The Implementation of Generators and Goal-Directed
Evaluation in Icon*

Janalee O'Bagy

TR 88-31

August 11, 1988

Department of Computer Science
The University of Arizona

Tucson, Arizona 85721

*This work was supported by the National Science Foundation under Grants CCR-8713690, DCR-8401831, and
DCR-8502015.

Copyright © Janalee O’Bagy 1988

This technical report has been submitted as a dissertation
to the faculty of the Department of Computer Science in
partial fulfillment of the requirements for the degree
of Doctor of Philosophy in the graduate college of
the University of Arizona.

TABLE OF CONTENTS

ADSITACE eiiiiiiiiiniiiiiiiiieiete et e st esser e et e st essae s s e e e e st e s s e eesaeesseesrbaeasssessssseasnsnessaressnsnssnnsesanes 1
CHAPTER 1: INTRODUCTIONoooiiriiieteiectecrecreraereestesesiesssessessnerssessasssssssssesssssasensesses 2
§1.1: Generators and Goal-Directed Evaluationccccoeeivriereiiieecnnneenseeceseeessvennne 3

§1.2: Expression Evaluation in ICONcveereeirvceiniicerrcrcnenenrenesenssnnnaesneseesseassnsans 4

§1.3: Implementation ISSUESc.ccceeveeerieeieeciecierreecreceecnesreeeraeesaerennesseesasesssnersssnnns 6

§1.4: Previous Models of Implementationcecceeveeeveenrenrsvennnerereereeeseesneesssessensnns 8

§1.5: COMIMENLSvveiveriieiiiieeccieeeetreeeteeesareeesteeesseessnsaesessaneessssesssssssessessessossnesonssnne 10
CHAPTER 2: AN INTERPRETER FOR ICONccommviuemrerennsresssseseensesnsssssnssssssssssans g
§2.1: The Virtual MacChinecccvieveiiiieeniiiiicitiestesteecstesecteeseseecsssseessnessssseessressssnsonns 11

§2.2: The RecUrSive MOAE]o.eeeeieeeeeetccerrer et csrrre s ecnsere s s stessssseeeesessannees 13

§2.3: THE INTETPTEIET ..vcuuviuiiiiiiieeiereeiieceerteeetesseteesessassaessessessesereesseessessenssensessasnns 14
§2.3.1: Bounded EXPIessionsc.coceceveriricnineciinienineeseesesinesessesnesessessesessesens 17

§2.3.2: FAIUTE ettt e sinr s esvaseessatreesssseesessnnessassnesasasnnassssns 18

§2.3.3: AN EXAMPIE ..ottt sas e ee 18

§2.3.4: GENETALOTS .eieccveeeeiereeetreieieeearecssteeersaesessasecesbsesessaraesessbenesessssessesntasesnes 19

§2.3.5: Generative Operators and FUNCtionsccceceevvenernrveeereesseennereserennens 21

§2.3.6: Repeated AICIMALIONccccvieieiiiinirniereertrresreenenresieee e ssaeete s s eresees 22

§2.3.7: LIMIALION ...ooviiieiriiniiiireinereestesneseessneesssnessssssesstesssesensesssesnsssrssssessnes 24

§2.3.8: TLETALION ..cuveieiieeieeieeectecteeceeeeteee e ceaeeese e e sreesabe e sossesssanesssssessnssssnessan 26

§2.3.9: Break and NEXLcooviieiiiiiiiceeeiieeeesteesesnreeessssessessssseesessessesssnsssssnnees 27

§2.4: PTOCEAUTESuuvveierieieietreieiteeniareeisireesreesseeesssnsessssesaessstssessseeseassssnsssssnsassssnsessans 28
CHAPTER 3: COMPILING EXPRESSIONS FOR ICONccooinerirrertenrereceresesseencseane 30
§3.1: OVEIVIBW .ot ceaeeseesaresbescaneestesssressnsesassnesasssssstasensesesssesnsnesssssenns 30

§3.2: The Generated COAEccuvvuivveeenreerericeeecreenieciseeessseeesseessaessssssosssseosessossenssssassnns 31
§3.2.1: Bounded EXPIESSIONScccccerevueereesresersessesnessessesansansnesassnsssesressessessossessens 31

§3.2.2: GENETALOLS ...vevvevreirireerrerereereessrissessresssssesssessssassssscsssssessessssnesssnsessssasasnes 33

§3.2.3: AN EXAMPLEcvrviirrririecinecenecesaetiennennssesesserisssesensesesnsssesessessssenssasnsen 34

§3.2.4: AILEIMALION ...uuveeieeieciiierirerieesssieeereseneeseeesssnessessesssssesssssesessssansssesenssnsnnns 36

§3.2.5: Repeated AIEMMALIONcccceveeeeriereneeieesrereeernessensecssssssesseessesseeneossessnones 37

§3.2.6: LIMIALION ...ccveveereereieieiriecsereresessesseseeeeseessnesessesssssssesssenssnssnsessensensenes 39

§3.2.7: Break and NEXLcceerevrererereerereesesnssesessesessesesessssessesssssessssessessasssesessens 40

§3.3: Comments 0N the COAE GENETALOTveeveeeveeeeeeereereereressseessesssssssesssessssssssssseesssssseas 41

TABLE OF CONTENTS - Continued

CHAPTER 4: OPTIMIZING EXPRESSION EVALUATIONoooeevrerererereveeerennenn, 43
§4.1: Unnecessary BOUNGINGc.coomiiereiiiiicrerenercicectsaeseeve e tessesesss e sessessssnons 43

§4.2: UNNecessary SUSPENSIONcccecueeerrurrceseesersseseeisscessesnessersassssssesseessersessasssesssssasss 44

§4.3: Properties Of EXPIESSIONScceecemeeiecreriecieennceneerterneessesesessessssseseesssssesesns 45
§4.3.1: RESUMPLIONeveeiriirieeieeeseeresseesessesaessasssesaessesssessessessessssssesssssnerasssaons 45

§4.3.2: CONLTO] SITUCIUTEScocvveerreeereicieecenreesssesesssessesssesosasseossssesssssssasessssesens 46

§4.4: The Attribute GIAIMMAToeeeieeevrerrieeeireecseerereeesseesecssseesssstsssssssessssessesssesssns 47

§4.5: Application t0 COAE ZENETALIONcccoerieuererireecrerererirsreseessesssseesetessessesaesessessasses 53
§4.5.1: Bounded EXpressionscc.coceeveerevcnrecienneneneennensnnne eeeeeereeeseseesseesean 53

§4.5.2: Generative OPETationsccceceevereerenerreeisensensessesssesessessessassassessassesees 54

§4.5.3: AHETNALIONuevveeeeeeiiieeceteeneeeceeeeeeeessneecesneessereeeesassessesessssnesssnsasens 57

§4.6: Application of Optimizations in Previous Implementationsccoeeererverernunn. 57
CHAPTER 5: CONCLUSIONSooiiiiiiincrineresnecnsnteseesenseessesssssaessessassassssssesssessasssansons 58
§5.1: PErOTTNANCE ..c.ccieiieeiiiciiiieeccietiecieeeererieseeciaeee e satreessessseeseesessssanssssesssssresrenssssres 58

§5. 11 INMEIPTEIET woeniiiiiiieiiiececre sttt sreebecsae et s ssaessseesassssesunssssassneses 58

§5.1.2: COMPIIET ittt s e e e sr e e e s e e s e b e an s 59

§5.2: ReIAtEA WOTK .oveveeiiiiieiieecee et eeeeae e erareesae s cessseesesseesssssassecsannessorenssns 62

§5.3: FULUTE WOTK ceoeiiiieiiciecceeicteecctreesreeeseestee e e e ar e e ssesesssesessssessessassssssssessssssasns 63
§5.3.1: Language ConSiderationsccceeeeeeieeseeruesenseessenressesseesseessessassnessesseens 63

§5.3.2: OPUMIZALION ...cuvreerriereerernieneneenresnesseressressassenaessessesssssnsssesssessessaessnessessens 65

§5.3.3: Code GENETALIONcccuicervieiicncniiericcstenteeseieessesssaeessessssesssserassessessens 66

§5.4: REITOSPECHIVE ..veiiniiriiiiiiiiicietsietesteesesae et sae s et e sressnessesseesnessaessensnssnsesaesnne 67
ACKNOWIBAZIMENLSooviiriiriiiiiiniiiiiititceresnestsseseesisssseessssatessaasnessessaessessassassassssassnessensen 68
Appendix A: Bounded EXPreSSIONSccccoivieiivinmicnisiesiniinininnsessessssessessessossossessesessassassseses 69
Appendix B: Operations and FUNCHONSc.cciiiiiiinnniciiicnccenninnereesenecessesseseseessesseseene 72
Appendix C: Icon PrOZIaMS ...ttt seesseecsesnssasssssassnesseseesseseensas 74

REFEIEIICES ..o oeeeeeeeeieeeeeeereeteteeteeiseessesssssssosssssssssessssssessesssrsesssesssessesatenssnnnnennensnsnssssssssasansssaseares 91

ABSTRACT

Generators and goal-directed evaluation provide a rich programming paradigm when com-
bined with traditional control structures in an imperative language. Icon is a language whose
goal-directed evaluation is integrated with traditional control structures. This integration pro-
vides powerful mechanisms for formulating many complex programming operations in concise
and natural ways. However, generators, goal-directed evaluation, and related control structures
introduce implementation problems that do not exist for languages with only conventional
expression evaluation. This dissertation presents an implementation model using recursion that
serves as a basis for both an interpreter and a compiler.

Furthermore, in the case of the compiler, optimizations can be performed to improve the
efficiency of Icon programs, mainly by reducing the general evaluation strategy whenever possi-
ble. The dissertation describes a compile-time semantic analysis used to gather information
about the properties of expressions and how they are used at their lexical sites. The optimizations
that can be performed using this information are illustrated in the context of the compiler model
described in the dissertation.

CHAPTER 1

INTRODUCTION

Icon is a programming language designed for string and list processing, as well as for general
high-level programming tasks [18]. Icon generalizes the traditional view of expression evalua-
tion in which expressions evaluate to a single result. In Icon, an expression may produce a
sequence of results [16]. Such expressions are called generators. Generators produce only one
result at a time; alternatives are produced if the surrounding context demands them. Alternative
computational paths are the basis for the expression evaluation mechanism of Icon. which is
goal-directed. Goal-directed evaluation attempts to produce a result for each expression. Failure
during expression evaluation causes alternatives to be taken.

The implicit nature of goal-directed evaluation combined with the generalized concepts of
success, failure, and generators gives Icon its expressive power. The embedded evaluation
mechanism and control structures allow concise expression of computation; fewer explicit con-
trol structures need be present in an expression. The challenge for the implementor is to design a
coherent, well-integrated model for implementing the features of expression evaluation.

There have been several implementations of Icon based upon a definition of an Icon virtual
machine, with an interpreter to execute the virtual machine instructions. However, in these
interpreters the core of the expression evaluation mechanism is intricate and complicated and the
simple properties of the underlying semantics are obscured.

This dissertation describes a new implementation model for the Icon virtual machine, based
on recursion. This model for implementing goal-directed evaluation and generators is coherent
and easy to understand and extend. Although efficiency is not a primary concern here, the recur-
sive implementation does not sacrifice speed and it performs comparably to previous implemen-
tations.

The recursive model for implementing generators and goal-directed evaluation is not specific
to the virtual machine. When applied to the Icon virtual machine, the recursive model results in
an interpreter that gives a simple operational semantics for expression evaluation in Icon. The
recursive model can also be used as the basis for compiling Icon expressions. The dissertation
discusses how the recursive model is used to both interpret and compile Icon expression evalua-
tion.

An evaluation regime, such as goal-directed evaluation, that is general and powerful may also
be inefficient in its implementation as well, precisely because of the generality it imposes on the
control behavior of programs. This is an important implementation issue for Icon, since it is
possible to write programs that use expressions in a traditional way, expressions which do not
take advantage of the full capabilities of goal-directed evaluation. Icon’s strength as a program-
ming language, in fact, is largely due to the way that it combines traditional control structures
with goal-directed evaluation, and gives a programmer the advantages of both paradigms. Not
all expressions, therefore, require the general mechanism for evaluation. Such expressions

-2-

should not pay for the cost of the general evaluation strategy.

Previous implementations of Icon have not addressed this issue; they employ the general stra-
tegy of evaluation at all times. This dissertation provides a method for detecting the unnecessary
generality of expression evaluation. It describes the relationship between properties of expres-
sions and their evaluation requirements, it gives a method for obtaining this information at trans-
lation time, and it illustrates its use in improving code generation for Icon programs. The optimi-
zations made for expression evaluation are illustrated in the context of the compiler model
described in this dissertation.

1.1 Generators and Goal-Directed Evaluation

In general, the term generator denotes a procedure or expression that can be repeatedly
activated to produce a sequence of results. Like a coroutine, the internal state of a generator
must be saved between the time the generator produces a result and the time it is resumed to
continue its computation. Yet, like a procedure, the evaluation/return pattern of generators is
hierarchical [3, 36]. -

Generators have been incorporated in several programming languages, for example IPL [34],
SETL [37]. and CLU [31]. Primarily, generators are used in these languages as an abstraction for
processing elements of data structures. They are not, however, a fundamental aspect of the
evaluation of expressions. For example, in CLU, a generator can be used only in the control por-
tion of the language’s for statement. More recently, experimental languages have been designed
to incorporate generators in the style of Icon into C [6] and Pascal [12].

Goal-directed evaluation is a term used in connection with a variety of languages, including
PLANNER [14,25], and logic programming languages such as Prolog [29,40]. Generally,
goal-directed evaluation is a strategy that proceeds forward on an evaluation path in an attempt
to satisfy a goal, and backtracks to a previous alternative path if the goal cannot be satisfied
along the current path. Languages with goal-directed evaluation offer different linguistic
mechanisms for expressing alternatives. Examples are patterns in SNOBOL4 and nondeter-
ministic predicates in Prolog. Backtracking automatically examines the different control paths
that are expressed implicitly in the program until the language’s notion of success is achieved.

Goal-directed evaluation is a powerful control abstraction. It eliminates the need to specify
an algorithm in detail, and in some languages, the declarative nature of the language combined
with goal-directed evaluation subsumes any algorithmic specification of solutions altogether. On
the other hand, a goal-directed process, though powerful, is also limiting—there is only one gen-
eral strategy of control flow, and no way to pre-empt or refine it. Yet often, a search and back-
track algorithm is not an efficient method for finding a solution. It has been recognized that a
goal-directed mechanism alone is not sufficient for general-purpose programming [15, 19,42]. In
logic programming languages, the cut primitive is often provided to inhibit backtracking, even
though this primitive is not a logical construct [40].

Icon solves this problem by integrating goal-directed evaluation and traditional control struc-
tures in a way that is elegant and uniform. Generators provide the source of altenatives used by
goal-directed evaluation. A programmer may use goal-directed evaluation when convenient, and
yet also express algorithms directly by using the control structures of the language.

This kind of integration has been attempted more recently in languages designed to combine
the logic and functional language paradigms [4]. The language Fresh is an example [38].
Because computation, and subsequently control flow, in Fresh is not based strictly on unification,

-3-

such an integration results in a failure-based expression language that closely resembles the
evaluation of expressions in Icon, which is discussed further in the following section. Fresh con-
cepts include generating functions, built by using alternation (which they call disjunction),
bounding (which they call confinement), and a conditional control structure that bounds its con-
trol clause.

1.2 Expression Evaluation in Icon

As mentioned previously. an expression in Icon can produce a sequence of results. For exam-
ple, find(s1,s2) is capable of producing all the positions at which s1 occurs as a substring of s2.
and i to j is capable of producing the integers in order from i to j.

The result sequence for an expression consists of the results it is capable of producing. For
example. the result sequence for 1105 is {1, 2. 3, 4, 5}. An expression can have an empty
result sequence. Examples are the comparison operation 1 = 2, and the function read() when at
the end of the input file. An expression whose result sequence has at least one result succeeds.
An expression with an empty result sequence fails.

Success and failure determine the behavior of control structures. For example, consider the if
expression:

if i < max then write("out of bounds") else write("okay")

If the control clause succeeds. the then clause is evaluated; otherwise the else clause is
evaluated. Similarly, a while loop is driven by success or failure of its control clause, as in:

while line := read() do
write(line)

Evaluation based on success and failure allows concise formulation of computation. The while
expression above, for example, can be written as:

while write(read())

An expression that is capable of producing more than one result is called a generator. A gen-
erator only produces more than one result if the context in which it is evaluated demands it. The
implicit evaluation context for all expressions is goal-directed. Goal-directed evaluation attempts
to produce a result for each expression. During evaluation, if an expression fails, the most
recently suspended expression is resumed for a subsequent result. Consider, for example. the
expression

i = find(s1,s2)

where the value of i is 6 and the result sequence for find is {4, 6, 12}. When the values 6 and 4
are compared, the expression fails. Goal-directed evaluation then resumes find, which produces
its next result, 6. The comparison then succeeds.

In general, expressions are evaluated from left to right, and resumed in a last-in, first-out
order during goal-directed evaluation. The result is cross-production evaluation. For example, if
expr; has the result sequence {1, 2, 3}, and expr; has the result sequence { 10, 20, 30}, the result
sequence for

expr; + expr

is {11, 21,31,12,22,32,13, 23, 33}.

