
Instrumenting Icon for
Performance Measurement*

Cary A. Coutant
Ralph E. Griswold

TR 79-9

May 1979

Department of Computer Science

The Un ive r s i t y of Arizona

Tucson, Arizona 85721

*This work was supported by the Nat iona l Science Foundation
under Grant MCS75-21757.

Instrumenting Icon for
Performance Measurement

1. Introduct ion

Several features have been added to the DEC-10 imple
mentation of the Icon programming language [1] to allow per
formance measurement of various aspects of program execu
t ion . During execution of an Icon program, several forms of
data may be gathered and written to f i l e s . Performance i s
monitored only when i t has been requested. Usually, the
request i s made as an option when the program i s t r a n s l a t e d .
Some forms of measurement, however, can be requested at exe
cution time. For d e t a i l s on col lec t ing and in te rp re t ing the
da t a , see Reference 2.

Performance measurement data may be col lec ted in two
ways: in response to events that occur in the program
i t s e l f , or as a r e s u l t of some per iod ic , external sampling.
Events tha t may cause accumulation of data are evaluation of
a port ion of a source-language expression, a l l o c a t i o n ,
expansion, or regeneration of any of the four storage
regions [3] . Sampling i s performed by a special subroutine
that receives control from the operating system per iod i
ca l l y . The sampling routine de tec t s where the program i s
cur ren t ly executing in terms of both source program posi t ion
and runtime system.

2. Tokens

Execution in terms of the source program is monitored
in terms of tokens. A token is the basic syntactic unit of
an Icon program: identifiers, operators, and literals are
examples of tokens. The Icon translator generates a list of
"executable" tokens, tokens that have semantic significance.
For example, the assignment operator (":=") causes a value
to be stored in a variable; a left bracket ("[") might cause
subscripting to occur. These tokens are considered "execut
ing" when the assignment or subscripting operation is being
evaluated. An identifier is considered executing while its
value is being obtained. A right bracket ("]"), however,
has only syntactic significance; no code is executed as a
result of this token.

In the example expressions below, carets appear under
neath the beginning of executable tokens.

- 1 -

count := count + 1

while l i n e := read(f) do

process(l ine)

Note that the l e f t parenthesis i s executed for c a l l s on
source language procedures, but not for b u i l t - i n procedures

Every executable token i s assigned a number, beginning
with 1. The token l i s t generated by the t r ans l a to r i n d i
cates the l i n e number and column where each numbered token
begins in the source program t e x t . This l i s t i s writ ten to
a f i l e , which i s used by several programs tha t postprocess
the measurement da ta .

3. Event Monitoring

The Icon translator and runtime system have facilities
for monitoring two types of events: token execution, and
calls on the storage management system.

When token monitoring is requested, the translator pro
duces code that maintains an internal array of counters.
Each element of this array corresponds to one of the num
bered tokens in the source program. When a token is exe
cuted, the counter corresponding to that token is incre
mented by one. When the program finishes, this array is
written to a file for postprocessing.

Storage management events are tallied on request into
another internal array. Three different events are moni
tored: allocations, expansions, and regenerations of each
of the four data regions used by the Icon system (string
space, string qualifiers, integers, and the heap). In addi
tion to tallying these events, the system also totals, for
each region, the number of elements allocated, the number of
elements recovered by regeneration, and the time spent dur
ing expansion and regeneration. This data is printed in
tabular form after the program has finished.

Allocation requests made of the storage management sys
tem are also monitored on a per-token basis. An internal
array, one element per token, counts the amount of storage
allocated on behalf of each token. This array is also writ
ten to a file at program termination.

4. Sampling

When token monitoring is requested, the translator gen
erates code that posts the number of the currently executing

- 2 -

token in a known global loca t ion . This token number i s t a l
l ied at each sampling period in an in te rna l array of token
samples.

At each invocation of the sampling rou t ine , the current
program counter (pc) i s also ava i l ab le . The pc contains an
address tha t i s e i ther within the generated code or within
one of the runtime system modules. Typical ly , a t l e a s t 95%
of the samples taken are within the runtime system. When pc
samples are cor re la ted with a symbol tab le of the runtime
system, each sample indica tes which module in the runtime
system was ac t ive when the sample was taken.

