
Constant-Time Distributed Dominating Set Approximation∗

Fabian Kuhn
Department of Computer Science

ETH Zurich
8092 Zurich, Switzerland
kuhn@inf.ethz.ch

Roger Wattenhofer
Department of Computer Science

ETH Zurich
8092 Zurich, Switzerland

wattenhofer@inf.ethz.ch

ABSTRACT
Finding a small dominating set is one of the most fundamental
problems of traditional graph theory. In this paper, we present
a new fully distributed approximation algorithm based on LP re-
laxation techniques. For an arbitrary parameter k and maximum
degree ∆, our algorithm computes a dominating set of expected
size O k∆2/k log ∆|DSOPT| in O k2 rounds where each node
has to send O k2∆ messages of size O(log ∆). This is the first
algorithm which achieves a non-trivial approximation ratio in a
constant number of rounds.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—computa-
tions on discrete structures;
G.2.2 [Discrete Mathematics]: Graph Theory—graph al-
gorithms;
G.2.2 [Discrete Mathematics]: Graph Theory—network
problems

General Terms
Algorithms, Theory

Keywords
Dominating Sets, Approximation Algorithms, Distributed
Algorithms, Linear Programming, Ad-Hoc Networks

1. INTRODUCTION
In a graph, a dominating set is a subset of nodes such that
for every node v either a) v is in the dominating set or b) a
direct neighbor of v is in the dominating set. The minimum
dominating set (MDS) problem asks for a dominating set of

∗The work presented in this paper was supported (in part)
by the National Competence Center in Research on Mobile
Information and Communication Systems (NCCR-MICS), a
center supported by the Swiss National Science Foundation
under grant number 5005-67322.

minimum size. MDS and the closely related minimum set
cover problem are two of the first problems that have been
shown to be NP-hard [8, 12]. In this paper, we present a
distributed approximation algorithm for MDS. In computer
networks it is often desirable to have a dominating set in or-
der to enable a hierarchical structure in which the members
of the dominating set provide a service for their neighbors.

A particular application can be found in the fast growing
field of mobile ad-hoc networks. In mobile ad-hoc networks,
wireless devices (called nodes) communicate without sta-
tionary server infrastructure. When sending a message from
one node to another, intermediate network nodes have to
serve as routers. Although a number of interesting sugges-
tions have been made, finding efficient algorithms for the
routing process remains the most important problem for ad-
hoc networks. Since the topology of an ad-hoc network is
constantly changing, routing protocols for ad-hoc networks
differ significantly from the standard routing schemes which
are used in wired networks. One effective way to improve
the performance of routing algorithms is by grouping nodes
into clusters. The routing is then done between clusters.
The most basic method for clustering is by calculating a
dominating set. Only the nodes of the dominating set (the
‘cluster heads’) act as routers, all other nodes communicate
via a neighbor in the dominating set.

Between traditional wired networks and mobile ad-hoc net-
works two main distinctions can be made: 1) typically wire-
less devices have much lower bandwidth than their wired
counterparts and 2) wireless devices are mobile and there-
fore the topology of the network changes rather frequently.
As a consequence, distributed algorithms which run on such
devices should have as little communication as possible and
they should run as fast as possible. Both goals can only be
achieved by developing algorithms requiring a small num-
ber of communication rounds only (often called local algo-
rithms). So far, the only algorithm which achieves a non-
trivial approximation ratio—o(∆)—in a nontrivial number
of rounds—o(diam(G))—for MDS was developed by Jia,
Rajaraman, and Suel [10]. In expectation, their algorithm
achieves an O(log∆)-approximation while the number of
rounds is O(log n log∆) with high probability. In this pa-
per, we present the first distributed MDS algorithm which
achieves a nontrivial approximation ratio in a constant num-
ber of rounds. Precisely, for an arbitrary parameter k, in
O k2 rounds, we achieve an expected approximation ratio

of O k∆2/k log∆ . All messages are of size O(log∆).

The paper is structured in the following way. Section 2 gives
an overview over relevant previous work, Section 3 intro-
duces some notation as well as some well-known facts, and
in Sections 4 and 5 the dominating set algorithm is devel-
oped. Thereby Section 4 introduces the fractional dominat-
ing set problem (LP relaxation) and presents an algorithm
to deduce a dominating set from a solution to the fractional
variant of the problem, whereas Section 5 shows how to ap-
proximate the fractional dominating set problem by means
of a distributed algorithm. The paper is concluded in Sec-
tion 6.

2. RELATED WORK
The problem of finding small dominating sets in a graph and
the closely related problem of finding small set covers has
extensively been studied over the last 30 years. The prob-
lem of finding a minimum dominating set has been proven
to be NP-hard in [8, 12]. The best known approximation
is achieved by the greedy algorithm [11, 14, 18]. As long
as there are uncovered nodes, the greedy algorithm picks a
node which covers the biggest number of uncovered nodes
and puts it into the dominating set. It achieves an approx-
imation ratio of ln∆ where ∆ is the highest degree in the
graph. Unless the problems of NP can be solved by deter-
ministic nO(log log n) algorithms, this is the best possible up
to lower order terms [6]. For the related problem of find-
ing small connected dominating sets, a similar approach is
shown to be a (ln∆+ O(1))-approximation in [9].

