A Pattern-Matching Laboratory; Part | — An Animated
Display of String Pattern Matching*

Kenneth Walker
Ralph E. Griswold

TR 86-1

January 2, 1986

Department of Computer Science
The University of Arizona

Tucson, Arizona 85721

*This work was supported by the National Science Foundation under Grant DCR-8401831.

A Pattern-Matching Laboratory; Part] — An Animated
Display of String Pattern Matching

1. Introduction

As discussed in [1], string pattern matching in the style of SNOBOL4 and Icon is easy to understand in a
general, intuitive way. This accounts for the ease with which it can be learned and used. However, the process
by which pattern matching takes place is generally poorly understood. Consequently, the implementation of
pattern matching traditionally has been ad hoc; generalizations and extensions to it have been limited by the
lack of a general and coherent implementation model. .

There have been numerous approaches to describing pattern matching, including “bead diagrams” [2],
cursor-position transformations [3], formal algebraic models [4], denotational semantics [5. 6], axiomatic
semantics [7], as well as implementation models [8-11]. These approaches have been useful in explicating pat-
tern matching, but none of them has been entirely successful in providing the programmer or implementor
with a clear understanding of the pattern-matching process.

These considerations have motivated the development of a pattern-matching “laboratory™ that is designed
to serve as a programming environment for the design and analysis of pattern-matching facilities. This report
describes the first step in the development of the laboratory — a general model for pattern matching and a
tool that provides an animated display of the string pattern matching.

This tool is based on Icon’s string scanning facility, but includes as well most of SNOBOL4's pattern-
matching repertoire. The reader should be familiar with Icon [12]. Some knowledge of SNOBOL4 [2] is help-
ful also.

2. A Model of String Scanning
The Icon string-scanning expression has the form

expr; ? expr,

where expr, is the subject expression that provides a subject that is the focus of attention for the evaluation of
the matching expression expr,. During scanning, the keyword &subject contains the value being scanned and
&pos is the position in &subject where matching expressions apply.

The string-scanning expression is a control structure. This is in contrast to operations and function calls, in
which all arguments are evaluated before the operation or function is performed, since between the time that
expr, is evaluated and expr, is evaluated, the two “state variables™ &subjectand &pos are changed. The value
of expr, provides the value of &subjectand &pos is set to one, indicating that scanning begins at the begin-
ning of &subject. After these variables are set, expr, is evaluated: it typically examines the value of &subject
and changes the value of &pos in the process. &subjectand &pos are global variables: their values constitute
an environment for scanning. The outcome of the scanning expression is the outcome of expr,.

Even though expr, ? expr, is a control structure. it can be modeled using procedures. A naive model is
expr; ? expr, — Bscan(expr;) & expr,

The procedure Bscan intervenes in the evaluation process and sets the values of &subject and &pos before
expr, is evaluated. In this naive model, the operation of Bscan corresponds to the following procedure:

procedure Bscan(el)
&subject = e1
&pos =1
return

end

This model illustrates how simple the string-scanning expression is — any actual pattern matching takes place
during the evaluation of expr, and the only function of the string-scanning expression itself is to set the values
of the global variables in the scanning environment.

This naive model, which is equivalent to the mutual evaluation
(Bscan(expr,), expr,)

does not account for the fact that string-scanning expressions can be nested or that several can occur in
mutual evaluation so that several scanning environments can exist simultaneously at any point in program
execution. In order for string scanning to behave in a useful and coherent way, the values of &subject and
&pos are saved prior to assigning new values to them in a string-scanning expression, and they are restored
when a string-scanning expression is complete. Furthermore, a string-scanning expression can produce a
result but be resumed to produce another, so it is necessary to reset &subject and &pos if a scanning expres-
sion is resumed. To accomplish this, a more general model is needed:

expr; ? expr, — Escan(Bscan(expr,), expr,)

The operation of these functions is illustrated by the following procedures in which records of type ScanEnvir
hold the values of &subject and &pos for scanning environments:

record ScanEnvir(subject, pos)

procedure Bscan(el)
local OuterEnvir
OuterEnvir ;= ScanEnvir(&subject, &pos)
&subject = o1
&pos = 1
suspend QuterEnvir
&subject = OuterEnvir.subject
&pos = OuterEnvir.pos
fail
end

procedure Escan(QuterEnvir, e2)
local InnerEnvir
InnerEnvir ;= ScanEnvir(&subject, &pos)
&subject := OuterEnvir.subject
&pos = OuterEnvir.pos
suspend e2
&subject := InnerEnvir.subject
&pos = InnerEnvir.pos
fail
end

In this formulation, expr, is evaluated first and provides the argument to Bscan that is used for the new
value of &subject. In Bscan, the current values of &subject and &pos are saved in OuterEnvir before the
new ones are set. Bscan then suspends with OuterEnvir, which is passed on to Escan. However, expr, is
evaluated first and may change the values of the state variables before Escan is called. If evaluation of expr,
succeeds, Escan is called with two arguments: the outer scanning environment that was in effect before
Bscan was called, and the result produced by the evaluation of expry.

Escan saves in InnerEnvir the scanning environment as it was left by the evaluation of expr,, restores the
outer environment, and suspends with the result produced by the evaluation of expr,.

If the scanning expression occurs in a context in which it is resumed, the evaluation of Escan picks up
after the suspend expression, and &subject and &pos are restored to the values they had when expr, pro-
duced its previous result. If expr, produces another result, as in

expr, 7 (&pos =1 | 2)
Escan is called again; the situation is the same as it was when expr, produced its previous result.

