witness nodes may belong to multiple Voronoi
cells. In that case the home landmark may be chosen by
breaking the tie in some arbitrary manner; for example, by
assigning a linear order to the landmark IDs and picking the
landmark with the smallest ID among the valid candidates. A
more serious problem in the discrete domain is that the local
landmark coordinates may not uniquely specify the node. In
practice this ambiguity happens rarely provided that each node
has several reference landmarks and enough neighbors. Even
when this ambiguity arises, nodes with the same coordinates
are likely to be close to each other, in which case a local
flooding can easily resolve the situation. We also comment
that, in typical data-centric applications built on sensor net-
works, it may be even less of a problem, since nearby nodes
often carry similar data, and may not need to be distinguished
if they are close enough.

B. Routing

Suppose that we wish to route from node w to node wv.
Routing in GLIDER consists of two stages: global routing and
local routing.

e Global routing. This amounts to identifying the shortest
path from h(u) to h(v) in CDT. It can be done by a look-up
in the precomputed shortest-path tree rooted at h(u). The path



provides a sequence of tiles for the journey; say 14,75, ..., Tk
where T; = T'(u;) for landmarks u;, with u1 = h(u), up =
h(v).

e Local routing. Local routing consists of inter-tile routing,
responsible for discovering path from tile 7; to 75,1, and intra-
tile routing, responsible for discovering the path towards v
once T}, is reached.

Intra-tile routing is done by gradient descent using the
local landmark coordinates. More specifically, once the packet
reaches a node w € T'(h(v)), it is relayed to a neighbor which
is closer to the landmark v in the Euclidean distance on the
local landmark coordinates. If such a node does not exist, i.e.
if a local minimum is reached, then the fail-safe option is to
initiate flooding within the tile.

Sk

Fig. 4. Routing across tiles.

According to the discussion in Section IV, for any p € T;
there exists a path from p to T}, in the Voronoi neighborhood
of u; 4. Inter-tile routing is responsible for discovering such
a path. Since 7; and T;,; are adjacent, p lies inside the
Voronoi neighborhood of u;,;. We can forward the packet
towards u;4; by picking a node which decreases the neigh-
borhood distance to u;. Eventually the packet must reach the
tile 7541, at which point we switch the temporary destination
to u;12; and so on until the packet reaches reaches T'(h(v))
(Figure 4).

The name of protocol, GLIDER, is meant to capture this
notion of gliding down a sequence of potential slopes during
this trip to the destination.

VII. IMPLEMENTATION

There are two phases in GLIDER: topology discovery and
routing. Corresponding to the two phases, we introduce the
naming protocol and the routing protocol.

A. Naming protocol

The topology discovery phase begins after the landmarks
are selected. The naming protocol is designed to carry out the
following tasks:

1) construct the landmark Voronoi complex (LVC) in a

distributed fashion;

2) compute a routing table on the graph of the combinato-

rial Delaunay triangulation (CDT);

3) assign to each node its local landmark distance coordin-

ates with respect to its reference landmarks.

The topology discovery phase involves several floodings of
the network. Our algorithm is designed such that the number

of messages in each flooding is linear in the number of nodes
in the network and is independent of the number of landmarks.
This improves the scalability of GLIDER to cases where many
landmarks are needed.

In the first round of flooding, we compute Voronoi cells
and the graph-distances from each node to its nearest land-
marks. We arrange things so that each landmark floods only
a small ‘neighborhood of influence’ rather than flooding the
entire network. More specifically, each landmark w initiates
a flooding message (ID,,,¢) where ID,, is the ID of u and
¢ = 1. Every node v in the network maintains a list S,, of the
current closest landmarks, together with the current shortest
distance . Initially, S, = @ and 7, = oo. Upon receiving a
flooding message (ID,,, ¢), there are three cases.

1) if £ > 7,, discard the message;
2) ifl=m,
« if ID, € S,, discard the message;
. ifID, ¢ S,, add ID,, to S,,, and broadcast (ID,,, £+
1) to all the neighbors;
3) if £ < 7, set S, = {ID,}, 7, = ¢, and broadcast
(IDy, ¢ 4 1) to all the neighbors.

If the landmarks initiate this process at approximately the
same time, and each message travels at approximately the
same speed, then any given landmark’s flooding message will
be dropped when it starts to ‘penetrate’ the Voronoi cells of
other landmarks. This cuts down the total number of messages
transmitted in the flood.

