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Abstract— We consider the use of binary proximity sensors for tracking
targets. Such sensors provide only 1-bit information regarding a target’s
presence or absence in their vicinity, albeit with less than 100% reliability.
A novel tracking method employing such binary sensors is proposed
and its performance in different deployment scenarios evaluated. For a
given target, the method utilizes the sensor outputs to estimate individual
positions in the path of the target in the near past and finds the
line which best fits the path points. This line is then used to estimate
the target’s current position. A performance study has been conducted
through comprehensive simulation using parameters collected from a
prototype deployment consisting of wireless micro-sensors with binary
acoustic detectors.

I. INTRODUCTION

Target tracking aims to detect the presence of an object and
determine its path in an area of interest. This problem has been
extensively studied in the field of signal processing. Continuing
miniaturization of computing and (wireless) communication circuitry
as well as sensor devices has morphed mass production of intelligent
wireless micro-sensors at a low cost from a question of “if” to that
of “when.” As a result, we have witnessed a lot of research interests
being drawn to target tracking as a promising application in the
emerging field of wireless sensor networks (WSN) [1], [2], [3], [4].

Tracking targets with geographically dispersed, cooperating sen-
sors is attractive for several reasons. First, it can be more robust;
sensors deployed close to targets would result in more reliable signal
readings. Also, it can be more cost effective. A multitude of cheap
sensors may track multiple targets simultaneously without human
operators in the loop. However, the necessity for cost control and
ensuing miniaturization limits the sensitivity of individual sensors
and consequently the quality of sensor readings. The challenge is
to design a tracking method which ingeniously reconciles the two
defining characteristics, abundance in quantity and inferiority in
quality, to realize the desired robustness.

We study the use of wireless micro-sensors called binary prox-
imity sensors in target tracking. These sensors provide only 1-bit
information regarding a target’s presence or absence in their vicinity.
More specifically, we develop a tracking method in a two-tiered
environment which consists of a self-configurable network of such
sensors producing detection information and a computationally more
capable node processing the information to estimate target positions.
Examples of such two-tiered environments are many. A pursuer may
catch an evader more quickly if it can estimate the latter’s trajectory
in real or nigh real time. When a restricted area is broken into, the
intruders’ path may be reconstructed with a postmortem analysis.

Taken individually, outputs from binary sensors contain little in-
formation. Existing tracking methods for binary sensors inadvertently
subject their tracking quality to the reliability of the individual sensors
by estimating the target’s position at a given time using only the
limited number of sensor outputs available at the time. Instead, the
tracking method we develop co-opts past sensor outputs in addition
to the current ones to improve the tracking resolution. The essence

of the method lies in the fact that the trajectory of a target during
a sufficiently small interval can often be approximated well by a
straight line segment. A dynamic set of path points is maintained,
which grows by the next path point which is estimated from the latest
sensor outputs and shrinks if the current interval turns out to be too
large. For the current set of path points, a best fitting line is sought and
the current target position is computed from the line. This indirection
has the positive effect of smoothing out errors inherent in outputs
from simple binary sensors. In this regard, the method resembles
the moving averages in stock price analysis which emphasize the
direction of a trend and smooth out price and volume fluctuations.

After briefly reviewing research results related to target tracking
with WSNs in outdoor environments, we present path-based target
tracking with binary sensors in Section III, by first developing the
necessary models and then describing its algorithm and heuristic
weighting schemes to compute path points. Evaluation results of
the method, which we have compiled from an actual prototype
deployment as well as an extensive simulation study, follow in
Section IV. We conclude the paper in Section V with a summary
of the contributions.

II. RELATED WORK

A string of research on tracking targets using WSNs originated
from the DARPA SensIT project. Among the noteworthy results are
a tracking framework for WSNs using geographical information [1],
[2], [5] and information utility-based target tracking [3], [4]. The
former takes a traditional approach to target tracking: it dynamically
divides the region of interest based on the target’s velocity and
tracks multiple targets simultaneously by classifying them [1] and
associating each with a particular track [2]. The latter approach
attempts to select the next sensor node that most likely results in “the
greatest benefit at the lowest cost” for estimation. Relatively sparse
networks consisting of capable multi-modal sensors are employed in
these solutions, in stark contrast to our solution which assumes a
dense network of simple binary proximity sensors.