An important semantic feature of Icon concerns the lexical scope of its goal-directed evalua-
tion mechanism. Rather than having the entire program. or even a procedure body, consist of one
monolithic expression in which backtracking is unlimited, Icon programs consist of separate
bounded expressions. Backtracking is limited to the scope of a bounded expression. Once a
bounded expression produces a result, it cannot be resumed to obtain another. To understand
why bounding is necessary, suppose that the expression above is the control clause for an if
expression:

if i = find(s1,52) then expr, else expn

Since evaluation of i = find(s1,52) succeeds (as described above), the then clause is selected.
Now suppose that evaluation of expr; fails and that failure is allowed to propagate back into the
control clause. At this point, find is resumed, but it has no alternative results that can make the
comparison succeed. Hence the control clause fails and the else clause is chosen. Backtracking
into the control clause is erroneous: both the then and else clauses could be evaluated, violating
the natural semantics of if. For this reason, Icon bounds the control clause of the if.

Bounded expressions are the basic structural components of goal-directed evaluation in Icon.
They begin a context for goal-directed evaluation of an expression and control the generation of
results for expressions. Understanding where bounded expressions occur in the source language
is important to a clear understanding of the implementation. Some examples of implicitly
bounded expressions in control structures are listed below.

e The expression of a procedure body is bounded.

e All expressions in a compound expression {expr;; exprs; ...; expr, } are bounded, except
expr;,.

e The control expression of an if expression is bounded.

e The control and do expressions of the traditional looping control structures are bounded.

Appendix A gives a complete list of all control structures of Icon and identifies their bounded
expressions.

Since a procedure body expression is bounded, evaluation always takes place within a
bounded expression. In the following expression, the bounded expressions are enclosed in rec-
tangles to illustrate that bounded expressions become may be nested:

procedure p()

while do
if then expn

end

Icon integrates goal-directed evaluation into conventional control structures with the discip-
line provided by bounding. In addition to the conventional control structures that are found in
other languages, Icon has several control structures related to generators. These control struc-
tures are meaningless and unnecessary in a traditional imperative or functional language in
which every expression produces exactly one result. One of these new control structures is alter-
nation, expr; | expr;, which generates the results of expr; followed by the results of expr,. The
result sequence for alternation is the concatenation of the result sequences of its arguments. For

example, the result sequence for
(1 to 5) | (8 to 10)

is {1,2,3.4,5.8,9,10}.

The repeated alternation control structure, |expr. generates the results of expr repeatedly. For
example, the result sequence for

(1 to 3)

is {1.2,3,1, 2,3, ... }]. While this result sequence is infinite, it is only a potential infinity that
poses no computational problem. Generators produce only the number of results that their
evaluation context requires in its attempt to succeed. An exception to the repeated generation of
results occurs if the argument expression fails. In this case, the repeated alternation terminates.
Only expressions whose result sequences depend on side effects can succeed at one time and fail
at another. For example, the evaluation of read() produces a result for each line in the input file,
but fails when there are no more lines. Consequently, the result sequence for |[read() consists of
all the lines of the input file. ‘

A result sequence can be truncated by the limiration control structure, expr \ i, which limits
expr to i results. For example, the result sequence for

[(1to3)\5

is{1,2,3,1,2}.

The every control structure is used to iterate over all the results of an expression. For exam-
ple,

every write(find(s1,s2))

writes every position at which 81 occurs in s2. The general form for the every control structure
is:

every expr; do expr

For each result produced by expr;. expr is evaluated.

1.3 Implementation Issues

In an imperative or functional language where expressions produce a single result. interpret-
ing expressions is straightforward. For example, expression evaluation can be accomplished by
a depth-first traversal of a tree representation of the expression. There are many examples of
simple, elegant recursive interpreters for languages such as Lisp and Scheme [1,32]. Because
expressions in these languages produce only one result, an interpreter can employ a simple
recursive process of evaluating arguments, and performing the application of an operation to the
arguments. Generators can be implemented by this simple process of recursive
evaluation/application only if the implementation language itself has generators or some other
general control abstraction such as coroutines or continuations. An interpreter for Icon written
in Icon and making use of suspension (generation) is discussed in [17]. This approach is useful
for considering semantics at a higher-level, but is impractical as an implementation technique,
since it requires suspension in the implementation language.

This dissertation focuses instead on the implementation issues for Icon using a traditional
procedural language such as C or Pascal. That is, the implementation language provides only

-6-

the the usual semantics for procedures and expressions.

Generators bring two issues to the implementation. First, generators must maintain local
information between suspension and resumption. For example, in the expression

i =find(s1,s2)

find must keep track of its arguments and the current position in S2. In that sense, the primitive
operations and functions of the language are not atomic, as they are in most languages. They are
not routines or machine operations that perform a computation all at once. The information
related to a suspended generator must be maintained in much the same way that procedure call
information is maintained in traditional languages. That is, generators in Icon require state
maintenance at the expression level that usually only occurs at the procedure level in other
languages.

The second issue is subtler: Generators prolong the lifetime of temporary values. For exam-
ple. in

i = find(s1,s2)

the operands of the comparison operation cannot be discarded when find produces its result. If
find is resumed, the comparison is performed again with subsequent results from find(s1,s2),
and the left operand must still be available. The solution to the prolonged lifetime of temporary
values ultimately depends on the design of the virtual machine for Icon. The Icon virtual
machine is a stack machine where operations take their operands from the stack and replace
them by their results. Since operations consume their operands, they consume temporary values
that may be needed later. Consequently, such operands must be replicated when generators are
present. If the Icon virtual machine were a temporary register machine, temporary values would
not be consumed by computations. Rather, the temporary register allocator would release a tem-
porary only when its lifetime is complete. The lifetimes of temporaries are limited lexically by
the implicit bounded expressions of control structures. A simple register allocator would release
the temporary registers allocated for a bounded expression when it reaches the end of the
bounded expression. A method to allocate temporary registers more efficiently within a bounded
expression is a considerably more complicated problem that the allocation of temporaries for
conventional expression evaluation, since it requires knowing when generators are present, and
the extent of the generators.

In addition to these issues related to a generator’'s computation state, a generator implicitly
provides a control backtracking point for goal-directed evaluation. Within a bounded expression,
control backtracking points introduced by generators are accumulated as the expression is
evaluated. The backtracking points obey stack protocol and the last generator evaluated is the
first one to be resumed. Generative control structures also introduce control backtracking points
and may also require additional state information. The limitation control structure, for example.
requires a method for keeping track of the number of results an expression produces.

Finally, bounding restricts the use of backtracking points that accumulate during evaluation.
Because bounded expressions are nested, their respective demarcations—the markings that tell
how far back to pop the stack—are nested during evaluation as well.

These implementation issues can be summarized as follows:

e The backtracking points due to generators must be maintained.

e The bounding information due to control structures must be maintained.

e The state information for generators must be preserved.

e The lifetime of temporary values must be extended in the presence of generators.

For the purposes of dealing with expression evaluation in Icon, there are three properties of
expressions that are important. Expressions that always produce a single result are equivalent to
expressions found in conventional languages. Such expressions are called monogenic. Expres-
sions that can fail to produce a result are fundamental to driving goal-directed evaluation. Such
expressions are called conditional. Finally, expressions that can produce more than one result
introduce state retention and are called generators. Appendix B lists the operations and functions
in Icon and their corresponding properties.

1.4 Previous Implementation Models

As mentioned previously, several implementations of Icon have been developed since the ori-
ginal version written by the designers of Icon. This section briefly discusses three different ver-
sions that use similar Icon virtual machines as the basis of implementation. They differ
significantly in their approaches to solving the following problems: maintaining the failure
points of bounded expressions and generators, detecting failure and resuming generators, main-
taining local state information for generators, and maintaining temporary values. The various
approaches result in different management of the system stack (the stack of the implementation
language) and other auxiliary stacks. The virtual machine itself is discussed in Chapter 2, and is
not needed to understand the following discussion.

Versions 1 and 2. The original implementation of Icon, written in Fortran [16, 28], uses two
stacks. The interpreter stack holds active procedure frames and the temporary Icon values result-
ing from expression evaluation. A second stack, called the control stack, holds control and state
information for goal-directed evaluation.

During evaluation, a global variable holds the failure label for the current bounded expres-
sion. The failure label indicates where evaluation should continue when failure occurs. When a
bounded expression is evaluated, the current failure label is saved on the control stack and the
new failure label is assigned to the failure variable. The heights of the interpreter and control
stacks are also saved on the control stack. In the absence of generators, if failure occurs during
evaluation, the current failure label is used to continue evaluation. Icon values on the interpreter
stack due to the current bounded expression are removed by restoring the interpreter stack height
to its original value, and the most recent failure label is restored from the stack.

Generators use the control stack to maintain local state between suspension and resumption.
Generators are written so that each call to the generator produces the next result. Thus, they fol-
low a programming convention that determines whether a call is the initial call, or a call due to
resumption. After a generator produces a result, it saves its local state on the control stack and
also copies the temporary Icon values from the interpreter stack to the control stack. By using
the most recently stacked height, only the values relevant to the current expression are saved.
The generator then pushes a label on the stack that points to the place in the code where the gen-
erator is called.

When failure occurs, the failure routine checks for a generator. If there is a generator, the
failure routine resumes the most recently suspended generator by restoring the information from
the control stack. Once the local state of the generator and the temporary Icon values are restored

-8-

on the interpreter stack as they were at the time the generator suspended, control is transferred to
the label stored by the generator, and the generator is called to produce its next result.

This implementation requires that temporary Icon values be copied twice, once to be saved
on the control stack, and again when the values are restored to the interpreter stack. Further-
more, the code of a generator is highly specialized and differs from other routines in the run-time
system.

Versions 3 through 5. Versions 3 through 5 of Icon [20,45, 46], which are written in C and
assembly language, combine the interpreter and control stacks on the system stack used by C.
All information for active procedure frames, bounded expressions, generators, and temporary
Icon values is maintained on the same stack. This requires assembly language code to augment
the C code, since the system stack is manipulated in nonstandard ways throughout interpretation.

Information for expression evaluation is maintained in two types of frames: expression
frames and generator frames. These frames are stored on the system stack and global pointers
are maintained to point to the current expression and generator frames during execution. When-
ever a bounded expression is entered, a new expression frame is created. Expression frames hold
the values of the previous expression and generator frame pointers and a failure continuation
associated with the current bounded expression. On the other hand, when a generator suspends. a
generator frame is created. Generator frames hold the previous frame pointer values and a
failure continuation for the generator. Following the generator frame, the Icon temporary values
relevant to the current expression are copied on the stack. The local state of the generator is
maintained by keeping its activation frame on the stack and branching back to the main inter-
preter routine.

When failure occurs, the interpreter examines the current values of the expression and gen-
erator frame pointers. If a generator is present, the interpreter restores information saved in the
generator frame and transfers back to the suspended generator. If there is no generator, the inter-
preter removes the current expression frame and continues execution at the failure continuation
stored in the expression frame.

The interaction between generator and expression frames in the implementation is rather sub-
tle and confusing. For example, some control structures, such as alternation and limitation. cause
both expression and generator frames to be created. The conceptual basis of expression evalua-
tion is obscured by the interleaving of the frames. Furthermore, the interpreter and all routines
associated with expression evaluation are written in assembly language. This implementation is
by far the most complex in its treatment of expression evaluation.

Version 6. Version 6 of Icon [22] is similar to Version §, and is also written in C, but does
not use assembly language to impilement expression evaluation. This transformation was accom-
plished by using recursion in the implementation of generators. Version 6 also makes use of an
interpreter stack for expression evaluation information in addition to the system stack used by C.

Whereas Versions 3 through 5 retained the local state of a generator by leaving its activation
record on the system stack and branching to the interpreter (using assembly language), in Ver-
sion 6 the generator calls the interpreter recursively, avoiding assembly language. Recursion is
used only for generative operators and functions, however, and not for generative control struc-
tures. The values of Icon expressions are maintained on the interpreter stack and operations use
the values on the interperter stack for their arguments. Version 6 uses expression and generator
frames to implement the control flow of goal-directed evaluation. The frames have the same
structure and meanings as in Version 5, but are maintained on the interpreter stack, interleaved

-9.

with the Icon values, instead of on the system stack.

1.5 Comments

The fundamental problem with these implementations is that the conceptual basis for expres-
sion evaluation is complicated. The intricacy arises because the implementations distinguish
between the failure control points for bounded expressions and those for generators. Thus
separate mechanisms, for example. the frames of Versions 3 through 6, are required for each.
When failure occurs, the actions taken differ depending on whether or not generators are present.
Furthermore, the control information that is explicitly constructed for bounded expressions and
generators must be explicitly removed.

The recursive model for implementing expression evaluation simplifies goal-directed control
flow by treating failure control points due to bounded expressions and generators in a uniform
manner. By synthesizing the failure points, all control information for goal-directed evaluation
can be kept implicitly by recursion. The interpreter presented in Chapter 2 introduces a model of
implementing generators and goal-directed evaluation that is separate from the virtual machine.
It provides a conceptual basis for maintaining control information for Icon’s expression evalua-
tion that can be applied to interpretation of virtual machine code. or used directly to compile
code for Icon. Using the recursive method as the basis for compiled code is discussed in Chapter
3.

Chapter 4 discusses optimization of expression evaluation. It focuses on the properties of
bounding and generating. It shows how to gather information during translation, and how to use
this information during code generation to eliminate unnecessary generality and to improve the
generated code based on the properties of the expression at hand. Examples of programs that are
improved by these methods are given.

Chapter 5 discusses the performance of the recursive interpreter as compared to Version 6 of
Icon. It continues with an evaluation of the compiled code with optimizations. Chapter 5 con-
cludes with suggestions for further work and summarizes the work in this dissertation.

-10-

CHAPTER 2

AN INTERPRETER FOR ICON

High-level programming languages are often implemented with interpreters. An interpreter is
a convenient abstraction, allowing implementation at a conceptual level that is closer to the
language than the instructions of an actual machine. One approach to implementing Icon
expression evaluation is to translate source into a simple virtual machine language and then
interpret the virtual machine. There are many possible designs for a virtual machine for Icon,
and further, given a virtual machine instruction set. many possible ways to implement the virtual
machine.

Several implementations of Icon are based on a virtual machine originally designed by Han-
son and Korb [28]. The virtual machine is stack-based and has instructions that relate directly to
source-level constructs. The stack nature of the machine avoids the issue of register allocation
for temporary values, since temporary values are not assigned to specific locations but rather
accumulate on a stack. The implementations of the virtual machine have varied significantly
over the years. The disadvantage of previous implementations is that they are complicated and
ad hoc in their treatment of expression evaluation. This chapter presents a new interpreter for
the virtual machine that is clear and uniform.

2.1 The Virtual Machine

In the stack-based virtual machine, expressions are translated to postfix notation. Operations
get their arguments from a stack and replace the arguments with the result of the operation. All
types of operations—monogenic, conditional, and generative—are translated in the same way.
For example, the code for i + 5 is:

var i
int 5
plus
Likewise the code for 1 to 10 is:
int 1
int 10
to

The handling of failure and generators is left to the interpreter for the virtual machine code.

The basic unit of control for goal-directed evaluation is the bounded expression. Evaluation
always takes place within a bounded expression. In the virtual machine, a bounded expression
expr; is represented by the following code:

-11-

mark L1
code for exprn
unmark

L1:

If expr; fails, execution continues at the code at label L1, the failure continuation of the bounded
expression. If expr; produces a result, the unmark instruction is reached and execution contin-
ues at the instruction following the unmark. Conventional control structures are translated into
code consisting of explicitly bounded expressions with the appropriate failure labels. For exam-
ple. the code for the compound expression { expr;; exprz; exprs } is

mark L1
code for expr
unmark

L1:
mark L2
code for expn
unmark

L2:
code for expr

Similarly, the expression if expr; then expr; else exprs is translated into

mark L1
code for expry
unmark
code for expn
goto L2
L1:
code for expr;
L2:

Note that only the control clause is bounded in the if expression. The selected expression is
evaluated within whatever context the if expression occurs.

A looping control structure is used to repeatedly evaluate an expression as long as the control
clause succeeds. The loop expression fails when its control clause fails. A different form of the
mark instruction, which does not have an explicit failure label, is used for the control clauses of
loops. This instruction is mark0, which transmits failure to the surrounding context. For exam-
ple, while expr; do expr; consists of two bounded expressions and is translated into:

L1:

mark0

code for expr
unmark
mark L1

code for expn
unmark

goto L1

The repeat and until expressions are similar.

-12-

The control structures alternation, repeated alternation, and limitation do not bound their
arguments and therefore do not use the mark instruction. Each control structure is translated into
instructions specialized for that structure. For example, the code for alternation is:

at L1
code for expn
goto L2
L1:
code for expr
L2:

The virtual machine representations of the remaining control structures are presented in later
sections.

There are two important aspects of the virtual machine to consider. First, notice that control
flow is based on where to continue on failure. All traditional control structures begin with a
mark label instruction that specifies where to continue if failure propagates back to the mark
instruction. Likewise, generative control structures and operators provide failure continuations.
The alternation control structure specifies a failure continuation explicitly in its virtual machine
representation. A generative operator such as to has an implied failure continuation. If to is
resumed for a subsequent result, it computes its next result and begins evaluation at the instruc-
tion immediately following the to instruction. Consequently, an expression that can fail. such as
the comparison operation <, is not given a failure continuation explicitly in the virtual machine
representation. The most recent control structure or generator provides the failure continuation
dynamically for a conditional expression.

Second, because the virtual machine is a stack machine, the temporary values on the stack are
consumed when operations are successfully performed. For example, an addition operation con-
sumes the top two values on the stack. Since generators may cause temporary values to be
reused, the interpreter must have a method to save the temporary values.