If expr, does not produce another result, Bscan is resumed and picks up evaluation after its suspend
expression. It restores the outer scanning environment and fails. At this point, expr, is resumed. If it produces
another result, as in

(s1 | s2) ? expr,

Bscanis called again and the process described above is repeated.

3. Matching Functions

As illustrated above, the evaluation of a matching expression may change the values of the state variables
in the current scanning environment. While this may be done by explicit assignment to &subject and &pos,
changes are usually confined to &pos and normally occur as a side effects of evaluating the matching func-
tions: tab(i), which sets &pos to i, and move(i), which adds ito &pos.

These matching functions obey a protocol that invoives data backtracking of &pos. In this protocol,
which effectively defines “matching”, a function changes the value of &pos only if it is successful and, if
resumed, restores &pos to the value it had when the function was called. Thus, a matching function has no
net effect on the scanning environment unless it “matches”.

This protocol is easily cast in a form that allows matching procedures to be formulated:

procedure p(...)
suspend &pos <- new position
faii

end

If a call of such a procedure produces a result and is resumed, the reversible assignment operation automati-
cally restores the previous value of &pos.

In addition to the data backtracking protocol, matching expressions in Icon also conform to the conven-
tion of returning the substring of &subject between the values of &pos before and after they match, thus
returning the “matched” substring.

This convention can be added to the backtracking formulation above as follows:

procedure p(...)
suspend &subject[.&pos:&pos <- new position |
fail
end
The first instance of &pos is explicitly dereferenced so that its value is obtained before a new value is assigned
to it.

Using this model, the functions tab(i) and move(i) can be written as procedures as follows:
procedure tab(i)
suspend &subject[.&pos:&pos <-]
tail
end

and

procedure move(i)
suspend &subject[.&pos:&pos <- &pos + i]
fail

end

4. Trees of Scanning Environments

Prior to the execution of an Icon program, the values of &subject and &pos are established as if the fol-
lowing expressions were evaluated:

&subject = ""
&pos = 1

This situation may be viewed as starting program execution with an expression of the form
"7 main()

Thus, there is always at least one scanning environment in existence during the course of the execution of an
Icon program. Additional scanning environments come into existence as scanning expressions are evaluated.
A scanning environment remains in existence until its matching expression fails or until it is no longer possible
to resume it. It may become impossible to resume an expression because control backtracking is prevented,
which occurs at well-defined places. Examples are:

e After the evaluation of the control expression in a control structure, such as for expr; in
it expr, then expr,

o After the evaluation passes from one expression in a compound expression to another, as for expr, in
{ expr); expr, }

® Onreturn from a procedure call, as for expr; in

return expr,
Expressions that occur in such contexts are called bounded expressions. In particular, a bounded expression
can produce at most one result.

In general, there is a tree of scanning environments that is rooted in the initial scanning environment asso-
ciated with the initiation of program execution as described above. There are two ways that the tree of scan-
ning environments can grow: horizontally, as in expressions such as

(expr; ? expr,, expr; ? expr,, ...)
and vertically, as in expressions such as
(expr; ? (expry ? (expry ? (expr, ...))))

In horizontal growth of the scanning environment tree, a scanning expression completes and becomes dor-
mant during the evaluation of another expression in the current bounded expression. In vertical growth,
before a scanning expression completes, another scanning expression that is “nested” within it is evaluated.
Vertical growth usually appears in programs in the form of matching procedures that themselves contain scan-
ning expressions, as in

expr; 7 p()

where p as the form

procedure p()
expr, ? expr;

end

Let a scanning environment be represented formally as a pair
<&subject, &pos>
Then the tree of scanning environments is rooted in
<"" 1>
As an example, consider the evaluation of the following expression:
("abc” ? move(2 | 1)) & ("defg” ? (tab(4) ? move(1 | 2)))
Assuming that there is no other surrounding expression, as a result of the evaluation of
"abc” ? move(2 | 1)

the scanning environment tree becomes

<IIII' 1>

<"abC", 3>

When
"abc"” ? tab(2 | 1)

suspends, its scanning environment becomes dormant, and
"defg” ? (tab(4) ? move(1 | 2))

is evaluated. The tree of scanning environments grows horizontally. After the evaluation of tab(4), the tree
is:

<un’ 1>
<"abC", 3> <ndefgn ,4>

Evaluation of the nested scanning expression then causes the tree of scanning environments to grow vertically:

<Il ”, 1 >
<"abc", 3> <"defg"” 4>
- <"def", 2>

If the expression

("abc” ? move(2 | 1)) & (“defg” ? (tab(4) ? move(1 | 2)))

constitutes a complete bounded expression, its evaluation is complete at this point, and the tree of scanning
environments reverts to a single root node. However, if the expression above appears in a context that causes
it to be resumed, as in

every ((“abc” ? move(2 | 1)) & ("defg” ? (tab(4) ? move(1 | 2))))

then the expression move(1 | 2) is resumed and the last scanning environment is changed:

<Il ”n , 1 >
<"abc”, 3> <"defg" 4>
<"def", 3>

Further resumption produces no new result for this expression, resumption of tab(4) produces no new result,
the second scanning expression in the mutual evaluation produces no new result, and move(2 | 1) in the first
scanning expression in the mutual evaluation is resumed. At this point, the scanning environment tree again
has the form

<"", 1>

<"abC", 3>
The second result for move(2 | 1) changes this environment to

<nu' 1>

<"abC", 2>

At this point, the second scanning expression in the mutual evaluation is evaluated again, and the tree of scan-
ning environments grows again in a fashion similar to that illustrated above. The tree of scanning environ-
ments reverts to a single root node only when all alternatives in the mutual evaluation have been produced.