Since per iodic sampling i s l a rge ly random with respect
to program execution, a large number of samples produces a
reasonable time p ro f i l e of program execution, both a t the
source program level (by token samples) and at the implemen
ta t ion level (by pc samples). When the two sampling methods
are combined, samples of source-level operat ions are
"charged back" to the runtime system modules t ha t implement
the opera t ion . If both token sampling and pc sampling have
been requested, the sampling routine wri tes both the token
number and the program counter to the pc sampling f i l e at
each sampling per iod, so that a postprocessor can analyze
the charge back.

Samples frequently occur during a regenerat ion of one
of the data reg ions . Regenerations genera l ly r e s u l t from
the combined effect of many a l loca t ion requests by many dif-
le ren t tokens, but the time spent in regenerat ion would nor
mally be charged to the few tokens whose requests t r igger
the regenera t ion . Idea l ly , the regeneration time should be
d i s t r ibu ted among a l l tokens which request a l l o c a t i o n s ,
according to the t o t a l amount of space requesed by each
token. As mentioned in Section 3, the to t a l amount of space
requested per token i s monitored. The storage management
system se t s a global f l ag , GCFLAG, during a regenerat ion, so
that samples made during regeneration are charged not to the
cur ren t ly executing token, but to a special token which
absorbs a l l regeneration time. The regenerat ion time can
then be d i s t r i bu t ed among the proper tokens a t termination
of the program.

5. Implementation

Icon i s implemented as two independent systems, a
t r ans l a to r and a runtime l i b r a r y . An Icon source program i s
t rans la ted into a Fortran subroutine consis t ing la rge ly of
c a l l s to runtime l i b r a r y rou t ines . The Fortran subroutine
i s then compiled and linked with a main program and the run
time l i b r a r y , producing an executable program. The main
program performs a system-dependent i n i t i a l i z a t i o n sequence,
c a l l s the generated subroutine, then performs a system-

- 3 -

dependent termination sequence. The main program and the
header of the generated Fortran subroutine are shown in
Appendix A.

Storage management events are accumulated in two ways.
Totals for the number of allocation requests, the number of
elements allocated, the number of regenerations, the number
of expansions, the number of elements recovered by regenera
tion, the time (in milliseconds) spent during regeneration,
and the time spent during expansion are kept on a per-region
basis in individual internal arrays. The size of an element
is peculiar to both the region and the implementation. An
element refers to the basic unit of allocation for each
region: a character (four per word on the DEC-10) in the
string region, a qualifier (two words each on the DEC-10) in
the string qualifier region, or a Fortran integer (one word
each on the DEC-10) in the integer and heap regions.

Allocation requests per token are collected in terms of
machine bits in an integer array ALC. For convenience, ALC
is treated as if subscripting were zero-based. A total of
all allocation requests is kept in ALC(O). At program ter
mination, each element is divided by the number of bits per
word (36 on the DEC-10), and the array is written to a file.

Program counter sampling is performed by the module
CLOCK in the runtime library. If pc sampling is requested,
the initialization sequence calls a routine in the CLOCK
module to start sampling. This routine creates a file for
the sampling data, and enables the DEC-10 software interrupt
system. Once enabled, the operating system interrupts the
running program at fixed intervals (l/60th of a second) , and
calls the sampling routine in the CLOCK module. The value
that was in the program counter just before the interrupt
occurred is stored by the software in an interrupt block.
The sampling routine writes this value to the sampling data
file in the right half of one 36-bit word, then returns from
the interrupt. The termination sequence calls a routine in
the CLOCK module to stop sampling, the interrupt system is
disabled, and the sampling data file is closed. A listing
of the CLOCK module is given in Appendix B.

If any form of token monitoring is desired, the trans
lator must generate extra Fortran code to support it. For
token counting, an integer array T is created local to the
generated subroutine, with one element per source program
token. For each token, there is a sequence of Fortran
statements that executes that token. In front of each such
sequence, the translator places the statement

T(i) = T(i) + 1

where i is the number of the token about to be executed.
Thus, each time a token is executed, a counter in the array

4 -

T i s incremented by one. Prior to returning to the main
program, the runtime system routine ZDUMP i s cal led to write
the array T to a f i l e .