2.2 The Recursive Model

The recursive interpreter focuses on the notion of a place to continue on failure. Failure con-
tinuations are introduced at control points. The control points, or control decisions, are intro-
duced by control structures and generators. (Note that some generators are control structures and
others are operations or functions.) A generator and a bounded expression introduced by a tradi-
tional control structure such as while are semantically very different, yet each provides a place
to continue when failure occurs. The generator’s failure continuation provides an alternative; the
bounded expression’s failure continuation provides the next sequential execution point of the
program. In the recursive model, they are handled similarly.

Recursing when generators are encountered implicitly preserves both the internal state of the
generator and control information for last-in, first-out resumption. Similarly, recursion for
bounding indicates that most recent failure continuation is not a resumption point but a struc-
tured control flow point. In either case, recursion maintains all control information uniformly.
simplifying the evaluation process. The recursive interpreter is mainly described by the interplay
between recursing at failure continuation points and returning, either to resume generators or to
discard them.

Conceptually, an expression is evaluated in a goal-directed evaluation context. The main
component of the evaluation context consists of the failure continuation. Bounded expressions,

~13-

generators, and generative control structures change the current evaluation context, since each of
these constructs provides a new failure continuation point. Whenever the interpreter encounters
an expression that provides a new failure continuation. it saves the failure continuation and calls
itself to provide a new context for evaluation. If the expression is a generator, the interpreter
also replicates the appropriate values on the stack, since these values may be used again if gen-
erators are resumed. If failure occurs in a subsequent context, the interpreter returns to the previ-
ous context with a signal to resume generators. Execution then continues at the failure continua-
tion of that context. On the other hand, if the end of a bounded expression is reached, the inter-
preter returns a signal indicating that the bounded expression is to be removed. This unwinds all
levels of recursion built up during the evaluation of the bounded expression and achieves the
effect of limiting the expression to one result during goal-directed evaluation.

The expression evaluation context is represented primarily in the interpreter by two local
variables, one for the failure continuation point and one for a pointer into the stack holding tem-
porary values that identifies the beginning of the values relevant to the expression. To imple-
ment generators and goal-directed evaluation, a conventional interpreter for expressions
evaluated on a stack is augmented with these two state variables to represent that evaluation con-
text. The interpretive process follows the method outlined above.

2.3 The Interpreter

An interpreter for Icon based on the ideas discussed above can be implemented in any tradi-
tional imperative language. The model places few demands on the implementation language,
since expression evaluation is modeled as a simple call/return control pattern. The interpreter for
Icon is implemented in C. Here, the interpreter is presented in simplified form in order to keep
the discussion at a higher conceptual level than detailed C code would allow. To further simplify
the explanation, expression evaluation is discussed without consideration of Icon procedure
invocation and local variables. These topics are relatively uninteresting and are implemented in
the standard way by allocating space for Icon local variables on the stack and maintaining a
pointer to the local environment. Procedures and local variables are discussed briefly at the end
of the chapter. In all the examples of Icon expressions that follow, variables are assumed to be
global variables.

The stack used by the virtual machine is called the expression stack; it holds the temporary
values created during expression evaluation. Representing Icon values is an interesting issue in
itself, since variables are not typed in Icon and a variable can be assigned any value during its
lifetime. This problem is handled by representing all values uniformly by a descriptor. A
descriptor consists of two parts, one to specify the type, the other to specify the value. For simple
atomic values such as integers, the value portion of the descriptor represents the data for the
value directly. For structured values and strings, the value of the descriptor is a pointer to data
representing the value. For the purposes of describing expression evaluation in this dissertation,
a descriptor is defined in C as follows:

-14 -

struct descrip {
int type;
union {
int integer;
char #*sptr;
} value;

b

The actual definition of a descriptor, which is also a two-word entity, is given in [22].
The interpreter uses the following global variables:
e icode—an array holding the virtual machine instructions
e ipc—an index into icode
e stack—the expression (virtual machine) stack used to hold Icon values
e iglobals—an array consisting of the global variables of the Icon program

The variable icode is an array of integers, each of which denotes a virtual machine instruction or
an operand of an instruction. This array is filled at interpreter initialization time. The ipc is an
index into the icode array. Both stack and iglobals are arrays of descriptors.

Each invocation of the interpreter is an evaluation context for an expression. Variables local
to the interpreter are used to maintain the expression evaluation context. The vanable ep points
to the portion of the expression stack where the values relevant to the current expression begin.
and sp points to the current top of the expression stack. The variable fipc is the failure continua-
tion for the current expression: it is simply an index into icode.

Invocations of the interpreter accumulate as new expression contexts are encountered. The
interpreter returns in two situations: when failure occurs or when control reaches the end of a
bounded expression. The interpreter returns a value that informs the invoking context how to
respond to the outcome. The signal Resume is returned when an expression fails and indicates
that goal-directed evaluation must resume suspended generators. The signal Clear is returned
when the end of a bounded expression is reached. which indicates that goal-directed evaluation
in the most recent bounded expression has succeeded and is complete.

The structure of the interpreter is:

int icode[Codesize];

int ipc;

struct descrip iglobals[Globals];
struct descrip stack[StackSize];

interp(ep, sp)
int ep, sp;

{

int fipc, signal, newsp;

-15-

for (; ;)
switch (Fetchinst()) {
case Var:

case Int:
case Plus:

case Mark:

}
}
The interpreter embodies the fetch-decode-execute cycle for the Icon virtual machine. The
Fetchinst macro increments the ipC and returns the instruction pointed to by its previous value.
A corresponding FetchOpnd macro returns the operand of an instruction.

Simple instructions, such as those for literals, push values on the expression stack. For exam-
ple, the code in the interpreter for the virtual machine instruction int is:

case Int:
stack[++sp).type = INT;
stack[sp].value.integer = FetchOpnd();
break;

When an Icon variable is referenced, the interpreter pushes a descriptor for that variable on the
stack. The value portion of the descriptor is the offset of the variable in the iglobals array. The
code for var is:

case Var:
stack[++sp].type = VAR;
stack[sp].value.integer = FetchOpnd();
break;

Variables are dereferenced when required by context. For example, operations dereference
their operands. The DeRef macro dereferences a variable by looking up the corresponding
value in iglobals and replacing the variable on the stack with its value.

An operation computes its result using values on the top of the expression stack as operands.
Other details of the code depend on whether the operation is monogenic, conditional, or genera-
tive. A monogenic operation does not effect control flow. The code for the plus instruction
typifies a monogenic operation:

case Plus:
DeRef(sp-1);
DeRef(sp);
stack[sp-1].value.integer =
stack[sp-1].value.integer + stack[sp].value.integer;
sp--;
break;

Notice that the arguments are replaced by the result of the addition and that sp is decremented.

- 16 -

Execution continues at the beginning of the interpreter loop.

When control decisions are encountered, the current context of the expression is saved by a
recursive call to the interpreter; execution then continues in the new context. Since expression
evaluation always takes place within a bounded expression, the details of control flow are
explained beginning with bounded expressions.

2.3.1 Bounded Expressions

An expression is bounded in order to control the generation of its results. When a bounded
expression produces a result, its computation is complete and any information related to it is
removed. This information is of two kinds: the values on the expression stack that accumulate
during evaluation of the bounded expression, and the recursive invocations of the interpreter due
to generators within the bounded expression.

The ep points to the base of the expression stack for the expression currently being evaluated.
A bounded expression does not need to be connected with the values that may currently reside
on the expression stack; when evaluation begins for a bounded expression, ep is adjusted to
point to a *‘fresh’” portion of the stack.

As shown previously. a bounded expression expr; occurs as code surrounded by the instruc-
tions mark and unmark:

mark L1
code for expr;
unmark

L1:

The mark instruction ‘‘marks’’ the boundary for control backtracking and the label L1 is the
failure continuation for expr;. If the expression succeeds, the unmark instruction is reached and
the interpreter removes the context of expr;. The code for mark follows:

case Mark:
fipc = FetchOpnd();
if (interp(sp+1,sp) == Resume)
ipc = fipc;
break;

At the mark instruction, the failure continuation L1—an index into icode—is saved in fipc.
The interpreter is called as interp(sp+1,sp), making the ep of the new context point to the first
unused portion of the expression stack. The instructions of the bounded expression are inter-
preted in the new context.

The code for unmark is simply

case Unmark:
return Clear;

If evaluation reaches the unmark instruction, the expression has succeeded and its context is to
be removed. Notice that since ep and Sp are local variables in the interpreter, when unmark
causes a return, the expression stack is effectively popped as well as the C calling stack. Execu-
tion continues at the instruction following the unmark instruction.

-17 -

2.3.2 Failure

Failure is communicated by returning a signal that indicates failure. In general, left-to-right
evaluation of expressions causes recursion at control decision points, and failure causes the inter-
preter to return to the most recent control decision point. If there are no generators, the most
recent control point is the failure continuation of the current bounded expression.

A conditional operation introduces the possibility of failure during evaluation. The interpreter
code for numerical comparison operation < illustrates how failure can occur during evaluation

case Numit:
DeRef(sp-1);
DeRef(sp);
if (stack[sp-1].value.integer >= stack[sp].value.integer)
return Resume;
stack[sp-1].value.integer := stack[sp].value.integer;
sp--;
break;

Notice that if the operation succeeds. the evaluation actions are similar to those implementing a
monogenic operation. However, if the operation fails, interp returns Resume to continue goal-
directed evaluation in a previous context.

2.3.3 An Example

To illustrate this type of failure-based evaluation, consider evaluating the if expression whose
result is the larger of two integers:

if i <jthen | else i
The corresponding virtual machine code is:

mark L1
var i
var j
numit
unmark
var |
goto L2
L1:
var i
L2:

At the mark instruction. the interpreter saves the failure continuation L1 and invokes itself
with new ep and sp values to establish a new context. In the new context, the variables i and |
are pushed onto the stack and the comparison operation is performed. For the moment, suppose
that i is less than j. Then the comparison succeeds and numit decrements the sp, leaving j on the
top of the stack as the result.

The interpreter then executes the unmark instruction. This indicates the end of a bounded
expression, whose context is to be removed. The context consists of the values on the stack from
the ep and invocations of the interpreter caused by evaluating the bounded expression. In this
case, the evaluation of i < j leaves only one result on the stack and does not incur any new invo-
cations of the interpreter.

-18 -

After the return, control returns to the interpreter instance at the Mark case. Since the signal
is Clear, the failure continuation for the bounded expression is not used. Execution continues at
the current value of the ipc, which points to the instruction following the unmark. As execution
continues, j is pushed on the stack and it becomes the result of the if expression.

Now consider the same example where i is greater than or equal to j so that i < j fails. Execu-
tion proceeds as before up to the numlt instruction. Since the comparison fails, numit returns the
signal Resume. Control returns to the code in the interpreter at the Mark case. Since the signal
is Resume, the failure continuation for the bounded expression is used to continue execution.
The fipc points to the code at L1 and execution continues at the icode instruction var i, making
this the outcome of the if expression.

In the absence of generators, failure is simple and merely causes the context of the bounded
expression to be removed and execution to continue at the failure continuation associated with
the bounded expression. The expression fails, but goal-directed evaluation has no alternatives.
since the expression does not have generators.

The next section discusses generators, which introduce alternatives during goal-directed
evaluation. Resumption of generators is straightforward and follows naturally from the method
of recursing at failure continuation points.

2.3.4 Generators

A generator provides an alternative computational path during goal-directed evaluation. Put
another way, its failure continuation provides goal-directed evaluation with the possibility to
compute a different result that might cause a computation to succeed where the previous compu-
tation failed. Recursion is the basic mechanism used to encode failure continuations for control
backtracking. The interpreter makes no distinction between the failure continuations of bounded
expressions and those of generators; it maintains them similarly.

However, besides recursing to stack its failure continuation, a generator must also address the
lifetime problem of temporary Icon values (see Chapter 1). In a given context of evaluation, the
ep points to the base of the values on the expression stack that are relevant to the current expres-
sion context. Therefore, just before a generator invokes the interpreter, it copies the values on
the expression stack from the current ep to the sp. In the new context, ep then points to the
base of the replicated values. Evaluation in the new context uses only the values from its ep: the
previous values on the expression stack are left intact. Replicating the values extends the life-
time of the temporary Icon values and makes them available again if the generator is resumed.

All varieties of generators in Icon—operators, functions, generative control structures, and
Icon procedures—are implemented in the same way. Every form of suspension establishes a
new failure continuation, replicates values on the expression stack, and calls the interpreter
recursively to stack its failure continuation and establish a new context.

As in the code for mark, a generator checks the signal returned by the interpreter and
resumes only if appropriate. If the generator is not to be resumed, the signal is propagated by
returning it to a previous context of the interpreter, thus removing the context of the generator.

The alternation control structure is a simple generator that illustrates the basic actions of a
generator. The virtual machine code for the expression expr; | expr: is

-19-

alt L1
code for expn
goto L2

L1:
code for expr

L2:

The label L1 is the failure continuation of the alternation expression. If goal-directed evaluation
resumes the alternation expression, evaluation continues with the code for the alternative expres-
sion expr:. The code for alternation is:

case Alt:
fipc = FetchOpnd();
newsp = copy(ep,sp);
signal = interp(sp+1,newsp);
if (signal == Resume)

ipc = fipc;
else

return signal;
break;

The function COpy replicates the values on the expression stack and returns the new value of the
stack pointer after the copy. Alternation saves the failure continuation, copies the top portion of
the stack, and invokes the interpreter with values of ep and sp that point to the replicated por-
tion. When the interpreter returns, alternation uses its failure continuation only if another result
is required.

Consider evaluating the expression i < (j | k), which succeeds if either j or k is greater than i.
The code for the expression is:

var i

alt L2

var |

goto L3
L2:

var k
L3:

numit

After the first var instruction is evaluated, the alternation instruction is evaluated. Alternation
fetches and saves the failure continuation and replicates the values of the current context. This
may include many values besides the variable i, depending on the lexical context of the expres-
sion i < (j | k) in the source code. Execution continues in a new context at the var j instruction.
The goto avoids evaluating the altemnative expression.

At this point, the numit is executed. There are two important points to notice. First, numlt
operates on replicated values. Any computations using values on the expression stack in this
evaluation context do not affect the contents of the stack as they were when alternation was first
encountered. Secondly, the most recent failure continuation is due to the altermation control
structure; if the comparison fails, control returns to the code in the interpreter for the Alt case
and its failure continuation is used to continue evaluation at the alternative expression.

-20-

The uniformity of the interpretive process makes goal-directed evaluation straightforward. In
the example above, if the first attempt of the comparison succeeds, the result of the expression
i < (j | k) becomes the value of j. The context of the alternation expression in the interpreter
remains until the end of the bounded expression in which it occurs is reached. At that point, the
alternation context is removed by a Clear signal. On the other hand, if the comparison fails or if
failure occurs in a subsequent computation, a Resume signal is returned to alternation and exe-
cution continues at its failure continuation. The comparison is then made with the second alter-
native.

2.3.5 Generative Operators and Functions

The distinction between operators and functions is syntactic only. as far as expression evalua-
tion is concerned. This section describes the implementation of the generator expr; to expr.
Generative functions such as find are implemented in the same way.

The code generated for expr; 10 expn is

code for expn
code for expn
to

The general actions of the to generator mimic those of alternation. There are only two new
observations to be made about a generative operator. First, a failure continuation is not given
explicitly as an argument to the to instruction. The failure continuation for to is simply what-
ever instruction follows it. Second. the arguments for to are on the top of the expression stack
during evaluation of to. There is no need to replicate the arguments of to if it suspends. There-
fore, unlike alternation, which copies from ep to the current sp, to copies from the current ep to
the value just preceding its first argument. After the replicated values, to pushes the result of its
computation on the stack. In that way, the previous values on the expression stack are properly
connected with the result of the to operation.

The code for to follows:

case To:
fipc = ipc;
DeRef(sp-1);
DeRef(sp);
from = stack[sp-1].value.integer;
limit = stack[sp].value.integer
while (from <= limit) {
newsp = copy(ep,sp-2);
stack{++newsp] = INT;
stack[newsp].value.integer = from;
signal = interp(sp+1,newsp);
if (signal != Resume)
return signal;
ipc = fipc;
++from;

}

return Resume;

221 -

2.3.6 Repeated Alternation

Repeated alternation requires an extension of the techniques seen so far. Briefly, the problem
is that this control structure requires knowing information that is hidden in the levels of recur-
sion; communicating by signals is insufficient. Fortunately, the method used to implement this
control structure is simple and does not burden the interpreter with additional mechanisms and
state information. Another control structure, limitation, is similar and requires the same tech-
nique.

In evaluating |expr), if repeated alternation did not check for failure of expr;, the program
could loop. Hence, repeated alternation must be aware of the outcome of evaluating expr;. The
generated code for the repeated alternation expression |expr; is:

repalt
code for expn
contrep

Notice that contrep is executed only if expr; succeeds:; if it fails, contrep is not reached.

The difficulty in implementing repeated alternation is that the two instructions repalt and
contrep must communicate. So far, the method used for communicating has been returning sig-
nals between contexts of interpretation. However, contrep cannot return to the context at repalt,
since returning would remove contexts due to suspended generators in expr;. For example, if the
repeated alternation expression is 1 to 10, and if contrep returns, the invocation of the inter-
preter due to the generator t0 would be unwound and the generator would be removed prema-
turely.

A possible solution is to use a global variable. If contrep sets a global variable that indicates
the expression succeeded, then when repalt regains control it could look at the value of the glo-
bal variable to know if the expression succeeded. However. repeated alternation expressions
may be nested. A global state variable must be maintained across expression contexts, being
saved and restored at each invocation and return. Furthermore, the limitation control structure
also requires similar communication. Thus, a second *‘state’’ variable would have to be intro-
duced for it as well.