At the end of this, the list S, contains precisely the set
of landmarks that are the closest to v with common shortest
distance 7,. Equivalently, S, is the set of landmarks u such
that v € T'(u).

At this point, every node knows which Voronoi tile(s) it
belongs to. By consulting its neighbors, a node can now
determine whether it is a witness to an edge ujus in the CDT
graph. Specifically, denote by NN, the set of neighbors of v in
the communication graph G. For each landmark node v € S,
node v constructs the set

Ly(u) = (S U( |J Su))\ {ul-

wEN,

With this definition, a landmark «’ belongs to L, (u) iff v is
a witness for the edge wu' in CDT. If L,(u) is not empty
then v sends the list L,(u) to landmark w. This is quite
straightforward: messages within a tile 7'(u) can be relayed
to u by greedily reducing the graph distance to u at each stage.
It follows from Lemma 1 that there is no danger of getting
stuck. This concludes the distributed construction of the LVC
and the CDT graph.

We now designate one node to poll the landmark nodes and
collect their CDT neighbor information. Having done so, this
polling node floods this information to all the landmarks. Each
landmark computes the CDT shortest-path tree rooted at that
landmark, and then broadcasts the tree to all the nodes inside
its Voronoi cell. This shortest path tree serves as the global
routing table for the nodes in the cell. In addition, each



node v knows the ID of its home landmark « and also of its
other reference landmarks, since these can be read off as the
neighbors of u in the shortest-path tree.

The final stage is to compute, for every node v, the neigh-
borhood distances between v and its reference landmarks. This
can be achieved by initiating a new flood from each land-
mark u which is confined to U(u). Every node knows by now
whether it belongs to U (u), so whenever the flooding message
reaches a node outside U (u) it is simply discarded. Once every
node v has obtained its vector A(v) of neighborhood distances
to its reference landmarks, the local coordinate vectors C(v)
can be computed using the prescription in Section V-B.

B. Routing protocol

After successful completion of the naming protocol: (i) the
global topology of the network is captured by the CDT graph;
(i) each node stores the CDT shortest-path tree rooted at
its home landmark; (iii) each node stores the neighborhood
distances to its reference landmarks.

The GLIDER routing protocol runs on top of this infrastruc-
ture. The header of a packet contains a ‘temporary destination
landmark’ (TDL) bit together with a integer that saves the
ID of a temporary destination landmark. When a packet and
the name of its destination are received at a node v, the
node determines, by comparing names, whether the destination
belongs to the same tile or a different tile. For the actual
forwarding process—determining which node receives the
packet next—there are two scenarios to consider:

o Intra-tile routing. When the destination is inside the current
tile, GLIDER uses the greedy routing algorithm described in
Section V-B. If all the neighbors of v are further away from
the destination than v itself, flooding within the tile is used
to complete the delivery of the packet to the destination.
Otherwise, v forwards the packet to a neighbor whose distance
to the destination is least among all neighbors of v.

o Inter-tile routing. If the destination is not in the current
tile, routing follows the method indicated in Section VI-B.
The node v first checks whether the temporary destination
landmark bit is set. If TDL is not set, or if TDL is set but the
actual temporary destination landmark stored in the header is
the home landmark of v, then v consults its landmark routing
table to find the next tile u;4; in a shortest-path route in CDT
to the destination tile. Having done so, v sets TDL to TRUE
and saves the ID of u;; in the packet header.

If TDL is set, and the indicated temporary destination wu;
is not the home landmark of the current node v, then v greedily
picks any of its neighbors in U(w;) which is closer than v
to u; in neighborhood distance. This is always possible since
U(u;) is connected. When there are multiple such neighbors,
we pick one randomly. This randomization achieves better load
balancing without hurting the quality of the path.

C. Data structures

Landmarks are used as logical reference points in determin-
ing nodes’ local coordinates. However, from the programming

Node{
the shortest path tree on CDT rooted at its home landmark;
neighborhood distances to its reference landmarks;
a bit to record if the node is on the boundary of a tile;
the IDs of its neighbors

Fig. 5. Information stored at a node.

point of view, they are just ordinary nodes. No extra processing
power or memory is required. The information stored at a node
is shown in Figure 5.

It is apparent that the local memory required for each node
scales well with network size. Except for the routing table on
the landmarks, each node stores only local information. Since
the number of landmarks is small (23 landmarks out of 2000
nodes in our simulations) the total memory required for each
node is manageable.