There are only a handful of research results on target tracking for
binary sensor networks [6], [7]. Most closely related to our work
among them is the method studied in [6]. It employs a network of
sensors that report whether an object is moving toward or away from
them and applies a particle filtering based algorithm using geometric
properties unique to the system. Reliable sensor outputs and rather
long sensing ranges are assumed for the simulation-only evaluation,
suggesting that the solution may be less resilient when deployed in
real environments where sensor measurements are likely noisy and
sensors have a limited detection range; per contra, we study the use
of less reliable binary proximity sensors with a limited sensing range.
A solution to track the edge of a shadow using binary sensors that
detect changes in light intensity is proposed in [7].
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Fig. 1. A probabilistic sensor model. The chance of detection in the gray
annulus decreases with distance from the sensor.

III. TRACKING WITH BINARY SENSORS

In this section we develop a model of probabilistic binary sensors,
an approximation model for a target’s trajectory in a short time period,
and a path-based tracking method based on the models, in turn. The
essence of the path-based tracking lies in the way it correlates position
estimates distributed in both space and time.

A. Modeling Binary-Sensor WSNs

We consider a network of N wireless binary sensors, each of which
occupies a single point in a 2-D plane. Viewing sensor nodes as binary
proximity sensors is attractive for target tracking in WSNs because
signal detection in micro sensors is probabilistic at best, and their
readings are dependent on the environment and not always reliable.
Nodes may be placed randomly following a uniform distribution or
they may be placed to form an equal-spaced grid. Each node contains
a sensor, a radio transceiver, and computation logic and memory for
local detection and classification [8]. Unlike sensors considered in
traditional tracking approaches, binary sensors provide only one bit
of data indicating presence or absence of a target in the sensing
range. They are incapable of producing any other information, such
as direction of arrival or distance to the source.

The two parameters that characterize the behavior of a sensor
network are detection range and node density. We assume uniform
node density and homogeneous detection ranges. The detection range
of a sensor is a limit beyond which the sensor cannot distinguish
a target’s signal from ambient noise. Most research in this area
assumes a uniform disc model for simplicity. However, detection
ranges often vary widely among sensors depending on the sensitivity;
fortunately much of individual variations can be compensated with
careful calibration. A more critical factor is that detection ranges
depend on the environmental conditions at the time of detection, such
as the relative orientation of the object and the sensor. These factors
make target detection near the boundary of the sensing range much
less predictable.

B. Modeling Binary Proximity Sensors

The above observations give rise to a sensor model where a sensor
detects presence of a target probabilistically near the boundary of its
sensing range (Figure 1). The detection probability can be given as a
function of the distance to the source. With the model, a sensor with
a nominal sensing range R can always detect a target’s presence if it
is within R − Re range from the sensor. No signal from beyond
distance R is ever detected. And, the detection probability drops
off continuously as the distance increases between R − Re and R.
We have empirically obtained this probability distribution from a
prototype deployment to use in the simulation study described in
Section IV-B.

In general, a sensor’s detection range R varies depending on the
type of a target and the signal emission strength at the time of
detection. For example, a sensor may not differentiate between a

far away target emitting a strong signal and a nearby target with
a weak signal. Even for targets of an identical type, assuming the
same R across sensors may be an optimistic proposition because
sensing range is also dependent on the sensitivity and calibration of
the detector. For example, a sensor may not detect a target, no matter
how close it is, if it cannot distinguish the signal from ambient noise.
Nonetheless, this sensing model is general enough to accommodate
any sensing modality; a sensor can be analyzed using the model as
long as it is capable of differentiating signals from ambient noise and
has a relatively uniform (i.e., isotropic) detection range.

C. Modeling the Target Trajectory

Objects can move arbitrarily, possibly changing speed and direction
at any time. Precise modeling of such arbitrary paths can prove
cumbersome and unnecessarily complex for target tracking in binary-
sensor WSNs. In lieu of costly precise path modeling, we adopt a
piecewise linear approximation.

We allocate a small moving window to the past measurements
and use a straight line segment to represent an object’s trajectory in
that window. Since a target’s movement is governed by the laws of
physics and the length of the window is determined by the network’s
sampling rate, a straight line segment can approximate a target’s path
fairly well for a short period of time, assuming that the sampling rate
is reasonably high and that the target’s movement is not completely
erratic.