For the distributed construction of dominating sets, several
algorithms have been developed. In [13] an algorithm which
calculates a dominating set of size at most n/2 in O(log∗n)
rounds has been proposed. [19] presents a (connected) dom-
inating set algorithm which runs in a constant number of
rounds. None of those algorithms achieves a non-trivial
asymptotic bound on the approximation ratio. Note that
O(∆) is trivial since the set V of all nodes of G forms a
dominating set of size at most (∆ + 1) times the size of
an optimal one. The first algorithm which achieves a non-
trivial approximation ratio in less than Θ(diam(G)) rounds
was presented in [10]. The expected approximation ratio is
asymptotically optimal—O(log∆)—and the algorithm ter-
minates after O(log n log∆) rounds with high probability.
The algorithm of [10] is related to the parallel set cover al-
gorithms in [3, 16], which achieve O(log∆) approximations
in polylogarithmic time. For the connected dominating set
problem, a distributed algorithm which also achieves an ap-
proximation ratio of O(log∆) in a polylogarithmic number
of rounds has been presented in [5], recently. In our algo-
rithm, we first solve the LP relaxation—a positive linear
program—of MDS. Parallel and distributed algorithms for
positive linear programming have been studied in [15] and
[2], respectively. In polylogarithmic time they both achieve
a (1 + ε)-approximation for the linear program.

For ad-hoc networks, the (connected) dominating set prob-
lem has also been studied for special graphs. In particular
for the unit disk graph a number of publications have been
written (e.g. [1, 7]). For the unit disk graph the problem
is known to remain NP-hard; however, constant factor ap-
proximations are possible in this case. For a recent survey
on ad-hoc routing and related problems, we refer to [17].

3. NOTATION AND PRELIMINARIES
In this section we introduce notations as well as some math-
ematical theorems which are used in the paper.

The subject of this paper is the distributed construction of
dominating sets of a network graph G = (V, E). For conve-
nience, we assume that V = {v1, v2, . . . , vn}, i.e. we assume
that the network nodes are labeled from 1 to n. These la-
bels are not used in our algorithms, but they simplify some
proofs. By Ni, we denote the closed neighborhood of vi, i.e.
Ni includes vi as well as all direct neighbors of vi. Where
appropriate, Ni also denotes the set of the indices of the
nodes in Ni. The degree of a node vi is called δi whereas
∆ denotes the maximum degree in the network graph G.
We will often make use of the maximum degree in a certain
range around a node vi. For this purpose we define δ(1)

i and

δ(2)
i :

δ(1)
i := max

j∈Ni

δj , δ(2)
i := max

j∈Ni

δ(1)
j .

Thus δ(1)
i is the maximum degree of all nodes in the closed

neighborhood Ni of vi whereas δ(2)
i is the maximum degree

among all nodes at distance at most 2 from vi.

For our algorithms, we use a purely synchronous model for
communication. That is, in every communication round,
each node is allowed to send a message to each of its direct
neighbors in G. In principle, those messages can be of ar-
bitrary size; however, our algorithms only use messages of
size O(log∆).

We conclude this section by giving two facts which will then
be used in subsequent sections. Proofs are omitted and can
be found in standard mathematical text books.

Fact 3.1. (Means Inequality) Le A ⊂ + be a set of
positive real numbers. The product of the values in A can be
upper bounded by replacing each factor with the arithmetic
mean of the elements of A:

x∈A

x ≤ x∈A x

|A|

|A|

.

Fact 3.2. For n ≥ x ≥ 1, we have

1 − x
n

n
≤ e−x.

4. APPROXIMATINGMDS BY LP RELAX-
ATION

The Minimum Dominating Set (MDS) problem has been
introduced in Section 1. In this section, we show how to
obtain a ln∆ approximation by using LP relaxation tech-
niques. For an introduction to linear programming see e.g.
[4]. We first derive the integer program which describes the
MDS problem. Let S ⊆ V denote a subset of the nodes of G.
To each vi ∈ V , we assign a bit xi such that xi = 1 ⇔ vi ∈ S.
For S to be a dominating set, we have to demand that for
each node vi ∈ V , at least one of the nodes in Ni is in
S. Therefore, S is a dominating set of G if and only if
∀i ∈ [1, n] : j∈Ni

xj ≥ 1. We define the neighborhood ma-
trix N to be the sum of the adjacency matrix of G and the

identity matrix (N is the adjacency matrix with ones in the
diagonal). The MDS problem can then be formulated as an
integer program:

min
n

i=1

xi

subject to N · x ≥ 1

x ∈ {0, 1}n.

(IPMDS)

By relaxing the condition x ∈ {0, 1}n to x ≥ 0, we get the
following linear program:

min
n

i=1

xi

subject to N · x ≥ 1

x ≥ 0.

(LPMDS)

In the literature, the LP form of the dominating set prob-
lem has also been named fractional dominating set problem.
The corresponding dual linear program looks very similar to
LPMDS:

max
n

i=1

yi

subject to N · y ≤ 1

y ≥ 0.