Note that all the nodes along the right edge of the tree of scanning environments correspond to expressions
whose evaluation is incomplete and are “active”, while all other nodes correspond to dormant expressions that
may produce another result if they are resumed because of failure of expressions corresponding to nodes to
their right.

5. The Animated Display

The program Cinema runs Icon programs and provides a display of string scanning that shows the pro-
gram with scanning expressions highlighted, their scanning environments, and the results produced by match-
ing functions. The user may step through scanning events, one by one, or allow the program to run without
interruption, providing an animated display of string scanning. A history of display commands can be saved
so that the display can be repeated without re-running the program. ‘

In addition to Icon’s built-in matching functions, a library of matching procedures corresponding to SNO-
BOLA4 patterns is available [13] and the user can write additional matching procedures.

Cinema runs on Sun Workstations using Suntools [14] for window management. The Cinema display is
controlled by using standard mouse functions.

5.1 Overview
A typical display is:

LOeR) amLDQL, 3 YN SN DN E) s BRI Nk T I AN R 1 AR I S R N T P BN SRS pra b ARG L

free } (manual step) (quit) .

level: @ state: svaluatin procedure main()
sﬁ;ject: "ﬁ : J every (("abc" ? move(2 | 1)) &

("defg" 7?7 (tab(4) m move(l | 2))))
end

level: 1 state: suspended
subject: "abc"
T

move: "ab"

level: 1 state: evaluating
subject: "defg"
T

tab: “"def"

1 2 : evaluating

The top portion of the display is an options menu that allows the user to control Cinema. The right portion
contains the program, while scanning environments appear at the left.

A sample Cinema session, showing various aspects of the display. is given in the appendix.

5.2 The Program Display

The program is displayed as it appears in the source file. Because of the limited size of the display, portions
of the program may not appear in the window. The usual Suntool window functions can be used to adjust the
position and size of the window during the display.

The scanning expression that is currently being evaluated is indicated by outlining its scanning operator. as
illustrated in the example above.

5.3 Scanning Environments

Scanning environments are shown starting with the root environment at the top, and with the currently
active environment outlined.

Four pieces of information are displayed for each scanning environment:
(1) thelevel
(2) thestate of the scanning expression
(3) thevalue of &subject

(4) the value of &posshown as an arrow
(5) the name of the last matching procedure to produce a result together with that result.

There may be more than one window at a given level, corresponding to scanning environments at the same
level in the tree.

As string scanning progresses, the values in the current scanning environment may change. Each such
change corresponds to an event in the scanning process. The possible events are:

(1) beginning the evaluation of a scanning expression
(2) achange in the value of &subject or &pos

(3) return of a result by a matching expression

(4) suspension of a scanning expression

(5) resumption of a scanning expression

(6) failure of a scanning expression

(7) removal of a scanning environment as a result of the completion of the bounded expression in
which it occurs.

5.4 The Options Menu
The options menu consists of three components:
(1) aspeed control
(2) a manual/step option
(3) aquitoption

The speed control introduces a delay in the operation of Cinema. It ranges from infinite delay (stopped) to
free running, in which case the speed is limited by the speed of program execution (which is slowed by driv-ing
the display). The intermediate speeds correspond to introducing delays of 2, 1, and 0.5 seconds, respec-tively,
between the display of events. Note that a change in the value of &pos during the evaluation of a
matching function constitutes an event in addition to the one for the function’s result.

The speed control initially is in the stopped position. The display can be started by selecting another speed
setting or by selecting the manual option, which runs the program until the next event in a scanning process.

5.5 Running Cinema
Cinema is run as follows:

Cinema [options | name [arguments]

where name is an Icon program file without its .icn suffix. The available options are:

-¢ Compile the program to be displayed. In the absence of this option, the program is not compiled
but is assumed to have been compiled previously.

-s Save a history of the display commands so the the display can be re-run without running the pro-
gram. The history file is name.ste. In the absence of this option, the display commands are not
saved.

-n Do not display the scanning events. In the absence of this option, scanning events are displayed.
Cinema must be run under Suntools if the scanning events are displayed.

-h Run the display from commands previously saved by the -8 option.
For example,

Cinema -¢c -s convert

compiles and executes the program in convert.icn, displaying the results and saving a history of the display
commands.

Cinema creates a window for the display in front of the current window. When the cursor is positioned in the
Cinema window, the display is controlled as described above, except that when the cursor is over the left

8-

subwindow, the left mouse button is redefined. In this subwindow, placing the cursory over the display of an
environment and pushing the left mouse button causes the corresponding scanning operation to be
highlighted in the program.

Standard input to a program being run by Cinema is entered with the cursor positioned in the window
that initiated Cinema. Standard output and error output are written to this window also.

6. User-Defined Matching Procedures

As described in Section 3, it is easy to write matching procedures that obey the same protocol and conven-
tions as built-in matching functions. While the built-in matching functions have been modified to provide the
display of the scanning events they produce, it is necessary to use the function Display in user-defined match-
ing procedures. This function has the form

Display(s, label)

where s is the string produced by the matching procedure and label is an optional label that is displayed to the
left of s in the scanning environment window. Display returns the value of s.