To avoid burdening the implementation with extra state variables, the interpreter uses a
simpler, but computationally equivalent method. It makes the next available stack position the
value of a variable used for communication for an instance of repeated altemation. In other
words, each instance of repeated alternation dynamically allocates its own local variable on the
expression stack for communication. The code below illustrates the idea; it pushes the value
zero on the expression stack and then a variable to point to this value:

stack[++sp).type = INT;
stack[sp).value.integer = O;
stack[++sp).type = VAR;
stack[sp].value.integer = sp-1;

Given that the interpreter is in some expression context, executing the code above has the fol-
lowing affect on the expression stack:

-22.-

ep —

0
sp — var

Whenever an instance of repeated alternation is evaluated, the interpreter constructs a variable
on the expression stack that is associated with that instance of the control structure. The
corresponding contrep instruction need only know where that variable is when it gains control.
The uniformity of the expression stack structure makes locating this variable straightforward.

To illustrate this, suppose that the expression stack has the following form when repeated
alternation is encountered:

ep — v
2
Sp — w3

Since repeated alternation is a generator, it follows the general protocol: It saves its failure con-
tinuation, copies from the current ep to Sp, and invokes the interpreter with the new context. In
addition, just before the copy, repalt pushes a value on the stack and after the copy, constructs a
variable that points to it. When the interpreter is invoked, the stack has the form:

(ep) — v
]
1%}
0 —
ep — v
2
v
sp — var —-

The repeated alternation expression is evaluated in this new context. There are three possibili-
ties for the expression. It may fail to produce a result, it may produce exactly one result, or it
may be a generator and produce many results. If the expression produces exactly one result—
that is, if it is not a generator—then the stack has the form:

(ep) — w
w
i
0 —
ep —— v
»
A<}
var
Sp — result for expn

Notice that the variable is the second descriptor from the top of the stack. On other hand, the
expression expr; may be a generator. No matter how complicated this generator is, it follows the
protocol for a generator: The context of the stack prior to the evaluation of the generator is
copied and the interpreter is called with the ep pointing to the new expression context. Thus,
after evaluating the generative expression expr;, the top of the stack still has the form above:
when contrep is reached, the repeated alternation variable is the second descriptor from the top

223 -

of the stack.
The code for repeated alternation is:

case Repalt:
fipc = ipc;
++8p;
for (;;) {
ipc = fipc;
stack[sp].type = INT;
stack[sp].value.integer = 0;
newsp = copy(ep,sp-1);
stack[++newsp].type = VAR;
stack[newsp].value.integer = sp;
signal = interp(sp+1,newsp);
if (signal != Resume)
return signal,
if (stack[sp].value.integer == 0)
return Resume;
}

The code at the Repalt case pushes the integer 0 on the stack. If the expression succeeds. con-
trep is reached and this instruction changes the value to 1 to indicate that the expression did
succeed. The code for contrep follows:

case Contrep:
stack[stack[sp-1].value.integer].value.integer = 1;
stack[sp-1] = stack[sp];
sp--;
break;

Note that besides changing the value of the repeated alternation variable to indicate success,
contrep also replaces the variable with the result of the expression and decrements the stack
pointer. Otherwise, this variable would interfere with subsequent computations.

2.3.7 Limitation

Unlike repeated alternation, the limitation control structure is not a generator; instead, it lim-
its generators. In the expression expr; \ expr, the task of limitation is to count the results that
expr; produces. When the expression has produced the number of results specified by expr, the
expression is prevented from producing more results. The limitation control structure removes
all information relevant to expr; when it produces its last allowed result. In a sense, limitation
can be thought of as providing a generalization of bounded expressions. It generalizes a
bounded expression in that it removes the evaluation state of expr; after it produces its nth
result—as specified by expr—rather than after it produces its first result. Unlike the bounded
expression, however, limitation does not isolate the evaluation of expr; from previous contexts.
The generated code for expr; \ exprs is

-24-

code for expn
limit

code for exprn
Isusp

In order to control the generation of results for expr;, limit and Isusp must cooperate. The
Isusp instruction must cause the expression context to be removed only when the expression
produces its last permitted value. The same mechanism for communication used in repeated
alternation is used for the limitation control structure. limit pushes a variable on the expression
stack to be used by Isusp to count the results produced by the expression. In addition, a new
signal is introduced for limitation. The signal Limit is used to the remove the context of the limit
expression. Using this signal avoids interference with the Clear signal.

Notice that the value of expr is on the stack when limit is reached. limit constructs a variable
to point to that value, copies the stack, and establishes a new context by recursing. Also, the
variable pointing to the limit value is replicated in order to be available to Isusp. When limit
gains control again, its action depends on the signal it receives. If the signal is Clear, limit must
return, since the bounded expression in which is occurs is complete. If the signal is Resume,
then the expression was not capable of producing the number of results specified by the limit
counter and limit propagates the Resume signal. Finally, if the signal is Limit, the expression
successfully produced its last allowed result: evaluation continues with the code following limi-
tation. The code in the interpreter for limitation follows:

case Limit:
DeRef(sp);
if (stack[sp].value.integer == 0)
return Resume;
stack[++sp].type = VAR;
stack[sp].value.integer = sp-1;
newsp = copy(ep,sp-2);
stack[++newsp].type = VAR;
stack[newsp).value.integer = sp-1;
signal = interp(sp+1,newsp);
if (signal == Limit && stack[sp].type == INT)
sp--;
else
return signal;
break;

Suppose that arbitrary values v;, », and 3 are on the stack in the current context when the limita-
tion control structure is encountered. Then when limit invokes the interpreter, the stack has the
form:

-25-

(ep) — v
v
V3
result of expn

var
ep —— v

.

V3
Sp var

Notice that limit constructs two variables pointing to the limit value, one in its current context
and one in the new context. When expr; produces its last allowed result, Isusp replaces the limit
count descriptor with this result and also replaces the first variable descriptor with the value 0 to
indicate that this instance of limitation is complete. Limitation expressions, like repeated alterna-
tion, may be nested: the Limit signal must propagate to the appropriate occurrence of limit. The
code for Isusp follows:

case Lsusp:

i = stack[sp-1].value.integer;

if (--stack[i].value.integer > 0) {
stack[sp-1] = stack([sp];
Sp--.
}

else {
stack|i] = stack|sp];
stack[i+1].type = INT;
stack[i+1].value.integer = 0;
return Limit;

}

break:

By using the variable pointing to the limit value (now the second descriptor from the top of
the stack, since expr; has been evaluated), Isusp decrements the limit value and checks that it is
non-zero. If so, expr; has not yet produced all its allowed results. Isusp replaces the variable
with the result and execution continues in the current context. If the limit value has reached zero,
the current result is the last allowed. ISusp replaces the limit value with this result and replaces
the variable just above the limit value with the integer 0. It then returns the Limit signal in order
to remove the context of expr;.

2.3.8 Iteration

In every expr;, the expression expn, is repeatedly resumed until its result sequence is com-
plete. The every expression then fails. Like a bounded expression, the computation of expr; is
isolated from previous contexts; thus a mark instruction can be used to begin the evaluation of
expr;. However, rather than delimiting the code for expr; with an unmark, which removes its
context after the first successful evaluation, the expression is delimited with an instruction that
forces failure and hence the resumption of expr;. The code for every expr, follows:

=26 -

mark0

code for expn

pop

efail
The instruction mark0 does not have a failure continuation operand. Unlike mark, it must
transmit failure to a previous context:

case MarkO0:
return interp(sp+1,sp);

When the efail instruction is reached during execution, it must resume any suspended genera-
tors in expr;. Since a Resume signal resumes generators in a previous context, the code for efail
is simply:

case Efail:
return Resume;

In the expression every expr; do expr, for each result in expr; the expression expr is re-
evaluated in a new goal-directed context. Thus, expr; is a bounded expression. The virtual
machine instructions for every expr; do expr are:

mark0
code for expr

pPop
mark0

code for expr
unmark
efail

2.3.9 Break and Next

The break control structure is used to exit from a containing loop expression. The next con-
trol structure is used to immediately jump to the control clause of the loop in order to continue
evaluation with the next iteration of the loop. In both cases, these control structures must
remove expression contexts due to nested bounded expressions before execution continues at the
semantically appropriate place. For example, consider the expression

while line := read() do
if find(s,!line) then break else write(line)

When the break expression is encountered, the bounded expression context due to the do clause
must be removed before execution continues after the while expression. For this reason, break
and next expressions are not implemented solely by goto instructions. The translator counts the
number of nested bounded expressions that are active at the time a break or next is encoun-
tered. That number of unmark instructions is emitted before the goto for the control structure.
The code for the while expression above is:

-27-

L1:
markO
var line
read
asgn
unmark
mark L1
mark L3
var s
var line
find
unmark
unmark remove bounded d0 clause
pnull
goto L2 jump to end of loop
goto L4

L3: var line
write

L4: unmark
goto L1

L2:

The next control structure is similar, but the goto instruction directs execution to the control
clause of the loop.

In general, the break control structure may have an argument expression. In that case, the
expression is evaluated before the jump to the end of the loop expression. The virtual machine
code for break expr; is:

necessary unmark instructions
<code for expr;>
goto end-of-loop

Since the unmark instructions are evaluated before the code for expr;, expr; is evaluated in the
context in which the loop expression occurs.

2.4 Procedures

As mentioned previously, Icon procedures and local variables are implemented by standard
methods. Their implementation is not shown in detail here, but a brief discussion is given to
relate their implementation to the recursive interpreter.

The local variables for an Icon procedure are maintained on the expression stack; the vari-
ables are referenced through a corresponding pointer maintained across Icon procedure invoca-
tions. In keeping with the method of maintaining state information on the C call stack (through
recursive calls to the interpreter), a C routine for invoking Icon procedures is used to maintain
the activation frames that hold the information related to Icon procedure invocation (for exam-
ple, the ipc and procedure frame pointer of the calling Icon procedure).

Icon procedures may be generators. A user-defined generator performs the same actions as
shown for generative operators and functions: It saves a failure continuation, copies a portion of
the expression stack, and recurses to establish a new context. In addition, procedure suspension
must also restore the information of the previous Icon procedure held in the current procedure

-28 -

activation frame.

Bounded expressions can be nested across Icon procedure calls. For example, suppose that
words is a procedure that generates the words in a file. This generator can be used as follows:

procedure p()
if"words() == s then ...

end

In p, when the if control clause is evaluated, words is invoked. Evaluation of expressions in
words may result in several evaluation contents due to bounded expressions and generators;
these contexts may be present when words suspends. If the comparison words() == s succeeds,
all of these contexts must be removed. Thus, the Clear signal returned due to the bounded if
control clause must clear bounded expressions within words.

This is handled by relating a bounded expression context to the Icon procedure in which the
bounded expression occurs. The code in the interpreter for mark is modified to relate its recur-
sive call to interp to the current Icon procedure frame pointer. In the example above, any
bounded expression contexts created within words are related to the procedure frame pointer of
words. When a Clear signal is returned to the code in the interpreter for mark. the code checks
to make sure the current procedure frame pointer has the same value as when the interp call was
made. If not, the signal is propagated until it reaches the proper bounding context.

229 -

CHAPTER 3

COMPILING EXPRESSIONS FOR ICON

Although compilation techniques for most programming languages are well known, Icon’s
expression evaluation with generators and goal-directed evaluation presents unusual problems.
This chapter presents a model of compilation that is a direct analog of the interpretation tech-
niques given in the previous chapter.

One motivation for developing a compiler is to enable the optimization of expression evalua-
tion. It is possible for a compiler to detect expressions that do not use the full generality of goal-
directed evaluation and to improve the code generated for such expressions. The model of com-
pilation presented here is used as a basis for the optimization techniques described in the next
chapter.

For pedagogical reasons, the compiler described here generates C code. A production version
of the compiler would generate assembly language. Also, C macros are used in the generated
code 1o eliminate unnecessary detail and to focus on the structure of the generated code.

3.1 Overview

The conceptual basis for implementing generators and goal-directed evaluation is the same in
the compiled code as in the interpreter. The contexts of evaluation introduced by generators and
bounded expressions are maintained and released in the same way. The same two global struc-
tures from the interpreter are used in the compiled code: an expression stack for temporary
values and an array for global variables. Both of these structures consist of Icon values
represented by descriptors as described in Chapter 2. In addition, there is a run-time system sup-
porting the built-in functions and operators of Icon: C functions plus(), numit(), to(), find(). and
so on, one for each function and operation in the language. The functions in the run-time system
operate on the temporary values stored on the expression stack. For example, to perform an addi-
tion, the plus routine is called and it replaces the top two values on the expression stack with
their sum.

Where there is no change of control flow, the correspondence between interpreted actions and
compiled code is straightforward. Consider, for example, the expression i + *s and its virtual
machine code translation and corresponding compiled code:

var i Pushvar(i_off);
var s Pushvar(s_off);
size size(sp);
plus plus(sp);

sp--;

The compiled code in the right-hand column is a direct translation of the interpreter actions.
Note, however, that dereferencing operations, performed by DeRef in the interpreter, do not
appear in the compiled code. Dereferencing is performed inside the run-time system routines, in

-30-

order to simplify the code presented here. In the compiled code, initial uppercase letters denote
a macro and initial lowercase letters denote a function call to a run-time routine. For example,
the Pushvar macro pushes a variable on the expression stack and is defined as

#define Pushvar(offset) {stack[++sp].type = VAR; \
stack[sp].value.integer = offset;}

where offset is the constant offset of the variable in iglobals. Other simple virtual machine
instructions, such as int, are also implemented as macros. On the other hand, all operations are
translated to C function calls. Compare the translation of plus above with that in Chapter 2.

To compile code for generative expressions, bounded expressions, and failure, the interpreter
method of handling control flow for generators and goal-directed evaluation is mapped into com-
piled code. Evaluation contexts are maintained exactly as in the interpreter by generating C
functions to maintain the contexts. Each function call in the generated code corresponds to what
would have been a recursive call to the interpreter; the body of the function called corresponds
to the code that the interpreter would have executed in that context. In that way, evaluation con-
texts are maintained implicitly by function invocation. Similarly, contexts are removed by
returning from calls. either when failure occurs or when the end of a bounded expression is
reached.

3.2 The Generated Code

An Icon expression is translated into C functions—as many C functions as are necessary 1o
represent the evaluation contexts of the Icon expression. The generated C functions take the
same two arguments as the interpreter routine: the expression pointer and the stack pointer. The
compiled code uses the expression stack the same way that the interpreter does: an invocation
due to a bounded expression causes the expression pointer to point to the top unused portion of
the stack: an invocation due to a generator causes the stack contents from the current expression
pointer to be copied, and the expression pointer to point to the base of the replicated values.

The compiled code uses the signals Resume and Clear. returning those signals to drive
goal-directed evaluation on failure or to complete the evaluation of a bounded expression, as in
the interpreter.

Understanding the compiled code requires understanding how to encapsulate the code for a
bounded expression or a generator into a C function, since these are the only points where new
contexts are created.

3.2.1 Bounded Expressions

A syntactically bounded expression expr; is packaged into a separate C function that is
invoked when expr; is to be evaluated, just as the interpreter would have recursed to evaluate
expr; in a new context. The code generator generates arbitrary names for these functions; here,
the names are prefixed by context to signify that the function represents a new context for
evaluation. The bounded expression expr; is encapsulated as follows:

231 -

context1(ep,sp)
int ep, sp;

{

int signal;

<code for expry>
return Clear,;

}

The variable signal is not always used in the function. In subsequent examples, it is declared
only when necessary.

To illustrate the use of functions, suppose that i < j is a bounded expression of a control struc-
ture. The compiled code for the bounded expression is:

context1(ep,sp)
int ep, sp;
{

int signal;

Pushvar(i_off);

Pushvar(j_off);

signal = numit(sp);

if (signal == Resume) return Resume;
SP--;

return Clear,;

}

Since the comparison operation < may fail, the compiled code checks the outcome of the call to
numit and returns Resume if the operation fails.

In compiled code, there is no longer an explicit program counter (ipc in the interpreter).
Where evaluation should continue when the function for a bounded expression, such as con-
text1, depends on the control structure that introduced the bounded expression. The flow of con-
trol is built into the compiled code at the site where context1 is called. according to the meaning
of the control structure.

To illustrate, consider a compound expression:
{ expn; expr; expry }

The expressions expr; and expr; are each bounded. The outcome of expr; is unimportant; whether
it succeeds or fails, evaluation proceeds to expr;. The same is true for expr; evaluation will
proceed to exprs. The generated code for the compound expression is:

contexti(sp + 1,sp);
context2(sp + 1,sp);
<code for expry>

The bounded expressions expr; and exprs are encapsulated as follows:

-32-

context1(ep,sp)
int ep, sp;
{

int signal;

<code for expr;>
return Clear;

}

context2(ep,sp)
int ep, sp;
{

int signal;

<code for expn>
return Clear;

}

An if expression, on the other hand. checks the outcome of its bounded control clause. as in
the code for if expr; then expr; else exprs:

if (contexti(sp + 1,sp) == Clear) {
<code for expr>

}

else {
<code for expry>

}

Notice that there is no failure continuation to maintain in the compiled code. The fipc of the
interpreter is ‘‘compiled out’" and is replaced by explicit flow of control.

