
Personalized Interpreters for Version 6 of Icon*

Ralph E. Griswold

TR 86-12b

May 5,1986; Last revision February 5,1987

Department of Computer Science

The University of Arizona

Tucson, Arizona 85721

*This work was supported by the National Science Foundation under Grant DCR-8502015.

Personalized Interpreters for Version 6 of Icon

1. Introduction
Despite the fact that the Icon programming language has a large repertoire of functions and operations for string

and list manipulation, as well as for more conventional computations [1], users frequently need to extend that reper­
toire. While many extensions can be written as procedures that build on the existing repertoire, there are some kinds
of extensions for which this approach is unacceptably inefficient, inconvenient, or simply impractical.

Icon itself is written C and its built-in functions are written as corresponding C functions. Thus, the natural way
to extend Icon's computational repertoire is to add new C functions to it.

The Icon system is organized so that this is comparatively easy to do. Adding a new function does not require
changes to the Icon translator, since all functions have a common syntactic form. An entry must be made in a table
that is used by the linker and the run-time system in order to identify built-in functions and connect references to
them to the code itself.

One method of adding new functions to Icon is to add the corresponding C functions to the Icon system itself
and to rebuild the entire system. This approach is impractical for many applications. If the extensions are not of gen­
eral interest, it is inappropriate to include them in the public version of Icon. On the other hand, Icon is a large and
complicated system, and having many private versions may create serious problems of maintenance and disk usage.
Furthermore, rebuilding the Icon system is expensive. This approach therefore may be impractical in a situation
such as a class in which students implement their own versions of an extension.

To remedy these problems, a mechanism for building "personalized interpreters" is included in UNIX* imple­
mentations of Icon. This mechanism allows a user to add C functions and to build a corresponding interpreter
quickly, easily, and without the necessity to have a copy of the source code for the entire Icon system.

To construct a personalized interpreter, the user must perform a one-time set up that copies relevant source files
to a directory specified by the user and builds the nucleus of a run-time system. Once this is done, the user can add
and modify C functions and include them in the personalized run-time system with little effort.

Since the linker must know the names of built-in functions, a personalized linker also is constructed. In order to
run Icon programs in a self-contained personalized run-time system, personalized versions of the translator, pitran,
and the command processor, picont, are provided also.

The modifications that can be made to Icon via a personalized interpreter essentially are limited to the run-time
system: the addition of new functions, modifications to existing functions and operations, and modifications and
additions to support routines. There is no provision for changing the syntax of Icon, incorporating new operators,
keyword, or control structures.

2. Building and Using a Personalized Interpreter

2.1 Setting Up a Personalized Interpreter System
To set up a personalized interpreter, a new directory should be created solely for the use of the interpreter; other­

wise files may be accidentally destroyed by the setup process. For the purpose of example, suppose this directory is
named my icon. The setup consists of

UNIX is a trademark of AT&T Bell Laboratories.

mkdir myicon
cd myicon
icon_pi

Note that icon_pi must be run from the area in which the personalized interpreter is to be built. The location of
icon_pi may vary from site to site.

The shell script icon_pi constructs three subdirectories: h, std, and pi. The subdirectory h contains header files
that are needed in C routines. The subdirectory Std contains the machine-independent portions of the Icon system
that are needed to build a personalized interpreter. The subdirectory pi contains a Makefile for building a personal­
ized interpreter and also is the place where source code for new C functions normally resides. Thus, work on the
personalized interpreter is done in myicon/pi.

The Makefile that is constructed by icon_pi contains two definitions to facilitate building personalized inter­
preters:

OBJS a list of object modules that are to be added to or replaced in the run-time system. OBJS initially is
empty.

LIB a list of library options that are used when the run-time system is built. LIB initially is empty, but the
math library is loaded as a normal part of building the run-time system.

See the listing of the generic version of this Makefile in Appendix A.

2.2 Building a Personalized Interpreter

Performing a

make pi

in myicon/pi creates four files in myicon:

picont command processor
pilink linker
piconx run-time system
piconx.hdr header file for linker output

A link to picont also is constructed in myicon/pi so that the new personalized interpreter can be tested in the direc­
tory in which it is made.

The file picont normally is built only on the first make. The file pilink is built on the first make and is rebuilt
whenever the repertoire of built-in functions is changed as a result of modifications to h/fdefs.h. The file piconx is
rebuilt whenever the source code in the run-time system is changed.

The user of the personalized interpreter uses picont in the same fashion that the standard icont is used. (Note
that the accidental use of icont in place of picont may produce mysterious results.) In turn, picont translates a
source program using pitran and links it using pilink. The resulting icode file uses piconx.