The function Display is used at the point in a user-defined matching procedure at which the result is pro-
duced. For example, a matching procedure Arb that models the SNOBOL4 pattern ARB and matches succes-
sively longer strings at the current position could be written as

procedure Arb()
suspend Display(&subjec{.&pos:&pos <- &pos to sgsubject + 1], "Arb: ")
fail

end

7. The Implementation

Cinema preprocesses the user’s Icon program to produce a corresponding program that is run with a library
of Icon procedures to support the display of scanning. An augmented Icon run-time system utilizing Icon’s
personalized interpreter system [15] provides the necessary functions to capture the events in the scan-ning
process and to communicate with Cinema. Cinema is written in C so that it can use the Suntools win-
dow system.

7.1 Organization

Cinema starts by creating two pipes for communication between it and the Icon program. A child process is
forked and the file descriptors of the pipes are placed in environment variables. The Icon program then is
executed.

If the user has specified the creation of a history file, the name of the file is sent over the pipe from Cinema
to the Icon program; otherwise an empty string is sent.

If the user has requested a display, the string "y” is sent over the pipe (the Icon program sends the display
commands back); otherwise the string "n" is sent.

Whenever Cinema wants another display command from the program, it sends a synchronization signal.
newline, to the program and then does a read from the other pipe. When the Icon program is ready to send a
display command, it waits for a synchronization signal so that it does not get ahead of the display.

When displaying from a history file, Cinema reads from the file instead of from the pipe to the program.
Synchronization signals are written to a dummy file.

7.2 Preprocessing

The Icon program is preprocessed for two reasons: to convert scanning expressions into nested procedure
calls according to the modeldescribed in Section 2 and to enclose bounded expressions in procedure calls so that
scanning environments can be removed when evaluation of a bounded expression is complete. The
preprocessor was constructed using the variant translator system described in [16]. For a scanning expression,

—9-

the following translation is performed:
7(expr; 7 expr,) = Escan(Bscan(r(expr), col, line), T(expr,))

where 7(expr) denotes the translations performed by the preprocessor. A similar translation is performed for
augmented scanning expressions. In this translation, col and line are the column and line numbers of the ?
operation in the source program. These extra arguments are used by Bscan to determine the location of the
current scanning operator, so that it can be outlined.

Cinema maintains a tree of scanning environments. Procedures for removing scanning environments
when the evaluation of a bounded expression is complete are provided as illustrated for the if-then expres-
sion:

r(it expr, then expr;) = it Clear(Level(), r(expr))) then r(expry)

The procedure Level is evaluated first and increments the level of nesting in bounded expressions. When
evaluation of the bounded expression expr, is complete, Clear removes any scanning environments created in
the bounded expression and decrements the level of nesting in bounded expressions. Note that if expr, fails,
any scanning expressions in it must also have failed and been removed. In this case, Level is resumed and
decrements the level of nesting in bounded expressions. These procedures have no affect on the display if they
do not enclose scanning expressions.

The overall result of preprocessing is illustrated by the following procedure

procedure check(s)
if s ? any(&ucase) then return count(s)
else return 0

end

whose preprocessed counterpart is

procedure check(s)
Clear(Level(), if Clear(Level(), Escan(Bscan(s, 9, 2), any(&ucase}))
then return Clear(Level(), count(s))
else return Clear(Level(), 0))
end

7.3 Library Procedures

In addition to the procedures Bscan, Escan, Clear, and Level mentioned above, there are a number of
other procedures that are included in the library that is loaded with the preprocessed user program. These
include Display mentioned in Section 6 as well as procedures called by Bscan and Escan to control the
display.

In order to display the results produced by the matching functions tab and move, these functions are over-
loaded by Icon procedures that perform the same operations but also call Display. The string matching
operation =S is converted into a corresponding procedure by the preprocessor.

7.4 Capturing Scanning Events

The procedures Bscan, Escan, and Clear handle events associated with the creation of scanning environ-
ments, their suspension or failure, and removal on the completion of a bounded expression. The results pro-
duced by matching procedures are handled by Display.

The two other scanning events that have to be captured are the assignments to &pos and &subject. These
events are handled in the personalized interpreter by modifications to the routines that handle keyword
assignments.

-10 -

Acknowledgements

John Placer designed and implemented an earlier version of a cinematic display of string scanning, includ-
ing the use of the history feature.

Dave Hanson and Janalee O'Bagy provided several suggestions about various aspects of Cinema and pro-
vided helpful advice on the presentation of the material in this report.

References
1. R. E. Griswold, Understanding Pattern Matching — A Cinematic Display of String Scanning, The
Univ. of Arizona Tech. Rep. 83-14a, Feb. 1984.

2. R. E. Griswold. J. F. Poage and 1. P. Polonsky, The SNOBOL4 Programming Language, Prentice-Hall,
Inc., Englewood Cliffs, NJ, second edition, 1971.

3. J. F. Gimpel, “A Theory of Discrete Patterns and Their Implementation in SNOBOL4”, Comm. ACM
16, 2 (Feb. 1973), 91-100.

4. A. C. Fleck, “Formal Models for String Patterns”, in Current Trends in Programming Methodology;
Data Structuring, vol. 1V, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1978, 216-240.

5. R. D. Tennent, “Mathematical Semantics of SNOBOL4", Proceedings of the ACM SIGACT News-
SIGLAN Symposium on the Principles of Programming Languages, 1973, 95-107.

6. A. De Bruin. Operational and Denotational Semantics Describing the Matching Process in SNOBOLA,
Afdeling Informatica, Mathematisch Centrum, Amsterdam, 1980.