3.2.2 Generators

In the interpreter, a generator suspends using the following protocol: It copies a portion of the
expression stack to preserve temporary values, and recurses to establish a backtracking point and
maintain its internal state. Generators do precisely the same thing in the compiled code as well.
However, since there is no interpreter to call to establish a new context, a generator is passed an
argument that is the function to call in order to continue execution. This argument is known as
the continuation. The structure of the compiled code for a generator is introduced by first dis-
cussing a generative operation. Generative control structures are considered later.

As mentioned previously, an Icon operation has a corresponding C function in the run-time
system. In addition to the continuation argument, €p and Sp are also passed to the generator so
that it can copy that portion of the expression stack when it suspends. The call to a primitive
generator has the form:

generator_name(expression pointer, stack pointer, continuation)

The code for to is given below to illustrate how generators are handled in the compiler. Notice
that the function for to in the run-time system is nearly identical to the version in the interpreter.

-33-

It simply calls its third argument cont when it suspends, whereas the interpreter version
recursed:

to(ep,sp,cont)
int ep, sp, (xcont)();

int signal, from, limit, newsp;

DeRef(sp-1);
DeRef(sp);
from = stack[sp-1].value.integer;
limit = stack[sp].value.integer;
while (from <= limit) {
newsp = copy(ep,sp-2);
stack[++newsp].type = INT;
stack[newsp].value.integer = from;
signal = (*cont)(sp + 1, newsp);
if (signal = Resume)
return signal;
from++;

}

return Resume;

}

When to suspends, it copies the values on the expression stack from the current ep to the top of
stack and calls cont with the new values for ep and sp. It is the compiler’s task to properly split
an expression containing one or more generators into functions that can be called in the proper
sequence to continue evaluation.

3.2.3 An Example

The code generation scheme discussed above can be illustrated with the following example
containing nested bounded expressions and a generator:

count := 0
while line := read() do
if find(s,line) > col then count +:= 1

These expressions count the number of lines in the input that contain the string S beyond col.
The evaluation contexts due to bounded expressions are easily identified, since they correspond
to structured syntactic entities. The contexts due to bounded expressions are enclosed in retan-
gles and named below:

-34-

count =0 contextl]

while |[line = read()] do context2

if |find(s.line) > col] then count +:= 1| contex:3

contextd4

The generated code for the assignment and loop expressions is

context1(sp+1,sp);
while (context2(sp+1,sp) != Resume)
context3(sp+1,sp);

The traditional control structures of Icon are mapped directly into the corresponding C control
structures. The compound expression and while loop of the Icon expression become simple
compound and while statements in C. where the control flow is driven by the outcome of
evaluating the encapsulated expression contexts. The bodies of context1 and context2 consist
of simple monogenic and conditional expressions:

context1(ep,sp)

int ep, sp;

{
Pushvar(count_off);
Pushint(0);
asgn(sp);
sp--;
return Clear;

}

context2(ep,sp)
int ep, sp;

{

int signal;

Pushvar(line_off);

signal = read(sp);

if (signal == Resume) return Resume;
asgn(sp);

sp--;

return Clear;

}

The body of the while loop is bounded and encapsulated in context3. It in turn contains a
bounded expression—the control clause of its if expression, which is encapsulated in context4:

-35-

context3(ep,sp)
int ep, sp;

{

int signal;

signal = context4(sp + 1,sp);

if (signal == Resume)
return Resume;

Pushvar(count_off);

Dup;

Pushint(1);

plus(sp);

sp--;

asgn(sp);

sp--;

return Clear;

}

In context3, the code following the C if statement is the code for count +:= 1. The code for
context4 contains the code for the bounded expression find(s,line) > col. Since this expression
contains the generator find, context4 is split as follows:

context4(ep,sp)

int ep, sp;

{
Pushvar(s_off);
Pushvar(line_off);
return find(ep,sp,context5);

}

context5(ep,sp)
int ep, sp;
{

int signal;

Pushvar(col_off);

signal = numit(sp);

if (signal == Resume) return Resume;
sp--,

return Clear;

3.2.4 Alternation

The code generated for alternation is rather straightforward conceptually, and, like the code
for any generator, it only appears unusual or difficult because of the code splitting—the method
of compiling an expression into several functions. Otherwise, the compiled code for alternation
simply mimics the interpreter version.

The alternation expression expr; | expr must first evaluate expr; and then whatever expression
follows alternation. If failure propagates back through expr; to alternation, then expr is

-36-

evaluated. and again the code following the alternation expression is evaluated. To do this. the
code following alternation must be encapsulated in its own function. In general. the form of the
generated code for the alternation expression expr; | expr is:

newsp = copy(ep.sp);

signal = context1(sp + 1, newsp);
if (signal != Resume) return signal;
<code for expr>

return context3(ep,sp);

context1(ep,sp)
int ep, sp;
{
<code for expri>
return context3(ep,sp);

}

context3(ep,sp)
int ep, sp;
{

<code for expression following alternation>

Notice that context3 contains the code for the expressions following altemmation and is called
after expr; is evaluated; if failure propagates back through expr; to resume the alternation con-
trol structure, then expr; is evaluated and context3 is called again.

The form of the code varies according to the properties of expr:. For example. if expn is also
a generator, then it is encapsulated into its own function, rather than being emitted directly as
shown above.

3.2.5 Repeated Alternation

The code generated for repeated alternation is also similar to the interpreter version. Various
parts are encapsulated in functions, but these functions correspond essentially to the interpreter
code shown in Chapter 2 for the instructions repalt and contrep. As in the interpreter, repeated
alternation pushes the integer O on the stack, copies the current context of the expression stack.
and then pushes its local control variable on the stack. In the generated code for the expression
lexpr;, the repeated alternation expression is evaluated in a new context, called context1
in the code below:

-37-

+45p;
for (; ;) {

stack[sp].type = INT;

stack[sp].value.integer = O;

newsp = copy(ep,sp-1);

stack[++newsp].type = VAR;

stack[newsp].value.integer = sp;

signal = context1(sp+1,newsp);

if (signal = Resume) return signal;

if (stack[sp].value.integer == 0) return Resume;

}

The code generated for context1 varies according to whether expr; is a generator. If expr; is not
a generator, the code is as follows:

contexti(ep,sp)
int ep, sp;
{

int signal;

<code for expr;>
stack[stack[sp-1].value.integer].value.integer = 1;
stack[sp-1] = stack[sp];

sp--;

<expression following repeated alternation>

}

As in the interpreter. the value of the repeated alternation control variable is changed to 1 if
evaluation of expr; succeeds. The variable descriptor is then replaced with the result of expr; and
sp is decremented. Evaluation flows into the code following repeated alternation.

If expr; is a generator, the code in context1 above is split into separate functions. For exam-
ple, if expr; is 1 to 10 the code is as follows:

context1(ep,sp)
int ep, sp;

Pushint(1);
Pushint(10);
return to(ep,sp,context2);

}

-38-

context2(ep,sp)
int ep, sp;

int signal;

stack[stack[sp-1].value.integer].value.integer = 1;
stack[sp-1] = stack[sp};
sp--;

<code for expression following repeated alternation>

3.2.6 Limitation

The code for expr; \ expr; is split into several functions. Again the basic form of the code
corresponds to the interpreter version of limitation. In the general case, expr; is a generator and is
encapsulated into a separate function, context1. The code below is almost identical to the code
in the interpreter for the limit instruction: '

<code for expr>
if (stack[sp].value.integer == 0) return Resume;
stack[++sp].type = VAR,;
stack[sp].value.integer = sp-1;
newsp = copy(ep.sp-2);
stack[++newsp].type = VAR;
stack[newsp].value.integer = sp-1;
signal = context1(sp+1,newsp);
if (signal == Limit && stack[sp].value.integer == 0)
return context3(ep,sp-1);
else
return signal;

After expr; is evaluated (by calling context1), the limit counter must be checked to insure that
expr; is allowed to produce subsequent results. The code to check the limit counter. which
corresponds to Isusp in the interpreter, is in context2 below:

contexti(ep,sp)

{

int signal;

<code for expn>
return context2(ep,sp);

}

-39.

context2(ep,sp)
int ep, sp;

{

int i;

i = stack[sp-1].value.integer;

if (--stack[i].value.integer > 0) {
stack[sp-1] = stack[sp];
return context3(ep,sp-1);

}

else {
stack[i] = stack[sp];
stack[i+1] = INT;
stackli+1].value.integer = O;
return Limit;

}
}

Since expr; is a generator. it calls the limit checking code, context2, as its continuation when it
suspends. Also, the code for the expression following the limitation control structure must be in
a separate function, since it can be executed if expr; is allowed to produce more results and also
if expr; has produced its last result and the Limit signal is returned:

context3(ep,sp)
int ep, sp;
{

int signal;

<code for expression following limitation>

}

3.2.7 Break and Next

Recall from Chapter 2 that break and next require that any contexts due to nested bounded
expressions of the enclosing loop be removed. In the interpreter, a sequence of unmark instruc-
tions is executed, one for each bounded expression context that is active when the break or next
instruction is encountered. This is possible because the interpreter has an explicit program
counter, the ipc. That is, consider what happens when two unmark instructions are executed.
The interpreter executes the first unmark, all contexts due to the top bounded expression are
removed, and the ipC then points to the second unmark instruction. Everything is in order to
remove the remaining bounded expression.

Because there is no ipC to manipulate in the compiled code, and the execution paths are
‘‘static’’, the effect of a series of unmark instructions cannot be achieved by the compiled code
as easily as in the interpreter. In the compiled code, when the contexts due to a bounded expres-
sion and any generators suspended within the bounded expression are removed, execution
returns to the point of the function call generated for the bounded expression. To remove the
next bounded expression context, another return must be executed. Consequently. a bounded
expression within a loop that contains a break or next must know when its context is being
removed due to a break or next. For the compiler, two new signals, Break and Next, are

- 40 -

introduced to distinguish the reason for removing a context.

To illustrate this. consider the while expression in the example from Section 3.2.3. The exam-
ple is modified to break from the loop if the string S is not found in the input line:

count +:= 1
while line := read() do
if find(s, line) > col then count +:= 1 else break

The compiled code for the above expressions is:

contexti(sp+1,sp);
while (context2(sp+1,sp) = Resume)
if (context3(sp+1,sp) == Break)
break;

It is the code in context3, the do clause, that has been modified and may return the Break sig-
nal:

context3(ep,sp)
int ep, sp;
{

int signal;

signal = context4(sp + 1,sp);
if (signal == Clear) {

Pushvar(count_off);

Dup;

Pushint(1);

plus(sp);

sp--

asgn(sp);

sp--;

return Clear;

}

else
return signal;

}

In general, the overhead of checking for the two new signals occurs only in the generated
code for contexts in a loop body containing a break or next.

3.3 Comments on the Code Generator

For the most part, compiling code for Icon is straightforward. The only difficulty in the com-
piler is breaking the source code into the appropriate functions; this aspect of compilation makes
the code generator itself non-trivial (or less straightforward that the translator that generates vir-
tual machine instructions).

The main problem is that the code generated for an expression depends on the code surround-
ing the expression. For example, consider the expression

-41 -

(expry, if expry then expry else expry, exprs)

Whether some or all of exprs, expry, and exprs need to go into separate C functions depends on
whether they contain generators. If those expressions are monogenic, then the generated code
contains a C function call only for the bounded if control clause, expr. The code is:

<code for expr;>
signal = context2(ep,sp);
if (signal == Clear) {
<code for expr;>
}
else {
<code for expry>

}

<code for exprs>

However, if expry is a generator, then it must call the code for exprs, which means that exprs must
be encapsulated in a separate function. This function is then used to continue evaluation after the
selected expression of the if is evaluated. For example, if exprs is the expression find(s,line), the
the generated code is

<code for expr;>
signal = context2(ep,sp);
if (signal == Clear) {
<code for exprz>
return context5(ep,sp);

}

else {
Pushvar(s_off);
Pushvar(line_off);
return find(ep,sp,context5);

}.

contexté(ep.sp)
int ep, sp;

{

int signal;

<code for exprs>
}
Similarly, the actual code generated for alternation depends on the expressions surrounding the
alternation control structure, and likewise for other control structures.

The code generator can easily employ a simple code generation scheme: It can encapsulate
every expression within its own function. This is wasteful, however, both in terms of the size of
the generated code and the execution speed of the resulting compiled code. Generating the code
described in this chapter requires performing case analysis on the components of syntactic con-
structs to determine whether they actually require to be generated in separate functions. Concep-
tually, this can be thought of as an optimization of the simple code generation scheme.

-42 -

CHAPTER 4

OPTIMIZING EXPRESSION EVALUATION

The evaluation mechanism of Icon is general and powerful. Not all programs, however.
make use of the general capabilities of goal-directed evaluation. For example, an Icon program
typically contains many expressions that are not generators, and even many expressions that con-
tain generators never make use of backtracking. Compile-time semantic analysis can gather
information about the properties of expressions and how they are used at their lexical sites. This
information can then be used by a compiler in order to generate more efficient code for expres-
sion evaluation.

The discussion here is concerned with the optimization of control flow aspects of generators
and goal-directed evaluation. Other language features, such as untyped variables, are not con-
sidered here, even though they influence the efficiency of the implementation.

4.1 Unnecessary Bounding

Expressions are bounded in order to limit the scope of goal-directed evaluation. Bounding
avoids backtracking into an expression whose evaluation is semantically complete. In that
sense, bounding controls the lifetime of expressions. For example, in

if expry then expry else expr;

once expr; is evaluated, subsequent failure in either expr; or expr; must not cause backtracking
into expr;. In the virtual machine code, a bounded expression is delimited by mark/unmark
pairs. The operational effect of bounding is to remove any state related to the bounded expres-
sion once its lifetime is complete. Of course. only a bounded expression containing one or more
generators may have a non-trivial evaluation state, due to suspension, that must be removed.
Many expressions that are syntactically bounded, such as the control clause of an if expression,
may not actually contain generators. For example, in

if i < count then expn else expr

the control clause is a simple conditional expression. Actual bounding of the control clause dur-
ing evaluation is unnecessary: After the control clause is evaluated, there is no suspended state,
and therefore nothing to be erroneously resumed if either expr; or expr; should fail.

Icon programs typically consist of a mixture of expressions that require full goal-directed
evaluation and expressions that do not. An example is the procedure locate below. It writes out
the lines of input that contain the string S and returns a count of such lines.

-43- P

procedure locate(s)
local count, linenum, line

count := 0
linenum = 0
while line := read() do {
linenum +:= 1
if find(s,line) then {

write(lineno, ": ", line)
count +:= 1
}

if count > 0 then return count else fail

end

There are ten syntactically bounded expressions in locate, yet only the control clause of the first
if expression contains a generator. None of the remaining syntactically bounded expressions
requires actual bounding during evaluation. Indeed, it is shown in the next section that even the
if control clause in the example above does not require the general evaluation strategy.

4.2 Unnecessary Suspension

The results of a generator are produced as required by its lexical context, with failure causing
the generator to be resumed for its next result. Consider the expression

if i < upto(c,s) then expr, else expn

In an attempt to make the comparison succeed, expression evaluation may resume UPtO many
times; specifically, upto will be resumed each time the comparison operation < fails. In a
bounded expression, when a generator occurs together with conditional expressions that may
resume the generator, it usually cannot be determined a priori how many results will be required
from the generator by the surrounding lexical context.

On the other hand, generators do occur in situations where it can be determined statically that
at most one result is required from the generator. This happens when a generator is being used as
a simple monogenic or conditional expression. In such a case, the generator is not required to
generate a sequence of values; it produces its first result and suspends, but is never resumed dur-
ing its lifetime. For example, consider the expression

i := upto(c,s);

The upto expression may fail initially, in which case the assignment is not made and the entire
expression fails. However, if upto produces a result, the assignment is made and evaluation of
the assignment expression is complete. Since the entire expression i := upto(c,s) is bounded,
once the assignment is made, the lifetime of the expression is complete. Once upto suspends
with its result, there is nothing in the surrounding context that fails, and hence nothing that may
resume upto.

Since a generator suspends so that it can be resumed later if needed, suspension is useless
when failure cannot occur during the lifetime of the generator. Such a generator can be
**demoted’” to a simple conditional or monogenic expression; that s, it can be implemented in a
non-retentive way. For example, a generator can be called with an argument that indicates

- 44 -

whether it should suspend or simply return after computing its result.

Demoted generators increase the number of bounded expressions that do not need to be actu-
ally bounded. as discussed in the previous section. For example. in the if expression from locate
in the previous section

if find(s,line) then ...

the control clause contains a generator that is not resumed during its lifetime. Therefore, this
invocation of find can be demoted to a conditional. As a result, no expression in locate requires
the general goal-directed evaluation mechanism.

For this discussion, the term generator is somewhat misleading. There are some ‘‘genera-
tors’" in Icon that produce at most one result—the function tab is an example. This function
does not produce subsequent results when it is resumed, but rather restores state related to string
scanning. It uses suspension as a means to gain control when failure occurs, not as a means to
provide further results. For this reason, it would be more accurate to use the term retentive
expression rather than generator, since the implementation issue is that an expression might
require state retention, regardless of whether it produces many results. From this point on in the
discussion, the term generator should be identified with the term retention expression.

4.3 Properties of Expressions

In order to avoid unnecessary bounding and unnecessary suspending, the following informa-
tion must be known at compile time:

1. For each generator, is the generator in the path of failure? Or put another way. is the
generator resumable during its lifetime?

2. For each bounded expression, does it contain resumable generators?

A simple attribute grammar, given in Section 4.4, can be used to describe the above attributes of
bounded expression and generators. how they relate to each other, and how their lexical context
affects them. Attribute grammars are described in [2, 43].