The relocation bits and symbol tables in piconx can be removed by

make Stripx

in myicon/pi. This reduces the size of this file substantially but may interfere with debugging.
If a make is performed in myicon/pi before any run-time files are added or modified, the resulting personalized

interpreter is identical to the standard one. Such a make can be performed to verify that the personalized interpreter
system is performing properly.

2.3 Version Numbering
The Icon run-time system checks an identifying version number to be sure the linker and run-time system ver­

sions correspond. The version number is the string defined for IVersion in myicon/h/version.h following the con­
struction of a personalized interpreter as described in Section 2.1.

In order to assure that files produced by pilink can only be run by the current versions of piconx, the value of
IVersion should be changed whenever a change is made to a personalized interpreter. It is not important what the

- 2

definition of I Version is, so long as it is a short string that is different from previous ones.

2.4 Adding a New Function

To add a new function to the personalized interpreter, it is first necessary to provide the C code, adhering to the
conventions and data structures used throughout Icon. Some examples of C functions are included in Appendix B of
this report. The source code for several such functions is contained in v6/pi/pil, where v6 is the root of the Icon sys­
tem. The directory v6/src/iconx contains the source code for the standard functions, which also can be used as
models for new ones.

Suppose that getenv from v6/pi/pil is to be added to a personalized interpreter. The source code can be
obtained by

cp v6/pi/pil/getenv.c myicon/pi

(Note that the actual paths depend on the local hierarchy.)

Three things now need to be done to incorporate this function in the personalized interpreter:

1. Add a line consisting of

FncDef(getenv)

to myicon/h/fdefs.h in proper alphabetical order. This causes the linker and the run-time system to know about
the new function.

2. Add getenv.o to the definition of OBJS in myicon/pi/Makefile. This causes getenv.c to be compiled and the
resulting object file to be loaded with the run-time system when a make is performed.

3. Perform a make in myicon/pi. The result is new versions of pilink and piconx in myicon.
The function getenv now can be used like any other built-in function.

More than one function can be included in a single source file. See math.c in Appendix B. To incorporate
these functions in a personalized interpreter, FncDef entries should be made for each function in math.c and
math.o should be added to OBJS.

2.5 Modifying the Existing Run-Time System

The use of personalized interpreters is not limited to the addition of new functions. Any module in the standard
run-time system can be modified as well.

To modify an existing portion of the Icon run-time system, copy the source code file from v6/src/iconx to
myicon/pi. (Source code for a few run-time routines is placed in myicon/std when a personalized interpreter is set
up. Check this directory first and use that file, if appropriate, rather than making another copy in myicon/pi.) When
a source-code file in myicon/pi has been modified, place it in the OBJS list just like a new file and perform a make.
Note that an entire module must be replaced, even if a change is made to only one routine. Any module that is
replaced must contain all the global variables in the original module to prevent ld(l) from also loading the original
module. There is no way to delete routines from the run-time system.

The directory myicon/h contains header files that are included in various source-code files. The file
myicon/h/rt.h contains declarations and definitions that are used throughout the run-time system. This is where the
declaration for the structure of a new type of data object would be placed.

Care must be taken when modifying header files not to make changes that would produce inconsistencies
between previously compiled components of the Icon run-time system and new ones.

Reference
1. Griswold, Ralph E. and Griswold, Madge T. The Icon Programming Language. Prentice-Hall, Inc., Englewood

Cliffs, New Jersey. 1983.

- 3

Appendix A — Makefile for Personalized Interpreters

The "generic" Makefile for personalized interpreters follows. A copy, with the value of Dir filled in and
appropriate definitions for the flags, is placed in myicon/pi when icon_pi is run.

./h/rt.h ../h/config.h ../h/cpuconf.h ../h/memsize.h
Vstd/ilink.h ../h/rt.h ../h/config.h ../h/cpuconf.h

Dir=

RHDRS=
LHDRS=

To add or replace object files, add their names to the OBJS list below.
For example, to add nfncs.o and iolib.o, use:

OBJS=nfncs.o iolib.o # this is a sample line

For each object file added to OBJS, add a dependency line to reflect files
that are depended on. In general, new functions depend on $(RHDRS).
For example, if nfncs.c contains new functions, use

nfncs.o: $(RHDRS)

Such additions to this Makefile should go at the end.