For token sampling, an integer array TSAMP i s a l located
in the common block CTOKEN, with one element for absorbing
regeneration samples, and one element for each source pro
gram token. For convenience, t h i s array i s considered to
have zero-based subscr ip t ing . In the same common block i s
an integer TN, which always contains the number of the
cur rent ly executing token. In front of each sequence of
code tha t executes a token, and at each point where tha t
sequence of code might be re-entered , the t r ans l a to r places
the statement

TN = i

where i is the token number. TN must always contain the
proper token number, since the time of invocation of the
sampling routine is unpredictable and is independent of the
flow of execution. The sampling routine used for pc sam
pling is also used for token sampling: at each interrupt,
the equivalent of the Fortran statement

TSAMP(TN) = TSAMP(TN) + 1

is executed. The value of TN is also written to the pc sam
pling file in the left half of the output word, to allow
token charge back. If GCFLAG is set, however, the
equivalent of the Fortran statement

TSAMP(0) = TSAMP(0) + 1

is executed instead, and zero is written to the pc sampling
file in the left half of the output word. Prior to return
ing to the main program, the runtime system routine ZDUMP is
called to distribute the regeneration samples and to write
the array TSAMP to a file. The regeneration samples are
charged to each token which caused allocation, propor
tionately to the amount of allocation, by the formula

TSAMP(i) = TSAMP(i) + ALC(i) * TSAMP(0) / ALC(O)

where i is the token number, TSAMP(O) contains the total
number of regeneration samples, and ALC(O) contains the
total amount of allocation.

A section of Fortran code from an example program is
given in Appendix C.

The token counting, token sampling, and allocation
request files are ASCII files consisting of one line per
token. Each line contains an integer (string of digits)
corresponding to the number of counts, samples, or words

- 5 -

al located for the token represented by tha t l i n e .

6. Ar t i fac t

Measuring the performance of a program imposes an addi
t ional cost on the user over that of running the program
with no measurement. This cost i s manifested in four ways:
addi t ional execution t ime, larger object program, f i l e space
for the measurement da t a , and cost of postprocessing the
da ta .

Sampling i s the major cause for an increase in execu
t ion time. A typica l program might take up to a 50% longer
to execute due to token and program counter sampling. Token
counting without sampling causes an increase of about 20%.

Token monitoring code lengthens the resu l t ing Fortran
program by about 50% in terms of number of l i n e s , and the
corresponding re loca table object f i l e by about 40%.

There are five f i l e s tha t are d i r e c t l y re la ted to per
formance measurement. The token l i s t , token counting f i l e ,
token sampling f i l e , and a l loca t ion request f i l e each
require one l i n e per source program token, and the i r s izes
are independent of the running time of the program. The pc
sampling f i l e requi res one word for each sample, about 60
words per CPU second tha t the program runs.

Most of the postprocessors have l i t t l e to do but format
the da t a . This usually involves using the token l i s t to
co r re la te data f i l e s with the or ig inal source t e x t . These
operat ions are r e l a t i v e l y inexpensive, since the data f i l e s
are fixed in length . Charge back of source-program tokens
to implementation rou t ines , however, i s a f a i r l y expensive
process . The pc sampling f i l e i s genera l ly ra ther l a r g e ,
since long runs are needed to accurately p r o f i l e the pro
gram.

7. Acknowledgements

Tim Korb f i r s t implemented token counting, and Walt
Hansen adapted i t to the present system. Dave Hanson
developed the storage management system, and most of the
re la ted monitoring fea tu res .

- 6 -

References

1. Griswold, R. E., and D. R. Hanson. Reference Manual
for the Icon Programming Language, Technical Report TR
79-J, Department of Computer Science, The University of
Arizona, Tucson, January 1979.

2. Griswold, R. E., and C. A. Coutant. Tools for the
Measurement of Icon Programs, Technical Report TR 79-
10, Department of Computer Science, The University of
Arizona, Tucson, April 1979.