4.3.1 Resumption

The semantics of Icon segregate the program into the separate, isolated syntactic units intro-
duced by the bounded expressions of control structures. In the absence of break. which is dis-
cussed below, there is no dynamic interaction between the bounded expressions in the program.
For example, in

if expn then expry else expr

the characteristics of expry, exprs, and the expression in which the if appears, do not affect expr;.
The converse is true also.

Bounding localizes the resumption paths, since resumption paths of separate bounded expres-
sions are disjoint. Within a bounded expression, an expression is resumable if failure can reach
the expression during its lifetime. Consider the expression

(expri op; expr) op; expr

where op; and op; are arbitrary operations. It is convenient to write the expression in postfix
form in order to understand the behavior of failure:

-45-

((expri, expr) opi, exprs) op

Expressions are evaluated from left to right and resumed from right to left. Referring to the
postfix form of the expression, an expression that fails can cause the resumption of anything to
its left. If op fails. it can resume expr; or expr.. Conversely, whether or not a given expression
can be resumed depends on whether conditional expressions occur in subsequent evaluation.
Thus, expr> may be resumed during evaluation if any of the operations or expressions to its right
are conditional—op,, expr;, and op, are each possible resumers of expr,. Notice, however, that
expr; cannot possibly resume expr;. nor anything else to its right.

The expression upto(c, !a) < 4 provides a concrete example. In postfix form, the expression
is)
((c, 'a) upto, 4) <

The potential resumers of the second argument of upto (the expression !a) are upto, 4. and <.
Since the constant expression 4 is monogenic, only upto and < can possibly resume !a.

4.3.2 Control Structures

All control structures are expressions. There are two things to keep in mind for expressions
that are control structures. A control structure introduces a new evaluation state for those expres-
sions that it bounds, and it also has some effect on the context in which it occurs. For example,
in

x := if expn; then expn

the if expression is conditional: if expr; fails, the if expression fails, since there is no else clause.
Its control clause, on the other hand, is evaluated in a separate context. Likewise in

(expr;, if expr then expr; else exprs, exprs)

the if control structure introduces a new evaluation state for its control clause expr, but it affects
the outer expression according to the properties of its then and else clauses. Thus, expr; is
resumable if any of expr;, expry, or exprs can fail.

Almost all control structures may fail. For example, all the looping control structures fail
when the iteration is complete. In general, a control structure introduces failure into its surround-
ing context.

The break control structure introduces an exception, since it may have an argument expres-
sion. A loop can be exited with break expr;; the outcome of the loop expression is the outcome
of expr;. For example, in

while expn do {
if expr then break upto(c,s)

the loop expression either fails or exits with the generative upto expression. In this case, the
loop expression must be treated as a generative expression. To summarize, in the absence of
break, all looping control structures are conditional; if break expr; occurs in the body of a loop,
the properties of the expr, are taken into account in order to properly treat the loop control struc-
ture.

- 46 -

4.4 The Attribute Grammar

Several attributes are used to collect information needed to optimize the code generated for
expression evaluation. The attributes indicate if an expression can fail, if it is resumable, and if
it contains suspending expressions.

Recall that in postfix form, an expression is resumable if an expression to its right can fail.
When an expression is represented by an abstract syntax tree, the relationship between a node
and its possible resumers is as follows: a node is resumable if its parent can resume it, or if a
right sibling can resume it. Therefore, resumption information comes from both above and
below in an abstract syntax tree. Inherited and synthesized attributes are used to relate this infor-
mation. As described in [2], a synthesized attribute is defined in terms of attributes in children
nodes. An inherited attribute is defined in terms of attributes in parent and/or sibling nodes.

Two attributes are required to relate information conceming failure and resumption. The
information inherited from the parent is kept in the attribute resume. The information syn-
thesized from the children is kept in the attribute fail. A third attribute, suspend, indicates
whether resumable generators occur in a subtree. For most productions, the suspend attribute is
defined only in terms of attributes from children nodes. However, in some cases, suspend is
defined in terms of resume. The suspend attribute is therefore inherited. Two additional attri-
butes are required to handle break expressions within loops. These attributes are introduced
later, after the fundamental ideas have been introduced through the simpler productions. Ini-
tially, the discussion assumes that break expressions are not present.

The attributes suspend, resume, and fail are boolean-valued; the functions representing
attribute computation use logical or. For example, in a production representing an addition
expression

expr — expr; + expn
expr.suspend = expr.suspend v expr.suspend

the attribute suspend is defined as the logical or of the children’s suspend attributes.

The use of the attributes is explained below in the productions for Icon expressions. There is
one general rule for the assignment of values to the attributes: A bounded expression begins a
new context of evaluation in which, initially, there is no resumption. Resumption is introduced
only as nodes representing conditional expressions are encountered in the syntax tree for the
bounded expression.

Since the body of a procedure is bounded, evaluation always takes place in a bounded expres-
sion. A simplified production for a procedure is:

procedure — declarations expr end
expr.resume = false
procedure.suspend = expr.suspend
procedure fail = expr.fail

The inherited attribute resume is assigned false, indicating that the expression for the pro-
cedure body is not resumable initially. The productions for expressions are given below.

Constants and identifiers are monogenic expressions and need only set the values of suspend
and fail:

-47 -

expr — literal
expr.suspend = false
expr.fail = false

expr — identifier
expr.suspend = false
expr fail = false

In the production for an operator, the definitions of the attributes depend on the properties of
the specific operators. Consider the production for a binary operator:

expr — expn binop expn

Whether the operands are in a resumable context depends both on the value inherited through
expr.resume and on the properties of the specific operation. For example, the binary operation +
cannot resume its operands, but < may. It simplifies the explanation to categorize the operations
according to their intrinsic properties, such as whether an operation is monogenic, conditional, or
generative, as described in Appendix B. These categories disguise some information, however.
For example, all the generators listed in Appendix B are also conditional. To make this informa-
tion explicit, the following categories are used: unconditional/nonretentive (monogenic),
unconditional/retentive, conditional/nonretentive (conditional), and conditional/retentive (gen-
erative). Version 6 of Icon does not contain operations in the second category, but since an
unconditional generator could easily be added to the language, this category is included here for
completeness. The terms within parentheses relate the categories to those listed in Appendix B.
The productions for binary operations are given below. Other operations are treated similarly.

Case 1: unconditional/nonretentive. This type of operation cannot resume its children. It
passes down the current value of resume to its right child. Whether the left child is resumable
depends on both the value of resume and the value of fail from its right sibling. In addition, a
nonretentive operation does not suspend even if the context is resumable. The entire expression
suspends or fails according to how these attributes are defined by the children:

expr — expr; un_binop expr
expr.fesume = expr.resume
expri.resume = expr.resume v expn.fail
expr.suspend = expn.suspend v expr.suspend
expr.fail = expn.fail v expr.fail

]

Case 2: conditional/nonretentive. A conditional operation may resume its children. It disre-
gards the inherited value of resume and indicates a resumable context by assigning the inherited
attribute true for both its children. It also sets fail to true, since the operation is conditional.
Since operations in this category are nonretentive, suspend is defined as in Case 1:

expr — expn cn_binop expr
expn.resume = true
expn.resume = true
expr.suspend = expr.suspend v expr;.suspend
expr.fail = true

Case 3: unconditionaliretentive. The children’s resume attributes and also the fail attribute
are handled as in Case 1, since this operation is unconditional. A retentive operation suspends,

-48 -

however, if the context inherited from the parent is resumable; for this reason, the definition of
suspend relies on resume, as well as the suspend attributes of its children:

expr — expry ur_binop expr
expr.resume = expr.resume
expri.resume = expr.resume v expn.fail
expr.suspend = expr.resume v expr;.suspend v expr.suspend
exprfail = expn.fail v expn.fail

Case 4: conditionaliretentive. A conditional retentive operation may fail and so its children
are resumable. The suspend attribute is defined as in Case 3, since the operation is retentive:

expr — expn cr_binop expn
expn.resume = true
expn.resume = true
expr.suspend = expr.resume v expn.suspend v expr.suspend
exprfail = true

A control structure may consist of both expressions that are syntactically bounded and not
bounded. For the expressions that are bounded, the context for evaluation begins afresh with
resume set to false. The unbounded expressions relate to the outer context.

The if expression fails if either of its children from the then or else clauses fails, and
suspends if either suspends:

expr — if expny then expry else expr
expri.resume false
expn.resume expr.resume
exprz.resume expr.resume
expr.suspend = expn.suspend v expr;.suspend
expr.fail = expn.fail v expn.falil

Likewise, a compound expression gets the synthesized values of suspend and fail from its
second, unbounded expression and begins a new context of evaluation for its first expression:

expr — expr; , expr
expri.resume = false
expr.resume = expr.resume
expr.suspend = expr.suspend
expr.fail = expn.fail

Some control structures bound all of their argument expressions; the control structure itself is a
conditional expression and does not suspend. For example, not expr; has only one argument and
it is bounded. Even if expr; could suspend, since it is bounded, the control expression not expr;
does not suspend. Likewise, loop expressions are conditional expressions (in the absence of
break). Thus,

expr — not expn
expri.resume = false
expr.suspend = false
exprfail = true

-49.-

expr — while expr; do expn
expr;.resume = false
expn.resume = false
expr.suspend = false
expr.fail = true

expr — until expr; do expn
exprni.resume = false
expr.resume = false
expr.suspend = false
expr.fail = true

expr — repeat exprn
expri.resume = false
expr.suspend = false
expr.fail = true

The every control structure differs from the other forms of iteration since the control clause
expression is not bounded, but rather is resumed for each iteration of the loop. Its first argument
expression, then, is always resumable, but its second argument, which is bounded, is not:

expr — every expr; do expn
expr.resume = true
expr.resume = false
expr.suspend = false
expr.fail = true

Alternation has state retention and suspends if the inherited context is resumable, or if its
arguments suspend:

expr — expr | expn
expr;.resume = expr.resume
expr.resume = expr.resume
expr.suspend = expr.resume v expn.suspend v expr.suspend
expr.fail = expr .fail v expn.fail

Repeated alternation is like alternation. It is a retentive control structure and it suspends if the
inherited context is resumable, or if its argument suspends:

expr — |expn
expn.resume = expr.resume
expr.suspend = expr.resume v expn.suspend
expr fail = expn fail

The arguments to limitation are resumable if the context is resumable: it simply passes down
the resume attribute. Likewise, the control structure suspends or fails if either of its children
suspends or fails:

-50-

expr — expr; \ expn
expr;.resume = expr.resume
expr.resume = expr.resume
expr.suspend = expr;.suspend v expr.suspend
expr.fail = expry fail v expr.fail

The break control structure complicates attribute computation, which so far has been dis-
cussed without consideration of this control structure. For example, the break expression can be
used as follows:

while ... do {
repeat {

break break expn

}

When the break expression of the repeat loop is evaluated, both loops are exited. The effect is
that the while loop is replaced with expr;. In terms of attribute computation, this means that expr
must have access to the resume attribute of the containing while loop, since expr; is resumable
if failure can propagate to the while loop. Furthermore, if expr; can suspend, this information
must be integrated with the suspend attribute of the while loop. Since several break expres-
sions may occur within a loop, the suspend attributes of all break expressions related to a
given loop must be known to the loop expression.

Two additional attributes are needed to relate the information of loop control structures and
break expressions. To introduce the new attributes, consider initially a simple situation where
loops are not nested. Let loopresume be an inherited attribute used to relate the resumption
context of the loop expression to expr; in break expr;, and let brksusp be a synthesized attribute
that propagates up to the enclosing loop expression the information concerning whether expr;
suspends. Using the production for a while expression to illustrate this, the relationship between
these new attributes and the existing resume and suspend attributes is:

expr — while expn do expn
expn.loopresume = expr.resume
expn.loopresume = expr.resume
expr.suspend = expn.brksusp v expr.brksusp

expr — break expn
expn.resume = expr.loopresume
expr.brksusp = expn.suspend

Since brksusp is a simple synthesized attribute (like fail), productions representing terminal
symbols initialize it by defining it to be false. All productions must propagate loopresume to
argument expressions. Likewise, since any of the expressions in a production may contain a
break expression, these expressions may contribute to the possible suspension of the containing
loop. Thus, in all productions the brksusp attributes of argument expressions are merged. The
production for a compound expression illustrates how the new attributes are handled:

-51-

expr — expr; , expr
expr;.loopresume = expr.loopresume
expn.loopresume = expr.loopresume
expr.brksusp = expr;.brksusp v exprn.brksusp

The relationship between loopresume and brksusp as described above is straightforward.
In general, however, loops may be nested and break expressions may consist of further break
expressions, as in the example at the beginning of this discussion. Nested loops and multiple
breaks act as begin-end pairs. Consequently, the attributes loopresume and brksusp must be
stacks of boolean values rather than simple boolean values. Each production for a loop control
structure must push its resume attribute on the loopresume stack. At a given point in parsing,
the depth of loopresume corresponds to the current depth of the nested loop expressions. In the
production for break expr;. the top value of the loopresume stack is used as the resume attri-
bute for expr;. It also pushes its expression’s suspend attribute on the brksusp stack.

In an attribute grammar. all computations on attributes must be applicative. In the following
productions, the attributes loopresume and brksusp are defined as lists that are manipulated as
stacks by the usual applicative operations defined for lists: cons, first, and rest.

A production that represents a terminal symbol, such as a literal, defines brksusp as the
empty list. As before, all productions must propagate loopresume and brksusp. Note that
since the brksusp attribute is a list, its definition at the production for a compound expression,
given above, is no longer correct. Since each expression’s brksusp attribute is a list, the two
lists must be merged. The production for a compound expression, defining all attributes, is:

expr — expr; , expnr
expri.resume = false
expn.resume = expr.resume
expr;.loopresume = expr.loopresume
expr:.loopresume = expr.loopresume
expr.suspend = expr.suspend
expr fail = expn.fail
expr.brksusp = merge(expr .brksusp,expr.brksusp)

The function merge takes two lists and returns a list whose elements are a pairwise logical or of
the two argument lists. If the two lists are unequal in length, the shorter list is appended with
false values to make them the same size. This is necessary, since loops do not necessarily have
associated break expressions.

The modified production for while shows how the stack-valued attributes are properly han-
dled in the general case:

expr — while expn do expn
expn.resume = false
expr.resume = false
expr;.loopresume = cons(expr.resume, expr.loopresume)
expn.loopresume = COns(expr.resume, expr.loopresume)
expr.suspend = first(expr.brksusp) v first(expr.brksusp)
expr.fail = true
expr.brksusp = merge(rest(expn.brksusp),rest(expr.brksusp))

A loop production uses the top value of the brksusp stack, which indicates whether any

-52.

enclosing break expressions suspend. A loop may not have associated break expressions, in
which case brksusp is an empty list. To handle this, the function first is defined to return false
when given an empty list. Note that a loop production must also propagate the remaining stack
of values brksusp from its children.

The production for break is:

expr — break expr
expr;.resume = first(expr.loopresume)
expr;.loopresume = rest(expr.loopresume)
expr.suspend = false
expr.fail = false
expr.brksusp = cons(expr,.suspend,expn .brksusp)

Note that break effectively pops loopresume before propagating it to expr;, since break
expressions in expr; relate to the next containing loop.

The attribute definitions are non-circular. An informal argument is the following:

(i) The attribute fail is a synthesized attribute and can be evaluated in one bottom-up pass.
(ii) The resume and loopresume attributes can then be evaluated in one top-down pass.
(iii) The suspend and brksusp attributes can then be evaluated in one bottom-up pass.

Attribute evaluation requires only one pass, however, because of the semantics of failure propaga-
tion in Icon. Expressions are evaluated left-to-right and resumed from right-to-left. Consequently,
as shown previously in the productions for operations, the fail attribute of a right-sibling affects
the resume attribute inherited by a left-sibling. The definition of resume in Case 1 is an exam-

ple:
expri.resume = expr.resume v expn.fail

This relationship is always right-to-left: fail attributes of left-siblings do not affect right-siblings.
During attribute evaluation, if nodes in the parse tree are visited in preorder reversed fashion, that
is, parent, rightmost-child, left-most child, attribute evaluation can be accomplished in one top-
down pass.

4.5 Application to code generation

Code is generated from the annotated trees produced after parsing. The code generator inspects
the values of the attributes stored in the nodes of the tree for an expression in order to generate
optimized code. The following sections discuss how the information from the annotated parse
trees is used in the compiled code model of Chapter 3.