The global routing table on the landmarks is stable over
time. The combinatorial Delaunay triangulation is a compact
structure that captures the global topology of the sensor
deployment, and which only changes when a large number of
nodes disappear. As in Figure 1(ii), a CDT edge at the bottom
of the hole disappears only when a band of nodes die so that
the two corresponding landmarks are not directly connected.

VIII. SIMULATIONS

We implemented the GLIDER protocols using C++. Al-
though our simulations do not take into consideration typical
details of network behavior—such as packet loss, packet
delay and timing, and so on—these simulations empirically
verify the correctness of the algorithm and the feasibility of
the protocols. Network-level simulations using ns-2 will be
undertaken in the near future, in order to verify that this routing
scheme is practical for real world deployment.

We simulated a network with 2000 nodes distributed on a
perturbed grid. The communication graph used is the unit disk
graph on the nodes. Two nodes can communicate directly if
their Euclidean distance is at most 1. After the communication
graph is generated, the Euclidean coordinates are discarded
since our protocols use only the communication graph. Among
2000 nodes, 23 are chosen as landmarks. Of the landmarks
18 are chosen randomly, with another 5 nodes added near
the network boundary, after the random selection. In all the
figures, sensors are shown as small circles and landmarks are
shown as larger triangles. Gray circles represent nodes on the
boundaries of Voronoi cells, or equivalently the witnesses of
CDT graph edges.

A. Success rate of landmark greedy algorithm

Using GLIDER, a packet can always make progress across
intermediate tiles. However it may get stuck at small holes
as it progresses towards the destination in the final tile. Node
density is an important parameter in estimating the frequency
at which a packet gets stuck. Although this work is intended
for dense sensor fields with large holes in the communication
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Fig. 6. A 315m by 315m region with 2000 nodes distributed on a perturbed grid. The standard deviation of the perturbation (Gaussian random variable) is
equal to 50% of the radio range (11m). There are many small holes and one large hole in the network. There are a pair of source nodes on the left and a pair
of destination nodes on the right. Routes between source and destination are shown as sequences of arrows. (i) Routes generated by GLIDER. Landmarks are
shown as triangles. The network is divided into tiles. The darker nodes form boundaries of the tiles. (ii) Routes generated by GPSR.

> 5.3
100

average number of neighbors | 2.9 | 3.2 | 4.1
percentage of success 20 | 70 | 95

TABLE 1. The success rate of the greedy routing

graph, the routing algorithm is also quite tolerant to sparse
node distribution with lots of small holes. We simulated a
network with 2000 nodes distributed on a perturbed grid.
The degree of perturbation is simulated using a Gaussian
random variable with standard deviation equal to 50% of
the radio range. We ran experiments on the success rate of
greedy routing by varying the radio range (thus varying the
average number of one-hop neighbors). The results are shown
in Table I. For each scenario, we tried 20 pairs of sources
and destinations selected at random, with path length about
40 hops in each case. The results indicate that an average of 5
or more neighbors is needed to ensure the success of greedy
routing. In all the figures shown in this paper, each node has
5.3 one-hop neighbors on average

B. Load balancing and path length

In the absence of obstacles, our topology-based routing
algorithm generates routes that are comparable to those gen-
erated by geographical routing algorithms. Figure 6 (i) shows
two sample routes generated by GLIDER between two pairs
of source and destination nodes. For comparison, routes gen-
erated by GPSR are shown in (ii). Although the actual routes
generated by the two algorithms are quite different, their
lengths differ by at most 2 hops out of about 40 hops in total

path length.

When obstacles, i.e. holes, are present in the communica-
tion graph, geographical routing schemes either use planar
graphs [9], [1] or attempt to discover hole boundaries [5]
to get around holes. When a packet gets stuck, it is routed
along the boundary of a hole until greedy forwarding becomes
possible again. Paths that are routed around the same hole
tend to merge at the hole boundary. Figure 7 shows an
example. This traffic pattern is an inherent consequence of
the combination of greedy forwarding on Euclidean distance
and perimeter forwarding. The major consequence is a vicious
cycle where these boundary nodes become overloaded, suffer
power depletion at an early stage, and as a result cause the
hole to grow further. An even stronger effect of this power
depletion is that small neighboring holes merge into larger
holes, resulting over time in large communication voids in the
network.