(DLPMDS)

We have to assign a positive value yi to each node vi. The
sum of the y-values of the nodes in the neighborhood Ni of
a node vi has to be less than or equal to 1 (for the corre-
sponding x-values, this sum has to be greater than or equal
to 1) and the sum of all y-values, i.e. the objective function
has to be maximized. As a consequence we get the following
lower bound on the size of a minimum dominating set.

Lemma 4.1. Let δ(1)
i be the maximum of the degrees of all

nodes in Ni as defined in Section 3. For any dominating set
DS (i.e. also for an optimal one), we have

n

i=1

1

δ(1)
i + 1

≤ |DS|.

Proof. Assigning yi := 1/(δ(1)
i + 1) yields a feasible so-

lution to the dual linear program DLPMDS. By the weak
duality theorem, the value of the objective function for any
feasible solution for DLPMDS is smaller or equal to the value
of the objective function for any feasible solution for LPMDS.
Hence, the objective function for the DLPMDS-solution is
also smaller or equal to the size of any dominating set be-
cause any feasible solution for the integer program IPMDS is
feasible for LPMDS too.

Let x∗ be an optimal solution for LPMDS. Further let x(α) be
an α-approximation for LPMDS, i.e. x(α) is a feasible solution

for which
n

i=1

x(α)
i ≤ α ·

n

i=1

x∗
i . (1)

In order to get an approximate solution xDS for IPMDS from
an α-approximation x(α) for LPMDS, each node applies the
distributed Algorithm 1.

Algorithm 1 LPMDS −→ IPMDS

Input: feasible solution x(α) for LPMDS

Output: IPMDS-solution xDS (dom. set)

1: calculate δ(2)
i

2: pi := min{1, x(α)
i · ln(δ(2)

i + 1)}

3: xDS,i :=
1 with probability pi

0 otherwise
4: send xDS,i to all neighbors
5: if xDS,j = 0 for all j ∈ Ni then
6: xDS,i := 1
7: fi

Remark:
In line 2, δ(2)

i is calculated as follows. In a first round, each

node vi sends its degree δj to all neighbors. Afterwards δ(1)
i

(:= maxj∈Ni δk) is sent to all neighbors in a second round.

δ(2)
i can then be computed as maxj∈Ni δ(1)

j .

Theorem 4.2. Let DSOPT be a minimum dominating set
and let ∆ be the greatest degree of the network graph G. x(α)

is an α-approximation for LPMDS and xDS is the IPMDS-
solution calculated by Algorithm 1 with x(α) as its input.
For the expected value of the size of the corresponding dom-
inating set DS (vi ∈ DS ⇐⇒ xDS,i = 1), we have

E [|DS|] ≤ (1 + α ln(∆+ 1)) · |DSOPT|.

Proof. A node can become a member of the dominating
set in lines 3 and 6 of Algorithm 1. Let the random variables
X and Y denote the numbers of nodes which are selected in
lines 3 and 6, respectively. For the the expected value of X,
we have

E [X] =
n

i=1

pi ≤
n

i=0

x(α)
i · ln(δ(2)

i + 1)

≤
(∆≥δ

(2)
i)

ln(∆+ 1)
n

i=1

x(α)
i

≤
Eqn. (1)

α ln(∆+ 1)
n

i=0

x∗
i

≤ α ln(∆+ 1) · |DSOPT|.

In order to compute the expected value of Y , we look at
the probability qi that no node in the direct neighborhood
of node vi (i.e. no node in Ni) has been selected. If x(α)

j ·
ln(δ(2)

j) ≥ 1 for a vj ∈ Ni, the corresponding pj = 1 and
therefore qi = 0. Thus, we only have to consider the case

where all pj < 1. We obtain

qi =
j∈Ni

(1 − pj) ≤
j∈Ni

1 − x(α)
j ln(δ(1)

i + 1)

≤ 1 − j∈Ni
x(α)

j ln(δ(1)
i + 1)

δi + 1

δi+1

≤ 1 − ln(δ(1)
i + 1)

δi + 1

δi+1

≤ e− ln(δ
(1)
i +1)

=
1

δ(1)
i + 1

.

The first inequality follows from δ(1)
i ≤ δ(2)

j , the second in-
equality follows from Fact 3.1, the third inequality holds be-
cause x(α) is feasible and therefore the sum j∈Ni

x(α)
j ≥ 1,

and the fourth inequality follows from Fact 3.2. For E [Y],
we then have

E [Y] =
n

i=1

qi ≤
n

i=1

1

δ(1)
i + 1

≤ |DSOPT|.

The last inequality follows from Lemma 4.1. Adding E [X]
and E [Y] concludes the proof.

Remark 1:
In line 3 of Algorithm 1 we could multiply xi with ln(δ(2)

vi +

1) − ln ln(δ(2)
vi + 1) instead of ln(δ(2)

vi + 1). We would then

obtain qi ≤ ln(∆+ 1)/(δ(2)
vi + 1) and the expected total size

of the resulting dominating set would be less than or equal
to 2α ln(∆+ 1) − ln ln(∆+ 1) |DSOPT|.

Remark 2:
Note that for regular graphs, Algorithm 1 provides a very
simple distributed algorithm to approximate MDS. Let the
degree of each node of a regular graph be δ. Assigning
xi := 1/(δ + 1) for all nodes vi yields an optimal solu-
tion for LPMDS. Applying Algorithm 1 then results in a
(1 + ln(δ + 1))-approximation for the MDS problem.