3. Hanson, D. R. A Portable Storage Management System for
the Icon Programming Language, Technical Report TR 78-
16a, Department of Computer Science, The University of
Arizona, Tucson, February 1979.

- 7 -

Appendix A — Main Program and ICON Header

Subrout ine IMAIN, w r i t t e n in R a t f o r , appea r s below.
IMAIN i s e f f e c t i v e l y the Icon main program, s i n c e the a c t u a l
main program i s implementa t ion-dependent , and does nothing
except c a l l IMAIN. The v e r s i o n of IMAIN shown below i s a l so
implementa t ion-dependent ; i t has been modified l o c a l l y to
provide for the measurement o p t i o n s .

i nc lude idef
i n c l u d e adef
define(PCOPT,l)
define(TOPT,2)
define(MOPT,4)
define(GTPRG,3) # g e t t a b t a b l e number for job name
define(THISJOB,-l) # index for c u r r e n t job in g e t t a b

lOimain - - Icon main program.

subroutine imain

character arg(60)
i n t e g e r i , j , n , junk
common / c t o k e n / t n , t samp(l)
i n t e g e r t n , tsamp
common / c a l c / a l c (l)
i n t e g e r a l e
i n t e g e r t o c k , g e t a r g , c t o i , l o c , g e t t a b , s i x t o c
i nc lude c s i z e s
i n c l u d e cparm

a l c o f f (l) = l o c (a l c (l)) - l o c (a l c o f f (1)) + 1
t n o f f (l) = l o c (t n) - l o c (t n o f f (1)) + 1
j b v e r (l) = 0137 - l o c (j b v e r (1)) + 1
gef lag = 0
i f (ge ta rg (1 , a r g , 60) "*= EOF & a r g (l) == MINUS & arg(2) == LPAREN) {

c a l l d e l a r g (l)
for (i = 3; a r g (i) ~= EOS & a r g (i) ~= RPAREN; i = j) {

j = i + 1
n = c t o i (a r g , j)
i f (a r g (i) == LETM)

j b v e r (j b v e r (1)) = j b v e r (j b v e r (1)) | MOPT
e l s e i f (a r g (i) == LETT)

j b v e r (j b v e r (1)) = j b v e r (j b v e r (1)) | TOPT
e l s e i f (a r g (i) == LETP)

j b v e r (j b v e r (1)) = j b v e r (j b v e r (1)) | PCOPT
e l s e i f (a r g (i) == LETS & n > 0)

s t r s i z = n
e l s e i f (a r g (i) == LETQ & n > 0)

s q l s i z = n
e l s e i f (a r g (i) == LETI & n > 0)

i n t s i z = n
e l s e i f (a r g (i) == LETH & n > 0)

heps iz = n
e l s e i f (a r g (i) == LETK & n > 0)

8 -

}
call
tn =

stksiz = n
else if (arg(i) == LETL)

intlb = n
else if (arg(i) == LETU)

intub = n
}

apr
1

tsamp(l) = 0
junk = sixtoc(gettab(GTPRG, TE
call tick(tn)
call icon
call tock
if (jbver(jbver(l)) >= 4)

call zpstat
return

end

T H I S J O B) , p r g n a m , NAMSIZ)

S u b r o u t i n e ICON i s t h e g e n e r a t e d c o d e f rom t h e I c o n
t r a n s l a t o r . The p a r t s o f t h e s u b r o u t i n e w h i c h c o n t a i n c o d e
g e n e r a t e d f o r a l l I c o n p r o g r a m s a r e shown b e l o w . Code
c o r r e s p o n d i n g t o e a c h s o u r c e - p r o g r a m p r o c e d u r e f o l l o w s t h e
RETURN s t a t e m e n t . The s t a t e m e n t l a b e l l e d 2 a c t s a s a d i s
t r i b u t i o n p o i n t f o r a l l s o u r c e - l e v e l t r a n s f e r s o f c o n t r o l .