OBJS=
LIB=

RTOBJS=../std/imain.o ../std/rconv.o ../std/idata.o $(OBJS)

Pi: ../picont ../piconx ../pilink ../piconx.hdr

../picont: ../std/icont.c ../h/config.h
rm -f ../picont picont
$(CC) $(CFLAGS) -o ../picont -Dltran=T$(Dir)/pitran\""\

-Dlconx=MV,$(Dir)/piconxV" \
-Dllink=T$(Dir)/pilink\"" ../std/icont.c

strip ../picont
In ../picont picont

../pilink: ../std/linklib ../std/builtin.o ../std/ilink.o ../std/lcode.o
$(CC) $(LDFLAGS) -o ../pilink ../std/builtin.o ../std/ilink.o\

../std/lcode.o ../std/linklib
strip ../pilink

../std/ixhdr.o: ../h/config.h
cd ../std; $(CC) -c $(XCFLAGS) -Dlconx=T$(Dir)/piconxV" ixhdr.c

../piconx.hdr: ../std/ixhdr.o
$(CC) $(XLDFLAGS) ../std/ixhdr.o -o ../piconx.hdr
strip ../piconx.hdr

../piconx: ../std/rtlib $(RTOBJS)
$(CC) $(LDFLAGS) -o ../piconx $(RTOBJS) ../std/rtlib $(LIB) -Im

../std/idata.o: $(RHDRS) ../h/fdefs.h
cd ../std; $(CC) -c $(CFLAGS) idata.c

- 4 -

../std/imain.o: $(RHDRS) ../h/header.h ../h/version.h
cd ../std; $(CC) -c $(CFLAGS) imain.c

../std/rconv.o: $(RHDRS) ../h/fdefs.h
cd ../std; $(CC) -c $(CFLAGS) rconv.c

../std/builtin.o:

../std/ilink.o:

./std/lcode.o:

Stripx:

$(LHDRS) ../h/fdefs.h
cd ../std; $(CC) -c $(CFLAGS) builtin.c

$(LHDRS) ../h/header.h ../h/paths.h
cd ../std; $(CC) -c $(CFLAGS) -DHeader="\"$(Dir)/piconx.hdr\"" ilink.c

$(LHDRS) ../h/header.h ../h/paths.h ../std/opcode.h \
../h/keyword.h ../h/opdefs.h

cd ../std; $(CC) -c $(CFLAGS) Icode.c

../piconx
strip ../piconx

Appendix B — Sample C Functions

getenv.c:

/*
* GETENV
*
* Get values of environment variables.

* Stephen B. Wampler
*
* Last modified 5/2/86 by Ralph E. Griswold

*/

#include "../h/rt.h"

/*
* getenv(s) - return contents of environment variable s
*/

FncDcl(getenv,1)
{
register char *p;
register int len;
char sbuf [256];
extern char *getenv();
extern char *alcstr();

if (!Qual(Arg1))/* check legality of argument */
runerr(103, &Arg1);

if (StrLen(Argl) <= 0 || StrLen(Argl) >= MaxCvtLen)
runerr(401, &Arg1);

qtos(&Arg1, sbuf);/* convert argument to C-style string */

if ((p = getenv(sbuf)) != NULL) {/* get environment variable */
len = strlen(p);
strreq(len);
StrLen(ArgO) = len;
StrLoc(ArgO) = alcstr(p, len);
Return;

}
else /* fail if variable not in environment */

Fail;
}

6 -

math.c:

/*
* MATH
*
* Miscellaneous math functions.
*

* Ralph E. Griswold

* Last modified 5/2/86

*/

#include "../h/rt.h"
#include <ermo.h>

int errno;
/*
* exp(x)
*/

FncDcl(exp,1)
{
int t;
double y;
union numeric r;
double exp();

if ((t = cvreal(&Arg1, &r)) == NULL) runerr(102, &Arg1);
y = exp(r.real);
if (errno == ERANGE) runerr(252, NULL);
mkreal(y, &ArgO);
Return;
}

/*
* log(x)
+/

FncDcl(log, 1)
{
int t;
double y;
union numeric r;
double log();

if ((t = cvreal(&Arg1, &r)) == NULL) runerr(102, &Arg1);
y = log(r.real);
if (errno == EDOM) runerr(251, NULL);
mkreal(y, &ArgO);
Return;
}

- 7

/*
* Iog10(x)
*/

FncDcl(log10,1)
{
int t;
double y;
union numeric r;
double Iog10();

if ((t = cvreal(&Arg1, &r)) == NULL) runerr(102, &Arg1);
y = loglO(r.real);
if (errno == EDOM) runerr(251, NULL);
mkreal(y, &ArgO);
Return;
}

sqrt(x)
/*
*
*/

FncDcl(sqrt,1)
{
int t;
double y;
union numeric r;
double sqrt();

if ((t = cvreal(&Arg1, &r)) == NULL) runerr(102, &Arg1);
y = sqrt(r.real);
if (errno == EDOM) runerr(251, NULL);
mkreal(y,&ArgO);
Return;
}