In [6], Feige has proven that the dominating set problem
cannot be approximated better than by an approximation
ratio of ln∆ unless NP ∈ DTIME(nO(log log n)) (up to lower
order terms). Hence, unless NP almost equals P , the above
algorithm is optimal when applied to an optimal solution
of the LP relaxation LPMDS of the dominating set prob-
lem. However, the strength of the approach of Algorithm
1 lies in the potential of distributing the calculation over
the nodes of the network graph. When applied on a single
computer, the greedy algorithm achieves the same approxi-
mation ratio in time O(n∆) [18] while computing the linear
program LPMDS with an interior point method would take
significantly longer. In the next section, we will show how
to compute an approximation of the linear program LPMDS

using a distributed algorithm.

5. APPROXIMATING THE LINEAR PRO-
GRAM

In this section, we present the main algorithm of this pa-
per. We show how to find a O k∆2/k -approximation of
LPMDS in O k2 rounds. We will present the algorithm in

two variants. For the sake of simplicity and clarity, we will
first present an algorithm for the case that all nodes know
the highest degree ∆ in the network. In a second step, we
will then generalize this algorithm such that the knowledge
of ∆ is not necessary any more.

During the algorithms, the nodes increase their x-values over
time. In accordance with other dominating set papers (e.g.
[9, 10]), we say that a node vi is colored gray as soon as
the sum of the weights xj for vj ∈ Ni exceeds 1, i.e. as
soon as the node is covered. Initially all nodes are colored
white. The number of white nodes vj ∈ Ni at a given time is
called the dynamic degree of vi and denoted by δ̃(vi). When
starting the algorithms, all nodes are white, thus δ̃(vi) =
δi + 1.

Assume now that all nodes know ∆, the maximum degree
of the network. Algorithm 2 is synchronously executed by
all nodes (a(vi) and zi are auxiliary variables which are ex-
plained later).

Algorithm 2 LPMDS approximation (∆ known)

1: xi := 0;
2: for $:= k − 1 to 0 by −1 do
3: ((̃) (∆ + 1)(+1) , := 0)
4: for m := k − 1 to 0 by −1 do
5: (() (∆ + 1)(+1))
6: send colori to all neighbors;
7: δ̃(vi) := {j ∈ Ni | colorj = ‘white’} ;

8: if δ̃(vi) ≥ (∆+ 1)#/k then

9: xi := max xi, 1
(∆+1)m/k

10: fi;
11: send xi to all neighbors;
12: if j∈Ni

xj ≥ 1 then colori := ‘gray’ fi;
13: od
14: (1 (∆ + 1)(1))
15: od

Before coming to a detailed analysis of Algorithm 2, we give
a general overview. During the algorithm, each node vi cal-
culates the corresponding component xi of the solution for
LPMDS. Initially all xi are set to 0, they are then gradually
increased as the algorithm progresses. The algorithm con-
sists of two nested loops. The purpose of the outer loop is to
gradually reduce the highest dynamic degree in the network.
As indicated by the invariant in line 3, δ̃(vi) is reduced by
a factor (∆ + 1)1/k in every iteration of the outer loop. In
the inner loop, the x-values are increased stepwise. By this
we can guarantee that the total weight is not too high.

Lemma 5.1 explains the invariant of line 3.

Lemma 5.1. At the beginning of each iteration of the outer
loop of Algorithm 2, i.e. at line 3, the dynamic degree δ̃(vi)
of each node vi is δ̃(vi) ≤ (∆+ 1)(#+1)/k.

Proof. For $ = k − 1 the condition reduces to δ̃(vi) ≤
∆ + 1 and therefore follows from the definition of ∆. For
all other iterations the lemma is true because in the very
last step of the preceding iteration ($ + 1), all nodes with

δ̃(vi) ≥ (∆+ 1)(#+1)/k have set xi := 1 in line 9. By this all
nodes in Ni have turned gray and therefore δ̃(vi) has become
0. Thus all degrees exceeding (∆ + 1)(#+1)/k have been set
to 0, for all others the invariant already held beforehand.

In a single iteration of the outer loop, only nodes with
δ̃(vi) ≥ (∆ + 1)#/k increase their x-value (lines 8-10). We
call those nodes active. The number of active nodes in the
closed neighborhood Ni of a white node vi at the beginning
of an inner-loop iteration (line 5) is called a(vi). We define
a(vi) := 0 if vi is a gray node. The purpose of the inner
loop is to gradually reduce the maximum a(v) in the graph
(invariant in line 5):

Lemma 5.2. At the beginning of each iteration of the in-
ner loop of Algorithm 2, i.e. at line 5, a(vi) ≤ (∆+1)(m+1)/k

for all nodes vi ∈ V .