The extent to which the target’s actual path diverges from its
straight line approximation in a given window depends on several
factors, including the target’s speed and turning radius. For vehicles
traveling along a highway, the difference can be very small. For a
person walking along a curvy path with tight turns, the divergence
may not be negligible. In either case, accuracy improves as we
increase the resolution of the WSN, either by increasing the node
density or by reducing the sensing range.

In addition, a target is assumed to move at a constant speed inside
the window. In general, the constant velocity assumption is not a
must-have requirement for object tracking. However, we need this in
order to compute the target position with the path estimation. Also, it
is useful for developing a heuristic weighting scheme for path point
estimation discussed later in the paper.

D. Tracking with Path Estimation

A straightforward way for position estimation using binary sensors
is the centroid method; it estimates a target’s position at a given time
as the average of the detecting sensors’ positions. It is attractive for
its simplicity, but it produces estimates of subpar quality (Figure 8).
Instead of relying on direct methods which estimate a target’s position
from the detecting sensors’ locations, we have adopted an indirect,
two-step method. The basis of the approach remains the same as
the centroid method; each detecting sensor approximates the target’s
position with its own location. However, the way the two-step method
correlates sensor data makes it differ from the centroid method.

The method computes the weighted average of the detecting
sensors’ locations and uses it as an estimate of a point in the target’s
path. Then, it finds a line which best fits the point and other points
from the recent past. (Recall that a target is assumed to have a straight
line trajectory in the short term.) Finally, using the velocity estimate
and the line equation, the target’s position at the time is estimated. As
evident from the evaluation results given in Section IV-B, indirection
through path estimation tends to smooth out errors in the position
estimates. The method is summarized in Procedure 1.



Procedure 1 Path-based target tracking
1: Each sensor node records detection durations.
2: Triples (time, node location, duration) from the sensor nodes are

aggregated at the tracking node.
{Then, the tracking node computes}

3: Weights for the detecting nodes and then the current path point.
4: A line which best fits the path points within the given window.
5: The target’s position using the velocity and the line estimate.

A number of variations may emerge from this method skeleton
depending on the weighting scheme. In fact, the performance of
the path-based tracking is closely related to the chosen weighting
scheme. The simplest scheme is to weight sensors uniformly, which
effectively puts a target at the center of mass of the detecting sensors.
However, it fails to take advantage of additional information such as
the sensor’s closeness to the target. We develop dynamic, history-
based weighting schemes with a trade-off between computational cost
and accuracy. The schemes are based on a simple relation between
a target’s proximity to a sensor and the sensor’s detection duration.

E. Distance-based Weighting

We seek to weight sensors in a manner that assigns a higher value
to sensors close to the target. Consider a target moving in a sensor’s
range of detection (Fig. 2 (a)). Observe that a target generally stays
longer in the sensing range of a sensor it passes closer than one
farther 1. Thus, a quantity related to the duration for which the sensor
has tracked the target would make a good candidate for such weights.

The detection duration gives an estimate of the distance the target
has traveled inside the sensing range of the sensor. For simplicity,
assume a sensor’s detection range is a perfect circle, i.e., Re = 0.
For a target moving at a constant speed v, the distance d = vt when
the detection duration is t. We can relate the distance traveled within
the sensor range to the current distance between the sensor and the
object in several ways.

1) Naive or Pessimistic: This method assumes the target is on
the boundary of the detecting sensor’s sensing range at the time of
detection and is about to move out of the range. Thus, it uses 1/R
as the weight. The use of the successive refinement described in
Section III-F makes it differ from the “uniform” weighting method.

2) Expected Distance: Since a target can enter a sensor’s sensing
range from any point at any angle, it can be anywhere in the annulus
defined by the outer circle of radius R and the inner circle of radius
d. Without loss of generality, assume that the target enters the range
at (R, 0) (Figure 2 (a)). Then, given d, the relative direction angle α
is bounded by αmax from above, which is cos−1(d/2R) (Figure 2
(b)). The equation of the arc is given as

r = R2 − 2Rd cos α + d2, 0 ≤ d ≤ 2R, |α| ≤ cos−1 d

2R

α = cos−1(
R2 + d2 − r2

2Rd
)

The cumulative distribution function F (r) = P (X ≤ r) of
random variable X indicating the probability that the distance to
the target is less than or equal to r can be found by integrating the
probability that the target enters the range with a certain direction
angle over the region where α corresponds to the distance less than
or equal to r.