7. M. M. Siegel. Proving Properties of SNOBOL4 Patterns, Doctoral Dissertation, Cornell University.
1980.

8. W. M. Waite, Implementing Software for Non-Numeric Applications, Prentice-Hall, Inc., Englewood
Cliffs, NJ, 1973.

9. F. C. Druseikis and J. N. Doyle, “A Procedural Approach to Pattern Matching in SNOBOL4”,
Proceedings of the ACM Annual Conference, 1974, 311-317.

10. J. N. Doyle, A Generalized Facility for the Analysis and Synthesis of Strings and a Procedure- Based
Model of an Implementation, SNOBOL4 Project Document S4D38, University of Arizona, Feb. 1975.

11. P. Emanuelson, Performance Enhancement in a Well-Structured Patiern Maitcher Through Partial
Evaluation, PhD Thesis, Linkoping University, 1980.

12. R. E. Griswold and M. T. Griswold, The Icon Programming Language, Prentice-Hall, Inc., Englewood
Cliffs, NJ. 1983.

13. R. E. Griswold, The Icon Program Library; Version 5.10, The Univ. of Arizona Tech. Rep. 85-18, Aug.
198S.

14. Sun Micorsystems, Inc., Command Reference Manual for the Sun Workstation; Suntools(1), 1985.

15. R. E. Griswold and W. H. Mitchell, Personalized Interpreters for Version 5.10 of Icon, The Univ. of
Arizona Tech. Rep. 85-17, Aug. 1985.

16. R. E. Griswold, The Construction of Variant Translators for Icon, The Univ. of Arizona Tech. Rep. 83-
19a, June 1984.

-1 -

Appendix — A Sample Cinema Session

The display produced by Cinema depends for its effectiveness on user control and in some situations on the
visual impression of progressing rapidly through a number of events. These effects cannot be captured in a
printed document, but some understanding of the nature of the display can be acquired from the following
example, which shows most of the scanning events that occur during the execution of a simple program.

The program counts the number of lowercase vowels in words that begin with an uppercase letter:

procedure main()
let ;= &lcase ++ &ucase
total := 0
while line := read() do
line ? while tab(upto(let)) do
total +:= check(tab(many(let)))
write(total)
end

procedure check(s)
if s ? any(&ucase) then return count(s)
else return 0

end

procedure count(s)
static Ivowel
initial lvowel := 'aeiou’
i=20
s ? while tab(upto(lvowel)) do
i +1= =tab(many(lvowel))
return i
end

The main procedure reads lines, finds words, and calls check to process them. The procedure check tests for an
initial uppercase letter and calls count if there is one. The procedure count in turn counts the vowels. This
program is more complicated than need be for the computation performed, but it is designed specifically to
illustrate various aspects of Cinema. In addition, the definitions of “words™ and “vowels” are deliberately
naive to avoid complications that are unrelated to Cinema.

The displays that follow show the operation of the program for the input line
(Count George out.)

The initial display, prior to input, shows only the root scanning environment:

-12-

o el LOQJﬁmt;~%ﬂzmmW

spoed: {IGTLJ - - . free } (manual step) (quit)

: @ state: evaluating
subject: "™

0

procedure main()
let := &lcase ++ &ucase
total := 8
while 11ns := read() do
1ine 7 while tab(upto(let)) do
total +:= check(tab(many(let)))
write(total)
end

procedure check(s)
it 8 7 any(&ucase) then return count(s)
else return 8

end

procedure count(s)
static lvowel
initial lvowel := ‘'aeiou’
{ =9
s 7 while tab(upto(lvowsl)) do
i +:= *tab(many(lvowel))
return 1
end

“

The next scanning event occurs when the line has been read and the scanning expression in the main
procedure is evaluated:

R USTS 7e) u;u,.w LRI, TG AL O CHUVE IOl k. TS T NS I B W0y, I il YRS ¢ SN SPIA vy e rab i s USRS,

free } (manual step) (quit)

i procedure main()
et := &lcase ++ &ucase
total := @
while 1ine := read() do
line E}whﬂe tab(upto(let)) do
total +:= check(tab(many(let)))
write(total)

} level: @ state: evaluating
subject: ""

: 1 state: evaluating
ubject: "(Count George out.)"

T

| end

procedure check(s)
if s ? any(&ucase) then return count(s)
else return 8

end

procedure count(s)
static lvowel
inftial lvowel := ‘aeiou’
{1 :« 8
s ? while tab(upto(lvowel)) do
i +:= *tab(many(lvowel))
return 1
end

-13 -

The value of &pos is set to 2 by the first tab, resulting in the display:

INefilde tDCs,L,W' TACI A S P T I SRR (D N AT D DAY S00R S TN 08 B ST BURRAL LS T i T A - D Lt 1P P
free } (manual step) (quit)

procedure main()
let := &lcase ++ &ucass
total := @
while 1ine := read() do
line [while tab(upto(let)) do
total +:= check(tab(many(let)))
write(total)
end

: @ state: evaluating
subject: ""

¢ 1 state: evaluating
: "(Count George out.)"
1.

procedure check(s)
if s ? any(&ucase) then return count(s)
else return @

I end

procedure count(s)
static lvouwsl
initial lvowel := ‘aeiou’
i:=8
s ? while tab(upto(lvowel)) do

i +:= *tab(many(lvowel))

return i

i end

Next tab returns the matched substring:

(1] rmtﬂ\'m%wmmww T IR ML N IR A NIy e S5 3 I Eor B ey Vs S ARG I ST

speed: {3oa] . . . free } (manual step) (quit) !
=

‘ procedure main()
let := &lcase ++ &ucase
total := @
while 1ine := read() do
1ine [while tab(upto(let)) do
total +:= check(tab(many(let)))
write(total)
end

.

level: B state: evaluating
subject: ""

¢ 1 state: evaluating
fsubject: "(Count Georgse out.)"
T

procedure check(s)
if s ? any(&ucase) then return count(s)
elss return @

end

procedure count(s)
static lvowel
initial lvowel := 'aeiou’
i =8
s ? while tab(upto(lvowel)) do
i +:= *tab(many(lvowel))
return i

Note that there are two events involved in the evaluation of a matching function: the setting of &pos and the
return of the matched substring. In the remainder of this appendix only the display for the return of the

“14 -

matched substring is shown. Next the second tab matches the first word:

procedure main()
: let := &lcase ++ &ucase
total = @
while 1ine := read() do
1ine m while tab(upto(let)) do
total +:= check(tab(many(let)))
write(total)
end

level: 8 state: evaluating
g subject: "

: 1 state: evaluating
: "(Count George out,)"
T

: "Count”

procedure check(s)
if s ? any(&ucase) then return count(s)
else return 8

end

procedure count(s)
static lvowel
inttial lvowel := ‘'aeiou’
i =@
s ? while tab(upto(lvowel)) do
i 4:= *tab(many(lvouwel))
return i
end

At this point, check is called and its scanning expression produces a scanning environment at level 2 with the
subject “"Count":

LINEINa-- | Oad l,.,%@, ST A e TR O gL ST B A sk D e T LT AR SR AR A e - ¢ Pt g P AL e S e
speed: { . . . free } (wanual step) (quit)
level: 8 state: evaluating procedure main()
subject: " - legt := &lcase ++ &ucase
P total := @

while 1ine := read() do
1ine ? while tab(upto(let)) do

level: 1 state: evaluating total +:= check(tab(many(let)))
subject: "(Count George out.)" write(total)

1 end
tab: "Count"

procedure check(s)

. 2 state: evaluating if s [} any(&ucase) then return count(s)
¢ "Count" else return 8

end

procedure count(s)
static lvowel
initial lvowel := 'aeiou’
i ;=@
s ? while tab(upto(lvowel)) do
i 4:= *tab(many(lvowel))
return i
end

An uppercase letter is found and this scanning expression suspends. The scanning expression in the main

~15-

procedure that resulted in the call to check is now “current”, even though evaluation is still taking place in
check. This situation is displayed as follows:

free } (naﬁuél stép) (dﬁit)

procedure main()
let := &lcase ++ &ucase
total := @
while line := read() do
line m while tab(upto(let)) do
total +:= check{tab(many(let)))
write(total)
end

level: 8 state: evaluating
subject: ""

procedure check(s)
if s ? any(&ucase) then return count(s)
else return B

end

level: 2 state: suspended
subject: "Count"

T

procedure count(s)
static lvowel
initial lvowel := 'aeiou’
i =8
s 7?7 while tab(upto(lvowel)) do
i +:= *tab(many(lvowel))
return i

end

In check, the bounded expression in the control clause of the if-then expression then is exited and the
suspended scanning environment in check is removed:

Canemas 100l gy - - T R L Rt ot T L LV U P PP e il iC I

speed: {5 - - . free } (manual step) (quit) I

procedure main()

: let := &lcase ++ &ucase
total :-~ @
while line := read() do

1ine m while tab(upto(let)) do
total +:= check(tab{many(let)))

write(total)

end

level: 8 state: evaluating
subject: ""

: 1 state: evaluating
¢ "(Count George out.)"

¢ "Count"
procedure check(s)
if s ? any(&ucase) then return count(s)
else return 8
end

i procedure count(s)

static lvowel

initial lvowel := ‘aeiou’

i =@

s ? while tab(upto(lvowel)) do
i 4:= *tab(many(lvowel))

return 1

The procedure count then is called:

L VTSN UK T g repsr 597 Tonisns s 143 homalia rw < DA TR T Vb AN AN P Ryt AL LT S S PO s e oo 550wt as S bO LLE L
speed: (I - - - free } (manual step) (quit)
T T S T R

level: B8 state: evaluating procedure main()
subject: "" let := &lcase ++ &ucase

1 total ;= @
while 1ine := read() do
1ine ? while tab{upto(let)) do
level: 1 state: evaluating total +:= check(tab(many(let)))
subject: "(Count George out.)" write(total)
T

end

tab: "Count"

procedure check(s)
i1t s ? any(&ucase) then return count(s)
\ else return @
end

procedure count(s)
static lvowel
initial lvowel := 'aeiou’
i 1= B
s m while tab(upto(lvowel)) do
i +:= *tab(many(lvowel))
return i
end

w

Note that its scanning environment is at level 2. The scanning expression in count now tabs up to a vowel:

Sinetia . d uq,k:‘e;o‘f_,f;.'.‘—.-rxrrﬂ: B e R s aine R O et~ s)

free } (manual step) (quit)

level: 8 state: evaluating procedure main()
subject: " let := &lcase ++ &ucase
total :- B

while 1ine := read() do
1ine ? while tab(upto(let)) do

level: 1 state: evaluating total +:= check(tab(many(let)))
subject: "(Count George out.)" write(total)

end
tab: "Count”

procedure check(s)
l]eve]; 2 state: evaluating if s ? any(&ucase) then return count(s)

subject: "Count"] else return @
j| end

procedure count(s)
static lvowel
inttial lvowel := ‘'aetou’
i := B
s m while tab(upto(lvowel)) do
{ +:= *tab(many(lvowel))
return i
end