Proof. For m = k − 1 we have a(vi) ≤ (∆ + 1) which
is always true. For the other cases, we prove that all nodes
vi with a(vi) too high have been covered in the previous
iteration of the inner loop (i.e. they have become gray and
therefore a(vi) has become 0). We show that all nodes vi for
which a(vi) > (∆ + 1)m/k at line 5 are colored gray at the
end of the inner-loop iteration (i.e. after line 14). All active
nodes vj increase xj such that xj ≥ 1/(∆+1)m/k (lines 8-10
of Algorithm 2). If a(vi) > (∆+ 1)m/k there are more than
(∆ + 1)m/k active nodes in Ni. Therefore the sum of the
x-values in Ni is greater or equal to 1 after line 10.

In order to count the weights assigned during the iterations
of the inner loop, we assign a variable zi to each node vi. In
line 3 all zi are set to 0. Whenever a node vi increases xi, the
additional weight is equally distributed among the zj of all
the nodes vj in Ni which are white before the increase of xi.
Hence the sum of the z-values is always equal to the sum of
the x-increases during the current iteration of the outer loop.
We can show that at the end of every iteration of the outer
loop, i.e. at line 14, all zi ≤ 1/(∆+1)(#−1)/k. Together with
the invariant in line 3, this enables us to prove a bound on
the total weight of the additional x-values in each iteration
of the outer loop.

Lemma 5.3. At the end of an iteration of the outer loop
of Algorithm 2, i.e. at line 14,

zi ≤
1

(∆+ 1)
!−1

k

for all nodes vi ∈ V .

Proof. Because zi is set to 0 in line 3, we only have to
consider a single iteration of the outer loop, i.e. a period in
which $ remains constant. zi can only be increased as long as
vi is a white node. The increases all happen in line 9 because
only there the x-values are increased. For each white node
vi, we divide the iteration of the outer loop into two phases.
The first phase consists of all inner-loop iterations where vi

remains white. The second phase consist of the remaining
inner-loop iterations where vi becomes or is gray. During
the whole first phase j∈Ni

xj < 1. Because all increases of

x-values are distributed among at least (∆+ 1)#/k z-values
we therefore get

zi <
j∈Ni

xj

(∆+ 1)
!
k

≤ 1

(∆+ 1)
!
k

(2)

for phase 1. In line 9 of the first inner-loop iteration of
the second phase, zi gets its final value because only z-
values of white nodes are increased. All active nodes have
already been active in the preceding inner-loop iteration
because δ̃(vj) can only become smaller over time. Thus
from the preceding iteration, all active nodes vj ∈ Ni have
xj ≥ 1/(∆ + 1)(m+1)/k. In line 9 they are now increased
to 1/(∆ + 1)m/k. The difference of this value is distributed
among at least (∆+ 1)#/k z-values and because the number
of active nodes in Ni is a(vi), the increase of zi is at most

1

(∆+1)
m
k

− 1

(∆+1)
m+1

k

(∆+ 1)
!
k

a(vi). (3)

To obtain a bound on zi, we have to add its value before
the increase which is given by Equation (2). From Lemma
5.2 we know that a(vi) ≤ (∆+1)(m+1)/k. Plugging this into
the sum of (2) and (3), we obtain

zi ≤
(∆+ 1)

1
k − 1

(∆+ 1)
!
k

+
1

(∆+ 1)
!
k

=
1

(∆+ 1)
!−1

k

,

which concludes the proof.

We are now ready to consider the overall approximation ra-
tio of Algorithm 2.

Theorem 5.4. For all network graphs G, Algorithm 2
computes a feasible solution x for the linear program LPMDS

such that x is a k(∆+ 1)2/k-approximation of LPMDS. Fur-
ther Algorithm 2 terminates after 2k2 rounds.

Proof. For the number of rounds, we see that each iter-
ation of the inner loop involves the sending of two messages
and therefore takes two rounds. The number of such itera-
tions is k2.

Further, the calculated x-values form a feasible solution of
LPMDS because in the very last iteration of the inner loop
($ = 0, m = 0) all nodes vi with δ̃(vi) ≥ 1 set xi := 1. This
includes all remaining white nodes. We prove the approxi-
mation ratio of k(∆+ 1)2/k by showing that the additional
weight (i.e. sum of x-values) is upper-bounded by (∆+1)2/k

in each iteration of the outer loop. From Lemma 5.1, we
know that at line 3, i.e. when the iteration starts, the dy-
namic degree δ̃(vi) of each node vi is δ̃(vi) ≤ (∆+1)(#+1)/k.
Hence there are at most (∆+ 1)(#+1)/k non-zero z-values in
the closed neighborhood of every node vi at the end of an
outer-loop iteration at line 14. Further Lemma 5.3 implies
that all z-values are less than or equal to (∆ + 1)−(#−1)/k

at line 14. The sum of the z-values in the direct neighbor-
hood of a node vi during each iteration of the outer loop is

therefore upper-bounded by

j∈Ni

zj ≤ (∆+ 1)
!+1

k

(∆+ 1)
!−1

k

= (∆+ 1)
2
k .

If we assign yi := zi/(∆+1)2/k , the y-values form a feasible
solution for the dual LP DLPMDS because ∀i : j∈Ni

yj ≤ 1.
Hence the sum of all y-values is a lower bound on the size
of DSOPT and therefore n

i=1 zi ≤ (∆ + 1)2/k|DSOPT| for
every iteration of the outer loop. Because z is defined such
that the sum over all z-values is equal to the sum over all
increases of the x-values, and because there are k iterations
of the outer loop, we have

n

i=1

xi ≤ k(∆+ 1)
2
k |DSOPT|.

at the end of Algorithm 2.