In contrast, the fact that GLIDER uses intermediate land-
marks to guide inter-tile routing means that hole-boundary
nodes are of no particular importance and do not get over-
loaded. The cross-tile routing described in section VI-B allows
packets to transit efficiently through each tile. Although the
next tile’s landmark is used to “pull” a packet through the
current cell, once the packet enters the tile the target shifts to
the landmark of the subsequent tile in the route. This avoids
the undesirable effect of traffic convergence at the landmarks.

To test this, we randomly picked 45 source and destination
pairs (in each case separated by more than 30 hops) within a
single network. Figure 8 shows the “hot spots” when GLIDER
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Fig. 7. The same network setup as in Figure 6 except for the standard deviation of the Gaussian random perturbation is 20% of the radio range (9m). Three
source and destination pairs are shown in this figure. (i) Routes generated by GLIDER. (ii) Routes generated by GPSR.

() (ii)

Fig. 8. Hot spots in the network with 45 pairs of randomly chosen source and destination; the darker the color, the heavier the traffic load: khaki (6 — 8
transit paths), orange (9 — 11 transit paths), black (> 12 transit paths) (i) traffic distribution map of GLIDER (ii) traffic distribution map of GPSR.

and GPSR are used, using different colors to indicate different terms of the number of hops) paths for inter-tile routing. If
levels of traffic load. Nodes lying on fewer than 6 routes are the landmarks are placed close to topological features such
not colored. It is evident that the hole in the center creates as hole boundaries, GLIDER can circumnavigate obstacles
a disturbance in traffic patterns. With GPSR, the effect is comparatively efficiently. In the examples shown in Figure 7,
to create hot spots along the hole boundary. With GLIDER, GPSR generates a route of length 52 for the rightmost source
traffic around the hole appears to be better spread out and to its destination, while GLIDER generates a route of length 41.
more balanced. In this figure, although the routes generated by GLIDER are
longer in Euclidean distance, they are shorter in the graph-

Another di f -hugging is that i .
nother disadvantage of boundary-hugging is that it tends distance. On average, the lengths of routes generated by

to yield longer paths. In contrast, GLIDER uses shortest (in



the two algorithms are comparable. For the 45 routes, the
average path length generated by GPSR is 42.08. The average
path length generated by GLIDER is 40.46. The major factor
influencing path length in the case of GPSR is the geometric
shape of the holes; in the case of GLIDER, it is the placement
of the landmarks.

C. Discovery of routes under cases with difficult geometry

The landmark Voronoi complex succeeds in capturing the
topology of the network and discovering routes even in situa-
tions that would be difficult for purely geometric approaches.
In the scenario shown in Figure 2, two big rooms are connected
by a long narrow corridor. Landmarks are selected randomly.
The routing path that goes from one room to the other through
the corridor is correctly discovered by our routing algorithm.
We do not actually need landmark nodes be placed in the
corridor itself. (Indeed, for randomly selected landmarks, the
probability of finding a landmark in the corridor is compar-
atively small.) As long as the original network is connected,
such connectivity is inherited by the combinatorial Delaunay
triangulation.

IX. SUMMARY AND FUTURE WORK

In this paper we propose a topology-based naming and
routing structure that uses only the link connectivity of the
network. We do not use Euclidean coordinates—instead, we
invent a more robust local landmark coordinate system within
each tile, based on hop distances to nearby landmarks. We
partition the network into tiles using the landmark Voronoi
complex so that within each tile local greedy routing using
our local coordinates can be expected to work well. We show
that the Voronoi landmark-based routing protocol generates
natural and load-balanced routing paths. The algorithms and
protocols proposed in this paper work for sensor nodes in three
dimensions as well—unlike other current geographic routing
protocols (in fact, which underlying space the network nodes
come from matters little).

Although we currently only exploit the path connectivity
information stored in the landmark Voronoi complex for our
routing scheme, we believe that the higher order connectivity
information we compute will prove useful in more complex
applications. An example may be loopy belief propagation and
other probabilistic reasoning tasks that can benefit from a fuller
understanding of the global topology of the sensor field.

It should be clear that this is only preliminary work on
an approach to routing that leaves much to be explored.
We still need to address important issues, such as the cri-
teria and algorithms for landmark selection, potential multi-
resolution LVC hierarchies for situations where a large number
of landmarks is required, as well as methods for handling
network dynamics (node addition and failure). Additional local
coordinate systems also deserve to be explored, perhaps using
partial or total information about the actual node positions or
the communication quality between nodes.
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