SUBROUTINE ICON
COMMON/CMAIN/SIGNAL,LABEL,FLABEL
INTEGER SIGNAL,LABEL,FLABEL
INTEGER XCMP,XCOMP,XLCMP,XNCMP
COMMON/CTOKE N/TN,TSAMP(11)
INTEGER TN,TSAMP
COMMON/CALC/ALC(11)
INTEGER ALC
INTEGER TCOUNT(l l) , T (1 0)
EQUIVALENCE(TCOUNT(2),T(1))
INTEGER S (2 2) , P (1 2) ,G(2) , 1 (1) , L (1)
REAL R (l)
DATA S / 2 1 , 1 0 9 , 9 7 , 1 0 5 , 1 1 0 , 1 0 0 0 2 , 1 0 8 , 1 0 5 , 1 1 0 , 1 0 1 , 1 0 0 0 2 , 1 1 4 , 1 0 1 , 9 7 , 1 0

* 0 , 1 0 0 0 2 , 1 1 9 , 1 1 4 , 1 0 5 , 1 1 6 , 1 0 1 , 1 0 0 0 2 /
DATA G / 1 , 1 /
DATA P / l 1 , 1 , 0 , 4 , 3 5 7 , 1 3 , 0 , 0 , 1 , 6 , 0 , 0 /
DATA 1 / 0 /
DATA L / 0 /
DATA R / 0 . 0 /
DATA TCOUNT,TSAMP,ALC,TN/33*0 ,1 /
CALL S I N I T (S , G , P , I , R , L)
CALL XGLOBL(l)
CALL XDEREF
CALL XCPROC
TSAMP(2)=0

- 9 -

ALC(2)=0
CALL XINVOK(3,0)
GOTO 2

3 CALL ZDUMP(TCOUNT,TSAMP,ALC,ll)
RETURN

generated code for each Icon procedure appears here

1 LABEL=FLABEL
2 GOTO (1 , 2 , 3 , 4 , 5) , L A B E L

CALL SYSERR(29HICON: ILLEGAL INTERNAL LABEL.)
END

- 10 -

Appendix B — ZCLOCK

The module ZCLOCK contains the subroutines TICK and
TOCK, which enable and disable the clock interrupt, respec
tively. The actual sampling routine begins at the label
TKR, which receives control at each clock interrupt when
enabled. MAKNAM, CREATE, CLOSE, and WRITEF are subroutines
in the Ratfor I/O system.

title clock interrupt routines

search uuosym
search ioparm
sail
purge close , open
twoseg
reloc 400000

wordmode==10*','d3 6
pcopt==l
tkopt==2
EOS=="dl0002

prgnam==cparm##
gcflag= = cparm## + "xdlO

def ine .stop(msg) <
j r s t [o u t s t r [asciz/msg

/]
e x i t]

>

t i c k (c t o k e n) - t e s t r i g h t h a l f of . j b v e r (e d i t number , s e t by l i n k - 1 0)
B i t 34 i s one i f t o k e n sampl ing i s s e l e c t e d , b i t 35 i s one i f
pc sampl ing i s s e l e c t e d . C r e a t e s name.mon f o r pc s a m p l i n g , t u r n s
on c l o c k f o r e i t h e r . The argument i s t h e a d d r e s s o f t h e t o k e n
c o u n t i n g a r r a y .

t i c k : : movei t l , @ (a)
movem t l , c t o k e n
h r r z s t l , . j b v e r
t r n n t l , p c o p t

j r s t t i c k l
movem t l , p c f l a g
movei a , [e x p <-4 , , 0 > , p r e f i x , p r g n a m , s u f f i x , f n a m e] + 1
p u s h j p,maknam##
movei a , [e x p < - 2 , , 0 > , f n a m e , [w r i t e + w o r d m o d e]] + 1
p u s h j p , c r e a t e # #
c a i n r , e r r

. s t o p < c a n ' t c r e a t e m o n i t o r f i l e >
movem r , m o n f i l e
h r r z t l , . j b v e r

t i c k l : t r n e t l , t k o p t
movem t l , t k f l a g

- 11 -

t r n n t l , p c o p t + t k o p t
popj p ,

movei t l , i n t v e c
p i i n i . t l ,

. s t o p < c a n ' t i n i t p r i o r i t y i n t e r r u p t >
movsi t l , (p s . f o n)
p i s y s . t l ,