The only thing which cannot be calculated locally in Algo-
rithm 2 is the maximum degree ∆. Algorithm 3 is an adap-
tation of Algorithm 2 where nodes do not need to know ∆.
In each iteration, Algorithm 3 assigns an xi which is greater
or equal to the xi assigned in the corresponding iteration
of Algorithm 2. However, the xi are chosen such that the
approximation ratio of k(∆+ 1)2/k is preserved.

Algorithm 3 LPMDS approximation (∆ not known)

1: xi := 0;
2: calculate δ(2)

i ; (2 communication rounds)

3: γ(2)(vi) := δ(2)
i + 1; δ̃(vi) := δi + 1;

4: for $:= k − 1 to 0 by −1 do
5: ((̃) (∆ + 1)(+1) , := 0)
6: for m := k − 1 to 0 by −1 do

7: if δ̃(vi) ≥ γ(2)(vi)
!

!+1 then
8: send ’active node’ to all neighbors
9: fi;

10: a(vi) := |{j ∈ Ni|vj is ’active node’}|;
11: if colori = ‘gray’ then a(vi) := 0 fi;
12: send a(vi) to all neighbors;
13: a(1)(vi) := maxj∈Ni{a(vj)};
14: (() (1)() (∆ + 1)(+1))

15: if δ̃(vi) ≥ γ(2)(vi)
!

!+1 then

16: xi := max xi, a(1)(vi)
− m

m+1

17: fi;
18: send xi to all neighbors;
19: if j∈Ni

xj ≥ 1 then colori := ‘gray’ fi;
20: send colori to all neighbors;
21: δ̃(vi) := {j ∈ Ni | colorj = ‘white’}
22: od;
23: ((1 + (∆ + 1)1) (1)() (+1))
24: send δ̃(vi) to all neighbors;
25: γ(1)(vi) := maxj∈Ni{δ̃(vj)};
26: send γ(1)(vi) to all neighbors;
27: γ(2)(vi) := maxj∈Ni{γ(1)(vj)}
28: od

As for Algorithm 2, we first introduce some notation. γ(d)(vi)
denotes the maximum dynamic degree of all nodes with dis-
tance at most d from vi at the beginning of the outer-loop

iteration. We use the notation γ(d)(vi) instead of δ̃(d)(vi)
because γ(d)(vi) remains constant during an iteration of the
outer loop while δ̃(vi) potentially changes after every iter-
ation of the inner loop. In each inner-loop iteration, all
nodes which assign a new x-value in line 16 of Algorithm
3 are called active. As before, a(vi) denotes the number of
active nodes in the direct neighborhood Ni of a white node
vi; for gray nodes a(vi) := 0. a(1)(vi) is the maximum a(vj)
among all j ∈ Ni. δ̃(vi) and zi are used as in the previ-
ous algorithm. We are now showing that Lemma 5.1 and
Lemma 5.2 (cf. Lemma 5.5 and 5.6) also hold for Algorithm
3.

Lemma 5.5. At the beginning of each iteration of the outer
loop of Algorithm 3, i.e. at line 5, the dynamic degree δ̃(vi)
of each node vi is δ̃(vi) ≤ (∆+ 1)(#+1)/k.

Proof. We use induction to prove the lemma. Analo-
gously to Lemma 5.1, for the first iteration ($ = k − 1), the
lemma follows from the definition of ∆. To prove the lemma
for subsequent iterations (iteration step), we show that as
for Algorithm 2, all nodes with δ̃(vi) ≥ (∆+1)#/k set xi := 1
in the last iteration (m = 0) of the inner loop. According
to lines 15-17 of the algorithm, we see that all nodes with
δ̃(vi) ≥ γ(2)(vi)#/(#+1) set xi := 1 for m = 0. Hence we have
to show that ∀i :γ(2)(vi)

#/(#+1) ≤ (∆+ 1)#/k. By the induc-
tion hypothesis, we know that ∀i :δ̃(vi) ≤ (∆+ 1)(#+1)/k at
the beginning of the outer-loop iteration. Because γ(2)(vi)
represents δ̃(vj) of some node vj in the two-hop neighbor-
hood of vi, we also have ∀i : γ(2)(vi) ≤ (∆ + 1)(#+1)/k and
therefore

γ(2)(vi)
!

!+1 ≤ (∆+ 1)
!+1

k · !
!+1 = (∆+ 1)

!
k .

Lemma 5.6. Before assigning a new value xi to vi in lines
15-17 of Algorithm 3, a(vi) ≤ (∆ + 1)(m+1)/k for all nodes
vi ∈ V .

Proof. As for Lemma 5.2, we prove that all nodes vi

for which a(vi) > (∆ + 1)m/k at line 14 are colored gray
at the end of the inner-loop iteration (i.e. after line 21).
We use induction over the iterations of the inner loop. By
the definition of ∆ for every first iteration of the inner loop
(a(vi) ≤ ∆+1) and by the induction hypothesis for all other
iterations, we have ∀i : a(vi) ≤ (∆ + 1)(m+1)/k at line 14.
Therefore the weight each active node vj assigns in line 16
is

xj ≥ 1

a(1)(vj)
m

m+1
≥ 1

(∆+ 1)
m+1

k · m
m+1

=
1

(∆+ 1)
m
k

.