1If the sensing range is circular (or isotropic).
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F (r) = P (X ≤ r) =
α

−α
p(t)dt = 2α

1

2αmax

= cos−1 R2 + d2 − r2

2Rd
/ cos−1 d

2R

Figure 3 shows the plots of probability distribution of P (x ≤ r <
x + 0.001). Notice the presence of an impulse at the minimum of
r. From the relation between d and F (r) we compute the expected
distance to the target as

re =
rmax

rmin

r · Fd(r)dr, rmin = R − d, rmax = R. (1)

and use 1
re

as the weight.
3) Distance to the Path: With the assumption that the current

detection is the last (thus, pessimistic), we compute the distance to
the path h = R2 − (di/2)2 and use 1

h
as the weight (Figure 2

(c)).

F. Successive Refinement

Given a target’s straight line trajectory, the closer it passes to
a sensor, the longer it stays in that sensor’s detection range. The
exact duration can only be known after the target moves beyond
the sensor’s range. This is the basis of the pessimistic assumption
that the current detection is the last one in computing the weights.
Consequently, duration measurements from an active sensor are most
likely underestimates; another detection by the sensor rectifies the
target has passed the sensor closer than estimated. Recall that we
estimate points on the target’s path and find a line equation to
compute the current target position. The essential idea of successive
refinement is to re-compute the past weights using the latest duration
information to estimate the path points more precisely.

Pessimistic/Expected Distance Let di be the length of secant
Pt0Pti in Figure 4 (a). Since cos αi = di

2R
, for 0 < k < i, r′2k =

R2+d2
k−2Rdk cos αi = R2+d2

k−dkdi. For the Pessimistic scheme,
the new weight at tk is 1

r′
k

. For the Expected Distance scheme, use

rmax = r′k in Eq. 1 to compute the expected distance at P ′
k.

Distance to the Path The distance to the path at Pi is h2
i =

R2 − ( di
2

)2 and it is also the distance to the path at P ′
k, 0 < k < i

(Figure 4 (b)).
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IV. EVALUATION

We have evaluated the path-based method and compared its perfor-
mance under different conditions via an extensive simulation study.
To make evaluation results more convincing and useful, we have taken
a realism-based approach where relevant parameters are collected
from actual devices and fed into subsequent simulation runs. First,
we have implemented a proof-of-concept acoustic tracking prototype
using MICA-2 motes and experimentally validated its performance.
Microphones and tone detectors in standard MICA sensor boards
are used as acoustic sensors. Although some acoustic sensors are
capable of providing such information as signal strength and direction
of arrival of the sound, we assume that the tone detectors do not
provide such information, treating them as binary sensors. Then,
we have instrumented the simulated sensors with the parameters
we have collected from the prototype and compared the tracking
performance under different configurations and conditions. For the
simulation study, we assume that the nodes in a network are localized
a priori, the clocks of the nodes are periodically synchronized, and
an appropriate MAC protocol and a data aggregation scheme are
in place, since issues such as routing and networking are not a
primary focus of this study. Line fitting needed in path estimation
is implemented using the GNU Scientific Library (GSL) [9].

A. Target Tracking with Binary Acoustic Sensors

To verify the viability of path-based object tracking and to collect
relevant parameters to model sensors in the subsequent simulation
study, we have implemented the tracking method on a small-scale
network of MICA-2 motes [10] and conducted an experiment using
acoustic sensors. We chose to use acoustic sensors because sound
signals have a uniform signal attenuation model even in the presence
of obstacles, and are omni-directional, especially in a low frequency
range. An MICA-2 mote has limited network bandwidth (38.4Kbps
maximum raw data rate) and data memory (only 4KB is available
for both the application and the OS). Each MICA-2 mote is fitted
with an MTS310 sensor board, of which only the tone detector is
used. The tone detector on the MICA sensor board detects a specific
range of sound frequencies and provides binary output indicating the
presence or absence of a signal. The sensitivity of the microphone
is rather poor; a low-power sound source must be fairly close to the
sensor, otherwise the microphone cannot distinguish the sound from
ambient noise. Even with a nearby source, the chance of detection
by the device is probabilistic at best.