4.5.1 Bounded Expressions

The compiler model uses a call/return scheme in the generated code to maintain and use infor-
mation about suspended generators and active bounded expressions. If bounding is not necessary
for a given bounded expression, there are two effects on the generated code. First, the bounded
expression is not encapsulated in a separate function. Second, operations in the bounded expres-
sion that can fail do not return; rather, the failure continuation is handled by explicit flow of con-
trol to a compile-time destination. The code generator either uses a C control structure to direct
control flow, or it uses gotos. For example, the expression if i < count then expr; else expr; is
compiled as follows:

-53-

Pushvar(i_off);
Pushvar(count_off);
signal = numit(sp);
it (signal == Resume) then {
Sp--
<code for exprn>

}

else
{
sp--;
<code for expry>

On the other hand, a while loop whose argument expressions need not be bounded would be
translated using gotos. For example, the code generated for while i < limit do expr; is

11:
Pushvar(i_off);
Pushvar(limit_off);
signal = numilt(sp);
if (signal == Resume) { sp -= 2; goto 12; }
Sp--;
<code for expr;>
goto i1;

12:

4.5.2 Generative Operations

In the compiler, a generative function or operation is called differently depending on whether
the generator is resumed during its lifetime, which is indicated by the resume attribute. A new
argument is added to a generator; this argument tells the generator to either return or to suspend
after it produces its result. For example, the t0 operation is called in one of two ways:

to(ep, sp, context3, Suspend)
or
to(ep, sp, NoCont, Return)

The first form of the call indicates that t0 must suspend with its result and continue evaluation by
calling context3. The second form indicates that to need not suspend, but should simply return
after pushing its result on the expression stack. Each of the run-time routines for a generative
operation or function is modified to suspend only when necessary. The modified code for to illus-
trates this:

-54-

to(ep.sp,cont,action)
int ep, sp, (*cont)(), action;

{

int signal, from, limit, newsp;

DeRef(sp-1);
DeRef(sp);
from = stack[sp-1].value.integer,;
limit = stack[sp].value.integer;
while (from <= limit) {
stack[sp-1].type = INT;
stack[sp-1].value.integer = from;
if (action == Return)
return Return;
newsp = copy(ep.sp-1);
signal = (xcont)(sp + 1, newsp);
if (signal != Resume)
return signal;
from++;

}

return Resume;

}

Referring again to locate from Section 4.1, recall that no expression of this procedure requires
general evaluation:

procedure locate(s)
local count, linenum, line

count := 0
linenum = 0
while line := read() do {
linenum +:= 1
if find(s,line) then {
write(lineno, ": ", line)
count +:= 1
}
}

if count > 0 then return count else fail

end
The optimized code for the procedure body is:

-55-

Pushvar(count_off); /* count = 0 */
Pushint(0);

asgn(sp);

sp--;

Pushvar(linenum_off); /* linenum := 0 */
Pushint(0);

asgn(sp);

Sp--;

Pushvar(line_off); /* while line := read() ...

Pushvar(read_off);
signal = read(sp);
if (signal == Resume) {
sp -= 2;
goto 12;
}
asgn(sp);
sp--;
Pushvar(linenum_off); /* linenum +:= 1 */
Dup;
Pushint(1);
plus(0);
sp--;
asgn(sp);
sp--;

Pushvar(s_off); /% if find(s,line) */
Pushvar(line_off);
signal = find(ep,sp,NoCont,Return);
Sp--;
if (signal = Resume) { /* then */
Pushvar(lineno_off);
Pushstr(": ");
Pushvar(line_off);
write(sp.3);
sp -= 3;
Pushvar(count_off);
Dup;
Pushint(1);
plus(sp);
sp--;
asgn(sp);
sp--;
}
sp--;
goto I1;

-56-

*/

4.5.3 Alternation

Alternation is often used in contexts where only one result is expected. In this case, alternation
is being used as a branch control structure, such as in:

(f := open("inputfile")) | stop("can't open file")

The resume attribute at the alternation node in the parse tree is false in such an instance. The
code generator can emit a simple branch statement. The code for the alternation expression above
is simply

Pushvar(f_off);
Pushstr("inputfile");
signal = open(sp.1);

if (signal == Resume) {

sp = 2;
goto I1;
}
asgn(sp);
sp -=1;

Pushstr("can’t open file");
stop(sp);

4.6 Application of Optimizations in Previous Implementations

A compiler can avoid bounding more often than the interpreter presented in Chapter 2. In the
interpreter, bounded expressions that are strictly monogenic can be translated without the
mark/unmark, avoiding bounding. But this is not true for bounded expressions that contain con-
ditional expressions. For example, in

if x <y then expr;

the virtual machine instruction for the comparison would have to be extended to include the
failure label. All conditional operations and functions would require two forms of the instruction.
In general, this proliferation of instructions could make the interpreter unacceptably large.

Previous implementors have noted the inefficiency of bounding expressions that are strictly
conditional or monogenic, but only the Version 2 implementation made attempts to avoid
unnecessary bounding. Hanson and Korb [28] noted that monogenic expressions do not require
bounding (mark/unmark in later versions) and they avoided bounding for these expressions.
However, bounded expressions that contain conditional expressions still require bounding in their
implementation model.

-57-

CHAPTER §

CONCLUSIONS

5.1 Performance

The recursive interpreter presented in Chapter 2 is fully implemented and operational. The
actual implementation of the recursive interpreter interfaces with the Icon Version 6 run-time sys-
tem. Version 6 of Icon, which is written in C, has been publicly distributed and is in wide use. In
[22], the representation of data, storage management, and other details of the full implementation
of Version 6 of Icon are described.

The semantic analysis phase and the code generator of the compiler are written in Icon. The
compiler generates C code that also interfaces with a Version 6 run-time system, with only simple
modifications to account for properties of the generated functions, such as the number and type of
arguments passed to the run-time routines, as mentioned in Section 4.5.2.

Using recursion as the basis of implementation significantly reduces the complexity of imple-
menting expression evaluation inherent in previous implementations. It is useful as a conceptual
model and as a tool for understanding the operation of expression evaluation. Performance is not
the main concern for the recursive interpreter; however, measurements show that the recursive
model does not incur significant performance penalties. For the compiler, some performance
measurements are given in order to estimate the benefits of compiling Icon programs.

5.1.1 Interpreter

To evaluate the effect of recursion on the performance of the interpreter, there are two main
issues to consider: the cost of recursive calls in terms of time and the amount of stack space
needed. It is difficult to compare the recursive interpreter with all of its predecessors in detail.
since their performance depends on many matters that are not related to the issues here. However,
some valid comparisons can be made between the recursive interpreter and the Version 6 inter-
preter.

Both the recursive interpreter and the Version 6 interpreter are written in C. They are structur-
ally similar, except for the more general use of recursion in the recursive interpreter in place of the
explicit construction of frames on the interpreter stack in Version 6. Comparing these two inter-
preters raises the question of the comparative cost of the two approaches in handling information
for expression evaluation.

Timing tests show no measurable difference in running speed between the Version 6 inter-
preter and the recursive interpreter on a wide range of programs, although it is possible to contrive
programs that favor one or the other interpreter.

There is, however, a difference in stack use. While there are very substantial variations from
program to program, the average high-water mark on the system stack, which is used for C calls, is
about four times greater for the recursive interpreter than for the Version 6 interpreter. On the

-58-

other hand, the average high-water mark on the expression stack for the recursive interpreter is
about one-half that of the Version 6 interpreter.

For computers with a small amount of memory, the amount of system stack used by the recur-
sive interpreter could limit the kinds of programs it could handle. However, the amount of system
stack used by the recursive interpreter for suspended generators is limited by the number of gen-
erators that are suspended at any one time. In Icon, this number typically is relatively small: a
maximum of five is typical.

5.1.2 Compiler

Several features of Icon incur a heavy run-time burden. Examples include untyped variables,
polymorphic operations, and very high-level built-in features such as string scanning and set and
table lookup. The compiler uses a run-time system that is similar to the one in Version 6, and the
control flow optimizations do not affect the time spent in the run-time system. The gains in execu-
tion speed apply only to the portion of the total execution time directly involved in expression
evaluation. Profiling the Version 6 interpreter on a large suite of programs suggests that, on the
average, programs spend approximately 20% of their total execution time in the interpreter itself
and the remaining portion is spent in the run-time system. For both the recursive interpreter and
the Version 6 interpreter, execution time spent in the interpreter proper is that time spent for
decoding instructions and implementing expression evaluation. The optimizations discussed in
Chapter 4 can reduce only that portion of execution time.

Difference in execution speed between interpreted program and compiled programs, without
optimizations, is due to the fact that the instruction decoding loop is omitted. In the absence of
optimization, expression stack usage is the same for the compiler and recursive interpreter. With
the optimizations, many of the invocations for maintaining expression evaluation contexts are
eliminated, as a result of removing unnecessary bounding and demoting generators.

To illustrate the affects of compilation and expression evaluation optimization, several pro-
grams, ranging in size and style, are evaluated below. Appendix C contains source listings of the
programs; they are briefly summarized here.

e meander computes a meandering string. A string over an alphabet of k symbols is said to
be n-meandering if every word of length » is contained in the string. The meandering
string computed has length k”. This program illustrates the use of strings, and also typical
combinations of control structures.

e power computes exponentiation (x¥) in arbitrary-precision arithmetic. It illustrates how
Icon control structures are used to advantage in a conventional problem.

e queens solves the well-known problem of placing eight queens in nonattacking positions
on a chess board. It illustrates the use of generators and backtracking in problem that is
suited to combinatorial search.

e roman converts Arabic numbers to Roman numbers. Although small, it is included to
demonstrate that programs often rely on the powerful built-in functions of Icon, in this
case the function map.

e rsg generates randomly selected sentences from a grammatical specification. It illustrates
extensive use of lists, tables, string scanning, and generators in a nontrivial program.

-59.

e tournament uses a heuristic method to assign partners for four-handed bridge. It illus-
trates how generators are typically used in combination with data structures.

The figures for unnecessary bounding and demoted generators for these programs follow:

program lexically bounded number generators generators
expressions eliminated demoted
meander 16 13 6 3
power 70 62 14 4
queens 16 11 6 0
roman 12 11 4 3
rsg 150 131 59 20
tournament 106 83 32 5

These figures are difficult to evaluate in isolation. For execution speed, their importance depends
on the frequency of execution of the corresponding contexts that are eliminated. In terms of stack
space utilization, the figures represent a direct effect on the amount of system stack space used for
recursion, and expression stack space used for replicated temporary values. When bounding and
generating are reduced in compiled programs. the system and expression stack high-water marks
decrease accordingly. In addition, the compiler is able to generate compact code when bounding is
eliminated.

The following performance measurements are based on comparing the total running times of
the programs when compiled against the total running times of the programs when interpreted
with the recursive interpreter. When compiled with optimizations, the overall performance of
these programs improves anywhere from 4% to 32%. The table below shows the percentage
increase in execution speed for three situations: compiled programs versus interpreted programs
(c vs ri), compiled programs with optimizations versus compiled programs without optimizations
(c_o vs c), and the overall comparison of compiled programs with optimizations versus inter-
preted programs (c_o vs ri).

program cvsri covVvsece covsri
meander 6% 2% 8%
power 21% 8% 29%
queens 18% 5% 23%
roman 24% 8% 32%
rsg 13% 8% 21%
tournament 3% 1% 4%

Since Icon programs spend a significant portion of execution time in the run-time system,
which is unaffected by this model of compilation and the corresponding optimizations, it is
worthwhile to estimate how much time the test programs spend only in the interpreter for expres-
sion evaluation and thereby estimate how compiling and optimizing programs is affecting the
time spent for expression evaluation. The Version 6 interpreter has been profiled using the utility
Gprof [13] in order to estimate the portion of time spent inside the interpreter (the time spent for
expression evaluation proper), and the portion of time spent in the run-time system. The run-time
systems of the recursive interpreter and the Version 6 interpreter are the same, and the test pro-
grams perform the same under each interpreter. The following table shows the time spent for
expression evaluation for each of the test programs. Using this information gives a rough estimate

-60 -

of how time spent for expression evaluation is affected by compiling and performing the optimi-
zations:

program time spent for compiler + opts portion of expression
expression improvement evaluation time
evaluation reduced

meander 13% 8% 62%

power 35% 29% 82%

queens 34% 23% 67%

roman 35% 32% 91%

rsg 25% 21% 84%

tournament 13% 4% 30%

The methods discussed here can affect only a fixed portion of the execution time. Put in that light.
the test programs show that the techniques are successful at eliminating cost of expression evalua-
tion. Notice that the programs power, roman, and rsg show the best performance improvements.
In these programs, many bounded expression and generator contexts are eliminated by the optimi-
zations.

For some programs, simply removing bounding is significant. For example, in queens, one
procedure (place) is called 15,720 times. The body of place is an if expression whose control
clause need not be bounded—a significant savings. given the number of times the control clause is
evaluated.

The tournament program shows that compiling and optimizing programs as discussed in the
dissertation cannot significantly improve the performance of all programs. tournament makes
extensive use of the set data type of Icon, and subsequently spends most of its execution time in
the run-time system performing operations on sets. Furthermore, this program has several pro-
cedures that are called repeatedly. However, most of these procedures contain every expressions
with generators—a combination that cannot be improved by the optimizations. For example, the
procedures select and remove dominate the execution of tournament. The select procedure is:

procedure select(s1,base,setting)
local s2
if s2 := member(zero[s1],Ibase) then {
every delete(zero[!setting],s2)
every delete(zero[s2],!setting)

else if s2 := member(one[s1],!base) then {
every delete(one][!setting],s2)
every delete(one[s2],!setting)
}
else fail
return s2
end

select is called 360 times, and never fails; thus, two every expressions are evaluated 360 times
(each time select succeeds). Likewise, remove is called 480 times and evaluates generators each
time.

The optimizations have a significant impact on the size of the generated code. The following

-61- %

table shows the reduction in the size of the code for the optimized compiled code when compared
to the unoptimized compiled code:

program code size reduction
meander 32%
power 33%
queens 18%
roman 40%
rsg 31%
tournament 31%

The overall speed-up for optimized, compiled programs versus interpreted programs is modest,
but using these techniques reduces a large portion of the execution time that otherwise is required
for expression evaluation. The optimizations performed for generators and bounded expressions
stand to be more significant when combined with optimizations geared towards other aspects of
Icon, such as type inference, that affect time spent in the run-time system. Reducing the run-time
system overhead would increase the impact of expression evaluation optimization propor-
tionately. In terms of space, the optimizations currently incur a significant savings. For programs
like tournament, which do not run significantly faster when compiled, the reduced code size
makes including the optimizations worthwhile nonetheless.

5.2 Related Work

The method of compiling Icon expression evaluation described in Chapter 4, based on
transforming the interpreter model into a compiler design, can be thought of as performing a par-
tial evaluation of the interpreter upon a given program text. The compiler symbolically executes
the Icon program text, generating C code that would have been executed by the interpreter and
linking generated modules by function calls. The C code can then be fully evaluated given the
program data. The theory of partial evaluation is discussed in [11]. Recently, research efforts
have explored the pragmatics of using partial evaluation as the basis of developing compilers from
interpreters [35], and even as a means to automatically generate a compiler generator [26].

Although optimization of expression evaluation for Icon has not previously been studied. some
of the concepts are similar to optimization techniques in other languages with backtracking. In
particular, a great deal of work has been done in the area of optimizing Prolog programs. Several
papers discuss finding determinant predicates [33,47], a notion generalized in [9]; also work in
semi-intelligent backtracking attempts to optimize control flow [5]. Whether for Icon or Prolog.
the optimizations are similar in that they attempt to avoid the expense of a backtracking point (a
suspended generator in Icon terms) when it is known that the backtracking point is not useful. At
the conceptual level, the intent of the optimizations is the same. However, since the languages
differ so widely in their semantics, the semantic information used to find and perform the optimi-
zations is different.

There are other possible methods for implementing generators. For example, [24] discusses
how to implement coroutines in Scheme by using continuations. Since generators are a restricted
form of coroutines, continuations can also be used to implement generators. Continuations were
first introduced as a mathematical formalism to describe the semantics of programming
languages; continuation-style compilation of Icon would most likely resemble its denotational
description [23]. Since continuations can represent the denotational semantics directly, such an

-62-

implementation offers a different point of view from the operational methods described in the
dissertation.

It is difficult to accurately evaluate an alternate method—such as a continuation model—
without actually implementing it. However. one observation is that the continuation method may
use more space due to the lifetime properties for continuations: The continuations used to
represent evaluation contexts would exist throughout program execution unless removed by a gar-
bage collection. Extensive work has been done in Scheme compilation to infer how continuations
are used and thereby to implement them more efficiently [30]. However, it appears that the
behavior of continuations modeling Icon goal-directed evaluation falls outside their optimization
techniques. In contrast, in the recursive model, contexts are deallocated when a bounded
expression’s evaluation is complete, since they are represented by simple functions with stack
behavior.

5.3 Future Work

5.3.1 Language Considerations

The benefits of optimizing compiled code vary with programming style and problem domain.
Icon programs range in the degree to which they use goal-directed evaluation and generators, both
because of the programmer’s writing style and the inherent structure of the problem being solved.
Programs using string scanning or making exclusive use of generators and goal-directed evalua-
tion do not benefit as much as more conventional programs from the optimizations considered in
the dissertation, since these are exactly the general forms of expression evaluation that cannot be
reduced by the optimizations. However, if the optimizations do not apply to a given program, this
does not mean that the program is inherently inefficient. Indeed, the opposite is true. Programs
that do use the full capabilities of Icon evaluation can be more efficient than those that do the same
thing conventionally, since generators and goal-directed evaluation internalize computation that
otherwise would have to be written out explicitly.

Consider, for example, the eight-queens problem. In Icon, a programmer may use the goal-
directed evaluation style, as shown in queens, or may program in a conventional style. Appendix
C contains an iterative version of eight-queens written in Icon (Queens2). Comparing the execu-
tion times of these two programs shows that the iterative version of eight-queens is slower that the
goal-directed version, both when interpreted and compiled. Although this is only one example, it
illustrates the point that generators and goal-directed evaluation provide a convenient notation for
otherwise tedious computation; writing out the computation explicitly does not result in better
performance.

Goal-directed evaluation is not inherently inefficient; what appears to be inefficient is a com-
pletely general implementation of goal-directed evaluation in a language that also allows conven-
tional computation to be expressed directly.