Because nodes vi with a(vi) ≥ (∆ + 1)m/k have at least
(∆+1)m/k active nodes in the direct neighborhood, they are
covered after each of their a(vi) neighbor nodes vj assigns a
weight xj ≥ 1/(∆+ 1)m/k.

Lemma 5.7 is the analogue to Lemma 5.3.

Lemma 5.7. At line 23 of Algorithm 3,

zi ≤
1 + (∆+ 1)

1
k

γ(1)(vi)
!

!+1
(4)

for all nodes vi ∈ V .

Proof. As in Algorithm 2, zi is set to 0 at line 5. There-
fore, we only have to consider a single iteration of the outer
loop. Again we consider two phases. In the iterations of
the first phase vi remains white, the second phase consists
of the iterations where vi becomes or is gray. While the
algorithm is in the first phase j∈Ni

xj < 1. Further,
all increases of values xj are distributed among at least
γ(2)(vj)

#/(#+1) ≥ γ(1)(vi)
#/(#+1) z-values. Therefore, in anal-

ogy to (2), we have

zi ≤
j∈Ni

xj

γ(2)(vj)
!

!+1
<

1

γ(1)(vi)
!

!+1
(5)

for phase 1. In line 16 of the first inner-loop iteration of the
second phase, zi is changed for the last time because only
z-values of white nodes are increased. There each active
neighbor xj contributes at most

1

a(1)(vj)
m

m+1
· 1

γ(1)(vi)
!

!+1

to the values zi. Because a(vi) ≤ a(1)(vj) and because vi has
a(vi) active nodes in the closed neighborhood Ni the total
increase of zi is at most

1

a(vi)
m

m+1
· 1

γ(1)(vi)
!

!+1
· a(vi) =

a(vi)
1

m+1

γ(1)(vi)
!

!+1
. (6)

By Lemma 5.6, we have a(vi) ≤ (∆ + 1)(m+1)/k during an
iteration of the inner loop. Plugging this into (6) and adding
the value of zi from the preceding iterations (5) concludes
the proof:

zi ≤
(∆+ 1)

m+1
k

1
m+1

+ 1

γ(1)(vi)
!

!+1
=

(∆+ 1)
1
k + 1

γ(1)(vi)
!

!+1
.

Theorem 5.8. For all network graphs G, Algorithm 3
computes a feasible solution x with approximation ratio

k (∆+ 1)1/k + (∆+ 1)2/k

for the linear program LPMDS . Further Algorithm 3 termi-
nates after 4k2 + O(k) rounds.

Proof. The running time (i.e. number of rounds) can be
determined as for Algorithm 2. In each iteration of the inner
loop, 4 messages have to be sent. This yields 4k2 rounds
for the totally k2 inner-loop iterations. There is a constant
number of additional rounds in each outer-loop iteration as
well as at the beginning of the algorithm. Together, we get
the claimed 4k2 + O(k) rounds.

Analogously to Algorithm 2 x is feasible because in the very
last iteration of the inner loop ($ = 0, m = 0), all white
nodes vi set xi := 1.

As for the other algorithm, we analyze each outer-loop it-
eration separately to determine the approximation ratio of
Algorithm 3. By the definition of z, the sum of the x-values
of an outer-loop iteration is equal to the sum of the corre-
sponding z-values. By Lemma 5.7 the sum of the z-values
in the closed neighborhood of a node vi in a single iteration
of the outer loop is

j∈Ni

zj ≤ 1 + (∆+ 1)
1
k

γ(1)(vi)
!

!+1
· δ̃(vi). (7)

Because γ(1)(vi) is the maximum dynamic degree in Ni,
δ̃(vi) ≤ γ(1)(vi). Equation (7) can thus be formulated as

j∈Ni

zj ≤ 1 + (∆+ 1)
1
k γ(1)(vi)

1
!+1 . (8)

By Lemma 5.5 we know that γ(1)(vi) ≤ (∆ + 1)(#+1)/k and
therefore

γ(1)(vi)
1

!+1 ≤ (∆+ 1)1/k.

Plugging this into Equation (8) yields

j∈Ni

zj ≤ (∆+ 1)1/k + (∆+ 1)2/k.

By dividing all zi by the right hand side of the above in-
equality, we obtain a feasible solution for DLPMDS:

yi :=
zi

(∆+ 1)
1
k + (∆+ 1)

2
k

=⇒
j∈Ni

yi ≤ 1.

The sum of the z-values of an outer-loop iteration is there-
fore at most by a factor (∆+ 1)1/k + (∆+ 1)2/k larger than
the size of an optimal dominating set. At the end of the
algorithm the sum over all xi (objective function of LPMDS)
is equal to the sum over the sums of the zi for each outer
loop iteration. Therefore

n

i=1

xi ≤ k (∆+ 1)1/k + (∆+ 1)2/k · |DSOPT| .

Combining Algorithms 3 and 1 we obtain a distributed dom-
inating set algorithm.