~17 -

Next a substring of vowels is matched:

spaed' {-ﬂ . . frese } (nanual step) (quit)

level: 8 state: evaluating procedure main()
subject: " let := &lcase ++ &ucase
total := @

while 1ine := read() do
1ine ? while tab(upto(let)) do

level: 1 state: evaluating total 4:= check(tab(many(let)))
subject: "(Count George out.)" write(total)

1 end
tab: "Count”

4§ procedure check(s)

: 2 state: evaluating i it s ? any(&ucase) then return count(s)
. "Count" else return @

end

] procedure count(s)

static lvowel

initial lvowel := 'asiou’

i := 8

s B while tab(upto(lvowel)) do
i +:= *tab(many(lvowel))

return i

end

Since there are no more vowels in the word, the scanning expression fails:

LOTed s U, . s . D U R PP SO UL T VRO PO USSP SRORRD PN

frae } (Ianual stap) (quit)

procedure main()

‘ et := &lcase ++ &ucase
total := O
while 1ine := read() do

1ine ? while tab(upto(let)) do
total +4:= check(tab(many(let)))

write(total)

end

level: B state: evaluating
subject: ""

level: 1 state: evaluating
subject: "(Count George out.)"
-1

tab: "Count”

procedure check(s)
if s 7 any(&ucase) then return count(s)
else return @

end

: 2 state:
subject: "Count"

fatling

procedurse count(s)
static lvowel
initial lvowsl := ‘'aeiou’
i :=8
s [Jwhile tab(upto(lvowel)) do
i +:= *tab(many(lvowel))
return i

end

- 18 -

Control returns to the main procedure where the beginning of the next word is found (the two intermediate
events are not shown):

L 1R v h D, g O A S 3 M s 07 2480 0 Tt 50 030k LA S PSR T2 SR PR MOt B b it BAETYS
fspeed: (B0 - - - free } (manual step) (quit)

procedure main()
let := &lcase ++ &ucase
total := 8
while line := read() do
line m while tab(upto(let)) do
total +4:= check(tab{many(let)))
write(total)
end

f1evel: B8 state: evaluating
subject: ""

level: 1 state: evaluating
subject: "(Count George out.)"
1T

|

procedure check(s)
if s 7 any(&ucase) then return count(s)
else return 8

| end

procedure count(s)
static lvowel
initial lvowel :« 'aeiou’
i := 8
s ? while tab(upto(lvowel)) do
i +4:= *tab(many(lvowel))
return i
end

The next word is matched:

R (1&1m:£%@%%mrwww‘w~w»ww~mw

speed: {7 - . . free } (manual step) (quit) |

procedure main()
let := &lcase ++ &ucase
total := @
while 1ine := read() do
line @ while tab(upto(let)) do
total +:= check(tab(many(let)))
write(total)
end

level: 8 state: evaluating
subject: ""

- : 1 state: evaluating
dsubject: "(Count George out.)"
T

Ntab: "George"
- procedure check(s)
if s ? any(&ucase) then return count(s)
else return 9
end

procedure count(s)
static lvowel
initial lvowel := ‘'aeiou’
i := 8
s ? while tab(upto(lvowel)) do
i +:= *tab(many(lvowel))
return i
end

-19-

At this point, check processes the word as before. Skipping the three intermediate displays, countis called:

Larietiane Loy by paeas iracescns s et SRR P S ALY G DILOC MM E e 6. Lt et W b SR AR P VR L PO Ssnre gt Vot s P83 o s

i} procedure main()
let := &lcase ++ &ucase
total := @
while line := read() do
line ? while tab(upto(let)) dao
total +:= check(tab(many(let)))
write(total)
end

level: B state: evaluating
subject: ""

level: 1 state: evaluating
subject: "(Count George out.)"

tab: "George"
procedure check(s)
if s ? any(&ucase) then return count(s)
else return 8

¢ 2 state: evaluating
jsubject: “"George”

| end

procedure count(s)
static lvowe)
initial lvowel := 'aeiou’
{ := 9
s m while tab(upto(lvowel)) do
i +:= *tab(many(lvowel))
return i

The first vowel is found as before:

Lmena. oo 1.;, B i e e e i a7 LRI A P LT WIS R SR EP SRR PRPIRR VP I IONE R SR

free } (manual step) (quit)

level: B state: evaluating procedure main()
subject: "" let := &lcase ++ &ucase
total := @

while line := read() do

1ine ? while tab(upto(let)) do
level: 1 state: evaluating total +:= check(tab(many(let)))
subject: “(Count Georg?rout.)" write(total)

end

tab: "George"

procedure check(s)

: 2 state: evaluating it s 7 any(&ucase) then return count(s)
: "George" else return @

end

| procedure count(s)

static lvowel ﬁ
initial lvowel := 'aeiou’
i ;=@

s m while tab(upto(lvowel)) do
i +:= *tab(many(lvowel))
return 1
end

_— s

~20-

The vowels are matched:

speed: {{E0g - .- . free } (manual step) (quit) -
e o, |
Jevel: 8 state: evaluating procedure main()
subject: "" let := &lcase ++ &ucase
total :- @
while 1ine := read() do
1ine ? while tab(upto(let)) do }
level: 1 state: evaluating total +:= check(tab(many(let))) P
subject: "(Count George out.)" dwrite(total)
en
tab: "George"
procedure check(s)

i1f s ? any(&ucase) then return count(s)
else return 8
end

eou

procedure count(s)
static lvowel
initial lTvowel := 'aeiou’
i =8
s [J while tab(upto(lvowel)) do
i +:= *tab(many(lvowsel))
return 1
end