The network consists of 25 motes, laid out in a regular 5× 5 grid
(Figure 5). Nodes are placed 0.4 m (1 u) apart, and the gain on the
microphone is adjusted to provide a reliable detection range of R =
0.6 m (1.5 u). To simulate a localization service, each sensor is given

Fig. 5. Acoustic tracking experiment with a 5 × 5 grid layout.
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Fig. 6. Tracking results with MICA-2 acoustic sensors (top) and the
corresponding simulation (bottom). The following simulation parameters are
used: grid separation distance 0.4 m = 1.0 unit, sensing range R = 1.5 unit,
Re = 0.2R, and target velocity v=0.5 unit/sec.

its physical coordinates a priori. A radio-controlled car equipped
with a mote plays the role of a target. It moves through the network
at the approximately constant speed of 0.2 m/sec which amounts to
0.5 u/sec. It should be noted that the boost power of each microphone
as well as the speed of the object were significantly reduced in the
laboratory experiment. With proper calibration, the same hardware
can cover a wider area and track faster moving objects.

The results of this experiment 2 are shown in Figure 6. No
successive refinement is employed in this set of experiments. No
ambient noise is artificially introduced, but echoes are abundant. The
distance-to-the-path scheme was used due to the lack of hardware

2Throughout the paper, tracking error E represents the distance between
an actual target location and the corresponding estimated location measured
in a respective basis unit.
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support for floating point operations in MICA-2 motes. We observe
the presence of significant errors at the initial period, which is
attributed to the lack of reliable detection and velocity data; as more
detections are recorded, errors quickly settle at a lower level.

Also shown in Figure 6 are the results from a simulation run with
the sensor model proposed in Section III-B and with the parameters
collected from the experiment (e.g., Re = 0.2R). The two results
show comparable behaviors, although the magnitude of the errors is
markedly higher in the actual experiment than in the simulation. This
discrepancy can be attributed in part to the quality of the sensors.
In the simulation, we assume ideal sensors which always detect
a target within range R − Re, and with diminishing probability
beyond that range. Actual sensors are likely to have somewhat
anisotropic detection ranges. Furthermore, echoes could have caused
false detections. Tone detectors in MICA-2 are extremely unreliable;
they sometimes miss presence of a sound signal emitting from a
nearby source.

B. Evaluation with Simulation

Given the encouraging experimental results, we have conducted
an extensive simulation study and evaluated the performance of the
path-based tracking method with the three weighting schemes.

1) Simulation Setup: A 900-sensor network with a single mobile
object is simulated. Unless otherwise noted, results are obtained using
30x30 grid placement with the origin at the center. The target travels
from the origin along the direction of a vector (20,11) at the speed of
1.2 u/sec. The successive refinement is employed in all the simulation
results reported in the section.

From the 25-node prototype experiment, we have observed that
Re = 0.2R (refer to Section III-B). Also, we note that detection rates
drop stiffly around the edges in the outer gray ring in Figure 1 and
decrease gradually in between. To incorporate these observations into
the model, we define the detection probability at distance d, P (d),
to be:

1 if d < R − Re

1 − 0.5e−erf−1(−f(d)) if R − Re ≤ d ≤ R − Re/2

0.5e−erf−1(f(d)) if R − Re/2 < d ≤ R

0 if R < d

where erf−1(z) is the inverse of the “error function” encountered
in integrating the normal distribution and f(d) = 2

Re
d + (1 − 2R

Re
).

Figure 7 plots the detection probabilities as a function of distance
to the target d when R = 1.0u and Re = 0.2R. All the simulation
experiments performed have used a window of maximum 10 seconds
for path estimation.

2) Baseline Performance: Figure 8 shows position estimation
errors over time for the centroid method which computes the average
of detecting sensors’ locations as a target location. The plot labeled
“indirect” has been obtained by first estimating path points using
the centroid method, and then estimating the path using these points.
Figure 9 has the theoretical best performance for the indirect tracking
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Fig. 8. Performance of centroid methods.
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Fig. 9. The best possible performance of the distance-to-target and distance-
to-path weighting schemes.

methods based on path estimation. The dist2target plot shows the
estimation errors when the actual distance to the target at the time of
detection is used as the weight. The dist2path plot is obtained when
the actual distance to the path of the target is used as the weight at
the detection time. Both have large initial errors but quickly converge
close to the actual positions. The results suggest the validity of the
weighting schemes proposed above.