. s t o p < c a n ' t t u r n on p r i o r i t y i n t e r r u p t >
move t l , [p s , f a c + i n t a r g]
p i s y s . t l ,

. s t o p (c a n ' t s t a r t t h e c lock>
popj p ,

t o c k () - t u r n s o f f c l o c k i f i t was o n , and c l o s e s i con .mon i f
pc sampl ing was b e i n g d o n e .

t o c k : h r r z
t r n n

p o p j
move
p i s y s .

j f c l
s k i p n

p o p j
m o v e i
p u s h j
p o p j

r , . j b v e r
r , p c o p t + t k o p t
P f
t l , [p s . f r c + i n t a r g]
t l ,

p c f l a g
Pr
a , [e x p < - l , , 0 > , m o n f i l e] + 1
p , c l o s e # #
P .

tkr - processes clock interrupts. For pc sampling, writes out
current pc; for token sampling, increments token count array,

t k r :

t k r l :

t k r e n d :

movem
move
b i t
s k i p n

j e s t
h r r z
c a i l

j r s t
s k i p e

h r l
movem
m o v e i
p u s h j
s k i p n

j r s t
move
s k i p n

add
a o s
m o v s i
b i t
d e b r k .

. s t o p

z , s a v e
z , [1 , , s a v e + l]
z , s a v e + 1 7
pc f 1 ag
t k r l
t l , o l d p c
t l , t i c k
t k r e n d
g e f l a g
t l , @ c t o k e n
t l , p c o u t
a , [e x p < - 3 , , 0 > , p c o u t , [1] , m o n f i l e] + 1
p , w r i t e f # #
t k f l a g
t k r e n d
t l , c t o k e n
g c f 1 ag
t l , (t l)
l (t l)
1 7 , s a v e
1 7 , 1 7

< d e b r e a k f a i l e d 1>

- 12 -

.stop <debreak failed 2>

reloc

intvec: tkr
oldpc: block 3

intarg: .pcapc
block 2

p r e f i x : exp
s u f f i x : exp
fname: b l o c k
m o n f i l e : b l o c k
c t o k e n : b l o c k
p c o u t : b l o c k
p c f l a g : 0
t k f l a g : 0

"d" ,
•I ii
30
1
1
1

II c II
a r

"m" ,
" k " , " : " , EOS
" o " , " n " , EOS

save : block

end

20

- 13 -

Appendix C — Sample Fortran Code

The Icon program below i s shown with each executable
token marked. Below tha t i s the Fortran code generated for
the program, excluding the par t s shown in Appendix A. Note
tha t no token monitoring code i s generated for tokens 5 or 9
(the l e f t parentheses following read and w r i t e) , since these
correspond to b u i l t - i n system functions.

procedure main
while l i ne := read(Sinput) do

write (l ine)

end

4 CONTINUE
CALL XLINE(2)
T(1)=T(1)+1
TN=1
CALL XLPBEG

23002 CALL XMARK(5)
CALL XLINE(2)
T(2)=T(2)+1
TN=2
CALL XLOCAL(l)
T(6)=T(6)+1
TN=6
CALL XKEYWD(605)
T(4)=T(4)+1
TN=4
CALL XREAD
IF(SIGNAL.EQ.0)GOTO 1
T(3)=T(3)+1
TN=3
CALL XASG
IF(SIGNAL.EQ.O)GOTO 1

5 CALL XDRIVE
IF(LABEL.NE.0)GOTO 2
TN=1
CALL XPOP
IF(SIGNAL.EQ.0)GOTO 23001
CALL XLINE(3)
T(10)=T(10)+1
TN=10
CALL XLOCAL(l)
CALL XDEREF
T(8)=T(8)+1
TN=8
CALL XWRITE(l)
T(7)=T(7)+1
TN=7

- 14 -

23001

CALL
GOTO
TN=1
CALL
CALL
CALL

XPOP
23002

XLPEND
XPOP
XPNULL

SIGNAL=1
CALL
CALL
GOTO

XLINE(4)
XRETRN
2

- 15 -