The next vowel then is found:

UATIEMA T OO ke yg gaer 0 82 s 110t misor corme oy dems b 4 ST s pertrnad R i £ 4 S b etk 4 99 41 PG mabee Sy e e et ¢

speed: (X - - - free } (manual step) (quit)

Jevel: 8 state: evaluating procedure main()

subject: "" let := &lcase ++ &ucase

total := B

while 1ine := read() do

1ine ? while tab(upto(let)) do
Jjevel: 1 state: evaluating total +:= check(tab(many(let)))
subject: "(Count George out.)" write(total)
1 end
tab: "George"
procedure check(s)

. 2 state: evaluating if s ? any(&ucase) then return count(s)
: "George" else return @
end

procedure count(s)
static lvowel
initial lvowel := ‘aeiou’
i := 8
s Gluh11e tab(upto(lvowel)) do
i +:= *tab(many(lvowel))
return 1
end

21 -

This vowel is matched and control is again returned to the main procedure (intermediate events are not
shown):

1331 flE(ll&.-nL(ll;_L\-gz;f{wz;)~ SR IAL S atd i s b 8 by 5 AN

PRI L TR Nl ber It S QM st € QAU 0T S UINE L S SN I € b Dl YV P S e L e

i procedure main()
let := &lcase ++ &ucase
total := 8
while line := read() do
line [while tab(upto(let)) do
total +:= check(tab(many(let)))
write(total)
end

| evel: @ state: evaluating
subject: ""

Wievel: 1 state: evaluating
[~ubject: "(Count George out.)"

tab: "George"
procedure check(s)
if s 7 any(&ucase) then return count(s)
else return 8
end H

procedure count(s)
static lvowel
initial lvowel := 'aefou’
i ;=@
s ? while tab(upto(lvowel)) do
{1 +:= *tab(many(lvowel))
return 1

end

The last word is located and matched:

inemas 10y, sprei o

[P TN L e L

B L T N R e R R Lt a A EL LT

ee } (manual step) (quit)

fr

procedure main()
let := &lcase ++ &ucase
total := @
while 1ine := read() do
line m while tab(upto(let)) do
total +:= check(tab(many(let)))
write(total)
end

| 1evel: @ state: evaluating
subject: ""

1 evaluating
Bsubject: "(Count George out.)"

procedure check(s)
if s ? any(&ucase) then return count(s)
else return @

end

procedure count(s)
static lvowel
initial lvowel := ‘'aeiou’
i =8
s 7?7 while tab(upto(lvowel)) do
i +:= *tab(many(lvowel))
return i
end

ST T

-22 -

Since this word does not begin with an uppercase letter, check fails:

Loinetas LQQLI(J‘S.-‘W Bt e s e e g e L e e St s s i e g N

speed: (G - - . free } (manual step) (quit)

level: B8 state: evaluating procedure main()
subject: "" let := &lcase ++ &ucase

total := 8
while 1ine := read() do

line ? while tab(upto(let)) do
level: 1 stats: evaluating total +:= check(tab(many(let)))

subject: "(Count George out.)" dwrite(total)
en

tab: "out"

procedure check(s)
: 2 state: failing if s m any(&ucass) then return count(s)
subject: - else return @ .
+ end

procedure count(s)
static lvowel
initial lvowel := 'aeiou’
i =8
s ? while tab(upto(ivowel)) do
j +:= *tab(many(lvowel))
return i
end

e, e

The scanning expression in the main procedure fails, since there are no more words:

et SR i L R LT - LT AP SURUIE PUIUP T UFSE RN ERRRIS 2 P S e

free } (manual step) (quit)

Linemnas 100 gy waes oo

procedure main()
let := &lcase ++ &ucase
total := @
while 1ine := read() do
line [while tab(upto(let)) do
total +:= check(tab(many(let)))
write(total)

: 8 state: evaluating

: 1 state: failing
: "(Count George out.)"

| end

procedure check(s)
if s ? any(&ucase) then return count(s)
else return @

end

procedure count(s)
static lvowel
initial lvowel := 'aejou’
i = 8
s ? while tab(upto(lvowel)) do
1 +:= *tab(many(lvowel))
return i
end

-23-

At this point, the display is the same as it was at the beginning of program execution, with only the root
scanning environment remaining. If there is no more input, the main procedure fails and Cinema completes.

LANe e | IEJUJ,_".‘W;. I T e e L e At L R S e U O e SO P PR DTSR R D0 S O P R O Sy S

free } (manual step) (quit)

| procedure main()
let := &lcase ++ &ucase
total := @
while 1ine := read() do
line ? while tab(upto(let)) do
total +:= check(tab(many(let)))
write(total)

: 8 state: evaluating
subject: ""
1\

§ end

procedure check(s)
it s ? any(&ucase) then return count(s)
else return @

| end

| procedure count(s)

static lvowel

initial lvowel := 'asiou’

1 =@

8 ? while tab(upto(lvowel)) do
i +:= *tab(many(lvowel))

return i

| end

-24 -