3) Performance of Different Weighting Schemes: First we study
performance of the three weighting schemes in the path-based target
tracking using the grid node placement noted in Section IV-B.1.
Figure 10 plots changes in magnitudes of estimation errors over time
for the three schemes. We observe that the magnitudes decrease in
all three weighting schemes as more data become available. These
results show that the path-based tracking performs quite well. The
Expected Distance schemes achieves the best results among the three,
but it is also most computationally expensive to run. Distance-to-
the-path takes a moderate amount of computation to yield good
results. We attribute the good performance to the facts that indirection
through path estimation using more accurate past estimates smooths
out errors in individual path points near the target’s current position
and compensates for scarcity of information in binary readings.

4) Effects of Sensor Placement: Next, we investigate the effect
of sensor placement on the path-based tracking. This is significant
because comparable performance of a random deployment would
pave way for economic deployment methods such as air-dropping.
We conduct the simulation with three different deployments, with
increasing regularity. To our disappointment, increased irregularity
turns out to be quite detrimental to estimation acccuracy (Figure 11).

0

0.05

0.1

0.15

0 2 4 6 8 10

E

time

expected distance
worst distance

distance to a path

Fig. 10. Position estimation errors of different weighting schemes. With
30x30 grid placement. Grid separation 1.0u, N = 900, R = 1.0u, Re =
0.2R. Average of 100 simulation runs.



0

3

6

0 3 6 9

0

0.3

0.6

0.9

0 2 4 6 8 10

E

time

expected distance
worst distance

distance to path

0

3

6

0 3 6 9

0

0.3

0.6

0.9

0 2 4 6 8 10

E

time

expected distance
worst distance

distance to path

0

3

6

0 3 6 9

0

0.3

0.6

0.9

0 2 4 6 8 10

E

time

expected distance
worst distance

distance to path

(a) random placement
(b) grid placement with random

displacement up to 0.1R
(c) grid placement with random

displacement up to 0.01R

Fig. 11. Three different placements and the respective tracking performance. Density = 1.0, N = 900, R = 1.0 u, Re = 0.2R. Average of 100 simulation
runs.

0

0.2

0.4

0.6

0 2 4 6 8 10

E

time

Density 0.5
Density 1.0
Density 2.0
Density 4.0
Density 8.0

Fig. 12. A higher sensor density results in better tracking accuracy. Notice the
diminishing return on increasing density; the improvement becomes marginal
for densities beyond 2.0.

The placement strategy we use creates deployment instances that,
while uniform as a whole, have significant non-uniformities in density
at the local level – some pockets have more sensors than others.
Even small displacement from grid positions results in significant 3

errors when the sensing radius is small. This is due to the use
of weighted average in computing path points, because a weighted
average tends to move toward a dense area and away from sparse
regions. Regardless of the network size, with a small sensing range
(or with a low density), only a small number of sensors detect the
target at any one time, and thus even a slight local imbalance in
density can result in skewed estimates. This suggests that networks
with longer detection ranges or higher densities will be more resilient
to local variations in sensor density; as more sensors are involved in
detection, each sensor’s share of contribution gets smaller, making
the estimate robust against non-uniform distribution of density at the
local level.

5) Effects of Node Density and Sensing Range: Intuitively, we
expect a sensor network with a higher node density and a larger
sensing range would yield better tracking results. The intersection
of the sensors’ detection areas which defines the area of uncertainty
about the target’s position shrinks, as either the density or the range
increases. A series of simulation runs has confirmed that it is the case
for binary proximity sensors (Figure 12 & 13).

Both node density and sensing range share a trait that the tracking
quality improves with their values, but only with a diminishing return.

3In the order of average separation distance between the sensors.
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To find an answer to the question of “which has a higher return on
investment,” we have conducted a simulation study while keeping
R2

i di constant (Ri: sensing range, di: density). The results (see
Figure 14) indicate that the combination of a higher density and a
smaller range is more effective than that of a lower density and a
larger range. This finding is particularly encouraging since, with a
smaller range, a target’s trajectory can be more closely approximated
to a straight line, snapping the target’s position to the detecting
sensor’ coordinates becomes more accurate, and the computed weight
is more reliable. Meanwhile, a higher density ensures more sensors
detect the target at any time, guarding against errors due to reduced
coverage. Also, increased density means estimates of path points
become more resistant to density variation at the local level when
non-uniform placement is used.