Theorem 5.9. Applying Algorithm 3 to obtain a LPMDS-
approximation and Algorithm 1 to convert this approxima-
tion into a dominating set yields a distributed algorithm for
the minimum dominating problem which achieves an approx-

imation ratio of O k∆2/k log∆ in O k2 rounds.

Proof. Theorem 5.9 directly follows from Theorems 4.2
and 5.8.

Remark:
By setting k = Θ(log∆), we obtain an algorithm which
computes a O log2 ∆ approximation for MDS in O log2 ∆
rounds.

6. CONCLUSION
In this paper, we presented a distributed approximation al-
gorithm for the minimum dominating set problem. By com-
puting an O k∆2/k log∆ -approximation in O k2 rounds
it is the first algorithm which achieves a non-trivial approx-
imation ratio in a constant number of rounds. Particularly
in the context of mobile ad-hoc networks but also in more
general network settings, we believe that it is often advan-
tageous to deploy algorithms which are very fast even when
the calculated solution is not as good as the solution of a
less local algorithm.

7. ACKNOWLEDGMENTS
We would like to thank Maurice Cochand, Juraj Hromkovič,
David Peleg, Peter Widmayer, and Aaron Zollinger for fruit-
ful discussions about the subject.

8. REFERENCES
[1] K. Alzoubi, P.-J. Wan, and O. Frieder.

Message-Optimal Connected Dominating Sets in
Mobile Ad Hoc Networks. In Proc. of the 3rd ACM
Int. Symposium on Mobile Ad Hoc Networking and
Computing (MobiHOC), pages 157–164, EPFL
Lausanne, Switzerland, 2002.

[2] Y. Bartal, J. W. Byers, and D. Raz. Global
Optimization Using Local Information with
Applications to Flow Control. In Proc. of the 38th
IEEE Symposium on the Foundations of Computer
Science (FOCS), pages 303–312, 1997.

[3] B. Berger, J. Rompel, and P. Shor. Efficient NC
Algorithms for Set Cover with Applications to
Learning and Geometry. Journal of Computer and
System Sciences, 49:454–477, 1994.

[4] V. Chvátal. Linear Programming. W. H. Freeman and
Company, 1983.

[5] D. Dubhashi, A. Mei, A. Panconesi, J. Radhakrishnan,
and A. Srinivasan. Fast Distributed Algorithms for
(Weakly) Connected Dominating Sets and Linear-Size
Skeletons. In Proc. of the ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 717–724, 2003.

[6] U. Feige. A Threshold of ln n for Approximating Set
Cover. Journal of the ACM (JACM), 45(4):634–652,
1998.

[7] J. Gao, L. Guibas, J. Hershberger, L. Zhang, and
A. Zhu. Discrete Mobile Centers. In Proc. of the 17th
annual symposium on Computational geometry (SCG),
pages 188–196. ACM Press, 2001.

[8] M. R. Garey and D. S. Johnson. Computers and
Intractability, A Guide to the Theory of
NP-Completeness. W. H. Freeman and Company,
1979.

[9] S. Guha and S. Khuller. Approximation Algorithms
for Connected Dominating Sets. In Proc. of the 4th
Annual European Symposium on Algorithms (ESA),
volume 1136 of Lecture Notes in Computer Science,
pages 179–193, 1996.

[10] L. Jia, R. Rajaraman, and R. Suel. An Efficient
Distributed Algorithm for Constructing Small
Dominating Sets. In Proc. of the 20th ACM
Symposium on Principles of Distributed Computing
(PODC), pages 33–42, 2001.

[11] D. S. Johnson. Approximation Algorithms for
Combinatorial Problems. Journal of Computer and
System Sciences, 9:256–278, 1974.

[12] R. M. Karp. Reducibility Among Combinatorial
Problems. In Proc. of a Symposium on the Complexity
of Computer Computations, pages 85–103, 1972.

[13] S. Kutten and D. Peleg. Fast Distributed
Construction of Small k-Dominating Sets and
Applications. Journal of Algorithms, 28:40–66, 1998.

[14] L. Lovasz. On the Ratio of Optimal Integral and
Fractional Covers. Discrete Mathematics, 13:383–390,
1975.

[15] M. Luby and N. Nisan. A Parallel Approximation
Algorithm for Positive Linear Programming. In Proc.
of the 25th ACM Symposium on Theory of Computing
(STOC), pages 448–457, 1993.

[16] S. Rajagopalan and V. Vazirani. Primal-Dual RNC
Approximation Algorithms for Set Cover and
Covering Integer Programs. SIAM Journal on
Computing, 28:525–540, 1998.

[17] R. Rajaraman. Topology Control and Routing in Ad
hoc Networks: A Survey. SIGACT News, 33:60–73,
June 2002.

[18] P. Slav́ik. A Tight Analysis of the Greedy Algorithm
for Set Cover. In Proc. of the 28th ACM Symposium
on Theory of Computing (STOC), pages 435–441,
1996.

[19] J. Wu and H. Li. On Calculating Connected
Dominating Set for Efficient Routing in Ad Hoc
Wireless Networks. In Proc. of the 3rd Int. Workshop
on Discrete Algorithms and Methods for Mobile
Computing and Communications (DialM), pages 7–14,
1999.