C. Adaptive Path-based Target Tracking

The path-based tracking is very effective for tracking targets with
a straight line or near-linear trajectory. The results may well be
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Fig. 15. Estimation errors for a target moving along a circle of curvature
κ=1/300. Baseline path-based tracking vs. centroid.

comparable for targets moving along a line with a small curvature.
But, it is hardly conceivable that this would work well for targets with
a trajectory of a high curvature (see Figure 15). To determine if more
robust path-based tracking is feasible, we have extended the baseline
method so that the window size for past detections can be dynam-
ically adjusted (Procudure 2). Two important parameters are when
to forget (or when to stop forgetting) these points (i.e., is good(p))
and how quickly to forget (i.e., ∆ω). For the experiments, we used
a version of is good(p) implemented using overlapping ranges of
detecting sensors and ∆ω = 1. Note that ∆ω can also be adjusted
dynamically depending on the target’s movement characteristics. The
centroid method is used as the “fallback” method. Figure 16 compares
the adaptive version and the centroid method for the same target in
Figure 15. The adaptive version fares a little better, and its results can
be further improved by employing a more elaborated fallback method.
Figure 17 shows the performance of the adaptive version for targets
with different trajectories and different velocities. The first (a) is for a
fast moving target (i.e., 72 km/h) which changes its direction steadily
and smoothly. Note that as the curvature of the target’s trajectory
increases, the performance of the adaptive version degenerates to that
of the fallback method used (in this case, the centroid method). The
second (b) is for a slow moving target which changes its direction
occasionally but abruptly. We see that the adaptive version loses track
of the target briefly but recovers quickly when the target changes
its direction. We believe the results demonstrate viability of path-
based tracking, given that sensors only provide binary proximity
information that is not always reliable.

Procedure 2 Adaptive path-based target tracking

1: – 2: same as Procedure 1. {Let ω be the current window.}
3: ω := (ω < ωmin)?ωmin:((ω ≥ ωmax)?ωmax : ω)
4: loop
5: Find a line that best fits the path points within w.
6: Use the line to estimate the target’s position p.
7: if (is good(p)) then ω = ω + 1; break; end if
8: if (ω ≤ 0) then use a fall-back for p; break; end if
9: ω := ω − ∆ω

10: end loop

D. Discussion

Errors in path-based tracking with binary proximity sensors come
from multiple sources. Some are determined at the deployment time
– e.g., placement and localization errors. Others are more dynamic;
for example, sampling signals at discrete intervals makes the first and
last detections of a sensor occur away from the exact boundary of
the sensing range. These errors can be managed with some additional
cost. On the other hand, some errors are intrinsic to the sensors
considered in this study. For example, the exact distance from a
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Fig. 16. Estimation errors for the same target as in Figure 15. The adaptive
version vs. the centroid method.

sensor to the target cannot be determined, and the distance must
be estimated from noisy information. Also, detecting the presence of
a target in its vicinity is probabilistic. We have not attempted to take
into consideration all the sources of the errors in the simulation study.
Instead, we have made reasonable assumptions at various levels where
appropriate. Although they limit the applicability of the results to
more general settings, such assumptions help simplify the deployment
scenarios under consideration.

The most critical limitation of the simulation study stems from
the constant velocity assumption. Currently, work is under way
to incorporate variable velocity estimation into the simulator. In
addition, three extensions with increasing complexity are plausible.
The first immediate extension is to adapt the method for n-bit
proximity sensors which provide not only presence/absence of an
object but also an approximate distance to the object. Second, the
path-based tracking can be augmented with selective activation to
conserve energy and lengthen the mean time between failures. Lastly,
the method can be extended to track multiple targets simultaneously,
provided that sensors can distinguish individual targets from one
another. Simple binary proximity sensors cannot tell how many
targets are within their sensing range if the targets are geographically
close.

V. CONCLUSION

This paper proposes a tracking method for use in networks of
binary proximity sensors. The method finds a straight line which
approximates the path of a target during a short period of time, and
uses the line to estimate the target’s current position. Two design
parameters of the method, sensing range and node density, have been
evaluated through a combination of a prototypical implementation
with acoustic sensors and an extensive simulation study. The results
suggest that the path-based tracking is effective for binary sensor
networks with a small sensing range and a high node density. Such
networks are envisioned to be the next generation of wireless sensor
networks.
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