It is important for future optimization work to know how Icon programs are used in practice.
Information about the density of generators in programs and the use of goal-directed evaluation
would help to determine where emphasis should be place when developing optimization tech-
niques. To this end, the analysis could be modified to give additional information about issues
such as how often generators are used in implicit goal-directed contexts versus how often they are
used in conjunction with every; the common programming idioms formed by built-in generators
and control structures; and combinations of generative control structures that occur frequently.
This kind of information is extremely useful for the language design/implementation cycle.

-63-

Such information might indicate whether is it worthwhile to enhance performance not only
through compile-time analysis and optimization, but also by providing additional language
features as well. For example, it may be worthwhile to add new control structures that are a com-
position of existing control structures, but that may be implemented more efficiently than the
present ones. Consider the following composition of repeated alternation and limitation that often
occurs in Icon programs:

(lexpr) \ expr:
This could be formulated with a new control structure:
expr; | expn

This control structure would be able to implement the semantics of combining repeated alterna-
tion and limitation much more efficiently. In the first form, the repeated alternation control struc-
ture reevaluates expr; in an infinite loop (with a check for failure of expr;); the containing limita-
tion control structure then signals termination when it reaches its limit. Using the alternative
form, the loop termination for | would be combined with the limit on' the result sequence as
specificed by exprs, eliminating the nesting done previously.

It is also worth noting that other generative control structures have been suggested for Icon and
related languages. Some of these are:

e Forward alternation [10, 27): This control structure can actually be expressed in Icon as
(expri | exprs) \ 1. Information gathered as described above might tell about the impor-
tance of optimizing this combination.

e exclusive alternation: Let ! denote exclusive alternation. Then the result sequence for expr
I exprs is the result sequence for expry, if it is not empty, and is the result sequence for expr»
otherwise. This control structure cannot be formulated in Icon using existing control
structures, since the formulation if expr; then expr; else expr: is incorrect if expr; has side
affects.

e invocation limitation [45]: This control structure limits the invocation a function or opera-
tion to one result. without limiting the arguments. This cannot be formulated in Icon using
existing control structures. For example, in find('a,s) \ 1, the entire expression is limited
to one result, If find produces a result, goal-directed evaluation does not resume 'a. In the
compiler, invocation limitation already is handled in the implementation by the ability to
call generators to produce at most one result. To provide this at the source level only
requires introducing syntax for the control structure.

Whether additional control structures, such as those described above, are beneficial enough to jus-
tify including them in the language is an open question. Examining the current practices of Icon
programmers would be quite useful in answering such a question.

The information about the properties of expressions that is used for optimization can also be

useful for other applications. One example is the detection of programming errors due to unex-
pected failure. Consider the following expression:

i := find(s1,s2)

Since find can fail, the assignment may never take place. Such coding may be intentional, or it
may be an instance of careless programming where the programmer does not consider that i may
not be assigned a value. In addition to unexpected failure, analysis can also give information about

ambiguous failure, as in
while n := integer(read()) do ...

Again, the programmer may expect the loop to terminate only when the the end of input is
reached, but the explicit type-conversion function can also fail. The conversion should take place
separately so that erroneous input can be detected. The formulation of the loop is incorrect if it is
expected to terminate only when the end of input is reached. Since the analysis already identifies
potential failure within bounded expressions, it would be a simple matter to adapt it to include a
finer-grained attribute evaluation to detect such situations. The compiler might then be used in a
mode where it provides such information to the user, with or without actually compiling the pro-
gram. Such information could be used to aid the programmer in formulating correct Icon pro-

grams.

5.3.2 Optimization

There are several possibilities for further optimization, ranging from detailed. specialized
optimizations applicable to specific control structures, to larger, pervasive issues.

One possibility is to transform common, idiomatic uses of the every control structure into
straightforward code that uses a loop in place of generation. Although every may involve compli-
cated expressions and side-effects, it is often used to express iteration over a simple result
sequence. For example, a typical use of every has the following form:

every i := 1 to *s do {
<expressions using i>

}

Such occurrences could be mapped to a while loop. either through a source-to-source mapping. or
source-to-target language mapping. For example, a source-to-source transformation could map
the above every expression into

i=1

temp = *s

while i <= temp do {
<expressions using i>
i +:=1

}

The variable temp is a unique local introduced by the mapping. This kind of optimization is simi-
lar in spirit to that described in Chapter 4—removing the unnecessary generality of evaluation due
to generators and goal-directed evaluation—but it probably is best performed by an Icon source-
to-source transformation. Such an optimization resembles, in nature, tail-recursion optimization
in Scheme [39]. Note, however, that in Scheme the recursion is due to source-level function
recursion, whereas in Icon, the recursion is due to the implementation of generators and back-
tracking.

As described in Chapter 4, some generators are not in the path of failure and therefore need not
suspend. There are also many cases where a generator, although in the path of failure, cannot gen-
erate subsequent results that satisfy the expressions that may resume it. For example, consider the
following expression:

-65-

tab(find(s1,s2))

The result sequence for find—regardless of the values of 1 and s2—consists of a sequence of
zero or more increasing integers. If tab fails. it is not possible for find to produce a result that can
cause tab to subsequently succeed, using the same arguments. (If find’s arguments are generative
expressions, then this is not true, since find could be eventually be invoked with a new set of argu-
ments.) There are many cases where knowledge about the impossibility of success is useful, par-
ticularly in string scanning, where the behavior of the built-in generators used in the expressions is
well-defined.

A variant of this is illustrated by the expression from the procedure remove in tournament in
Appendix C:

s1[find(s2,s1)] = ™

Since subscripting is a conditional operation and find is an argument to subscripting, the attribute
computation of Chapter 4 concludes that find is resumable; it is compiled as a suspending genera-
tor. However, find, if it succeeds, produces a proper index of s1. Subscripting S1 by this index
cannot fail, by definition. In this instance, since the subscripting does not fail, find is never
resumed. To detect that find cannot be resumed in this situation, it is necessary to use knowledge
about the expression in which find is embedded.

To whatever extent further optimization of control flow patterns and specific control structures
pays off in reduced execution time. it still does not affect the place where most the time is spent
during execution—the run-time system. Type checking, type conversion, and the many high-
level operations in the language that are performed in the run-time system take up a large part of
the execution time of typical Icon programs. In particular, untyped variables incur a large cost
during execution time. In the absence of type information, all primitive operations and functions
must be structured to handle the most general case of operands, and type checking is performed
whether necessary or not. A type inference system for Icon is necessary to achieve significant per-
formance improvements for compiled programs. Type inference for Icon has been studied by
Walker [44]. His results indicate that Icon variables are typically used in a type-consistent way:
over a wide range of programs, approximately 90% of operands can be inferred by his type infer-
ence system. Using this information, the generated code could be specialized to perform type
checking when necessary and omit it when not. In addition. given knowledge about operand
types. some of the run-time operations could be reduced to a small amount of code and could
therefore be generated in-line, avoiding a run-time function call altogether. Combining type
information and control flow information during the code generation process would result in much
more efficient code than is now possible. This is the first step in reducing the overhead of the run-
time system.

5.3.3 Code Generation

A production version compiler for Icon would generate assembly language rather than C. The
generated C code presented in Chapter 3 is very regular and essentially provides a template for the
structure of corresponding assembly language. The code that manipulates values on the expres-
sion stack is easily transformed to assembly language instructions. The remaining code consists
of functions calls, tests, and gotos. The function calls can be translated into assembly language
instructions that interface properly with the function call protocol of the C compiler for the host
machine (assuming that the run-time system remains written in C).

-66 -

5.4 Retrospective

Using recursion in an interpreter is hardly new [1.32]. In a language such as Lisp, recursion in
an interpreter follows naturally from a traversal of a tree representation of the source program.
Similarly, the resolution algorithm for logic programming languages such as Prolog is also
expressed concisely by recursion [7.8,41]. where the recursion corresponds to a depth-first traver-
sal of the SLD-tree of the program. However, the computational basis of a logic programming
language is quite different from that of Icon. Prolog programs consist of declarative statements
and there is no provision for controlling the computation of the program. In Icon. on the other
hand, both the traditional control structures and the novel control structures for generators are an
important aspect of the linguistic facilities of the language.

The use of recursion for handling expression evaluation in Icon is important because it pro-
vides a conceptually clear approach to handling generators and goal-directed evaluation in an
imperative language. Recursive calls isolate evaluation in new contexts and provide a natural
mechanism for saving state information. It is easy to implement new control structures because of
the correspondence between new evaluation contexts and the recursion used in their implementa-
tion. Using the recursive model, evaluation of Icon expressions can be described operationally as
a process of recursing at failure continuation points and returning, either to resume generators or
discard them.

Performance is not a significant issue for the recursive interpreter. Its advantages are its con-
ceptual simplicity and its possible application to extensions to Icon and the implementation of
similar types of expression evaluation in other programming languages such as C [6] and Pascal
[12]. While details vary for different languages and implementation frameworks, the same princi-
ples apply.

Applying the recursive model to compilation of Icon programs gives an immediate working
ground to explore and experiment with optimization of expression evaluation. The optimizations
discussed here focus on the fundamental aspects of goal-directed evaluation. They attempt to
reduce the general implementation of goal-directed evaluation to a conventional form in those
cases where the full generality of Icon’s expression evaluation mechanism is not used. It appears
that these optimizations help to reduce execution time that is used to maintain expression evalua-
tion information.

Icon provides powerful mechanisms for formulating many complex programming operations
in concise and natural ways. However, generators, goal-directed evaluation, and related control
structures introduce implementation problems that do not exist for languages with only conven-
tional expression evaluation. This dissertation presents an implementation model using recursion
that can be used for both an interpreter and a compiler. In the case of the compiler, optimizations
can be performed to improve the efficiency of Icon programs, mainly by reducing the general
evaluation strategy whenever possible.

There remain many possibilities for extending this work. Perhaps the most promising is its
potential integration with optimization of other aspects of the Icon programming language, such
as type checking and conversion.

-67 -

Acknowledgments

I would like to thank my advisor, Ralph E. Griswold, for his support and encouragement
throughout my years as a student. I have enjoyed and been influenced by his broad knowledge in
the field of computer science and his sense of aesthetics in programming languages. The underly-
ing ideas in the dissertation have been inspired by his thoughts.

I thank David R. Hanson, now at Princeton University, for his willingness to contribute to this
work over a long distance. His extensive, insightful, and prompt comments on drafts of the disser-
tation have helped to improve both the content and presentation of the work. Dave Hanson's
energy is boundless. Conversations with him were always a source of motivation and enthusiasm.

I am indebted to Peter J. Downey for his careful reading of the dissertation, and for providing
many criticisms and helpful comments related to this work.

I also thank Richard D. Schlichting, who has provided help and encouragement in many ways
over the years.

Many of my fellow graduate students have supported me, generously giving of their time to
discuss this work with me. They have also helped to create a comfortable and interesting working
atmosphere. | would like to thank Dave Gudeman, Tom Hicks. John Kececioglu, Bill Mitchell,
Kelvin Nilsen, Titus Purdin, Ken Walker, and Alan Wendt.

And finally, I thank my friends and family for their support, their warmth. and their humor.

-68 -

Appendix A: Bounded Expressions

An Icon control structure implicity bounds one or more of its argument expressions, according
to the semantics of the language. In the following list of control structures, a bounded expression
is enclosed in a rectangle.

Compound Expressions

{ [expn] ; Iexprz] ... expr)

Selection Expressions

if then expnr else expr

case of {
: expry
D expis

default: expr,

}

Negation

not

-69-

Loops

repeat

while fexpr| do [exprzl

until [expn| do [expr]|

every expn; do

Procedures

procedure p()

end

return

suspend expr

Conjunction

expr; & expry & ... & expr,

Repeated Alternation

lexpry

-70-

Limitation

\ expr

Note that limitation bounds expr; according to the number of results specified by expr.

String Scanning

expr; ? expn

-71-

Appendix B: Operations and Functions

In Icon. some operations and functions are similar to those in traditional languages and always
produce a value. Others may fail to produce values, or may produce many values. The operations
and functions of Icon are classified in this appendix as follows: a monogenic expression produces
exactly one value: a conditional expression may produce a value, or may fail to produce a value; a
generator may produce a sequence of zero or more values. See [18] for a complete description of
the meanings of the operations and functions.

Operations

Monogenic

“expr
—expr
+expr
“expr
*expr
.expr

expn || expr
expr; — expn
expr; | expn
expr; ** expn
expry ||l expr
expr; — expn
expr; % expr
expr; * expr
expr; + expn
expr; = expr
expr; ++ expr

Conditional
\expr

lexpr

Rexpr

expr; === expn
expr; == expr

expr; >>= expn
expr; >> expn
expr; <<= expn
expr; << expn
expr; “== expn
expr; “=== expn
expr; = expn
expr; >= expn
expr; > expr
exprn; <= expn
expr; < expn
expr; "= expn
expr; = expr
expr; = expn
expri[expr)]

expn|expr.exprs)

-72-

Generative

lexpr
=expr

expr; <— expr
expr; <> expn

expn; 0 expry by expn

Functions

Monogenic

abs
center
close
collect
copy
delete
display
exit
image
insert
left

list
map
push
put
repl
reverse
right
set
sort
stop
system
table
trim
tYPe
write
writes

Conditional

any
cset

get
integer
any
match
member
numeric
open
pop

pos
proc
pull
read
reads
real
string

-73-

Generative

bal
find
move
seq
tab
upto

Appendix C: Icon Programs

The programs whose performance measurements are discussed in the dissertation are shown in
this appendix.

MEANDERING STRINGS

This main procedure accepts specifications for meandering strings
from standard input with the alphabet separated from the length by
a colon.

I3 IR R

procedure main()
local line, alpha
while line := read() do {
line ? if alpha := tab(upto(":')) then {
move(1)
if n := integer(tab(0)) then write(meander(alpha, n))
else write("erroneous input”)

}

else write("erroneous input"”)

}

end

procedure meander(alpha, n)
local result, t, i, ¢, k
i = k := *alpha
t ;= n-1
result := repl(alpha[i], 1)
while ¢ := alphali] do {
if find(result[-t:0] || c, result)
then i -:= 1
else {result |l:= ¢; i := K}
}
return result
end

-74 -

POWER

R

This program computes a ~ b in arbitrary-precision arithmetic.
Author: Paul Abrahams.
Main program is modified to compute one instance of a’b repeatedly.

procedure main()
local a, b, bbits, prod, time
i=1
while i < 500 do {
a := integer(37)
b := integer(15)
bbits := binrep(b)
if prod := power(a, bbits) then
print_it(prod)
else
write("Too many digits in the result!")
i +:=1
}
end
Compute the binary representation of n (as a string)

procedure binrep(n)
local retval
retval = "
while n > 0 do {
retval := n % 2 || retval
n/l=2
}
return retval
end

Compute a to the power bbits, where bbits is a bit string.
The result is a list of coefficients for the polynomial a(i)*k"i.

procedure power(a, bbits)

local b, m1, retval
m1 := (if a >= 10000 then [a % 10000, a / 10000] else [a])
retval := [1]
every b := lbbits do {

(retval := product(retval, retval)) | fail

if b == "1" then

(retval := product(retval, m1)) | fail
}

return retval
end

=75 -

Compute a*b as a polynomial in the same form as for power.

procedure product(a, b)
local i, j, k, retval, x
if *a + *b > 5001 then

fail
retval := list(*a + *b, 0)
every i := 1 to *a do
every j ;= 1 to *b do {

Ki=i+j-1
retval[k] +:= a[i] * b[j]
while (x := retval[k]) >= 10000 do {
retvallk + 1] +:= x / 10000
retval[k] %:= 10000
K +:=1
b o)
every i := *retval to 1 by -1 do
if retvalli] > 0 then
return retval[1+:i]
return retval{1+:i]
end

procedure print_it(n)
local ds, i, j, k
ds ="
every k := *n to 1 by -1 do
ds [:= right(n[k], 4, "0")
ds ?:= (tab(many("0")). tab(0))
ds := repl("0", 4 - (*ds - 1) % 5) || ds

every i := 1 to *ds by 50 do {
k ;= *ds > i + 45 | *ds
every j =i to k by 5 do {

ds
writes(ds[j+:5], " ")
}
write()
}
write()

end

-76 -

EIGHT - QUEENS(1)

This program prints the possible ways to place eight queens
on a chess board in non-attacking positions.

TR

procedure main()

devery bwrite([q(1), a(2), q(3), a(4). q(5).q(6),q(7),q(8)])
en

procedure q(c)
suspend place(1 to 8,c) # look for a row
end

procedure place(r,c)
static up, down, row

initial {
up := list(15,0)
down := list(15,0)
row := list(8,0)

}
if row[r] = down[r + c-1]=up[8B+r-c¢c]=0
then suspend row[r] <- down[r + ¢ - 1] <-
up[8 + r - ¢] <-r # place if free
end

procedure bwrite(s)

local i, |

every r ;= 1 to 8 do {
I = repl(" .".8)
sfi:=(1 to 8)] = r & (I[2+]] := "Q")
write (1)
}

write()

end

-77-

ROMAN NUMERALS

This program takes Arabic numerals from standard input and writes
the corresponding Roman numerals to standard outout.

IR RN

procedure main()
local n
while n := read() do
write(roman(n) | "cannot convert")
end

procedure roman(n)
local arabic, result
static equiv
initial equiv = [, "1", "I, 107, V0V VUV VIS, "X
integer(n) > 0 | fail
result = "™
every arabic := In do
result := map(result, "IVXLCDM","XLCDM=x") || equiv[arabic+1]
if find("*", result) then fail else return result
end

-78 -

RANDOM SENTENCE GENERATION

This program generates randomly selected strings (“sen-
tences”) from a grammar specified by the user. Grammars are
basically context-free and resemble BNF in form.

See [21] for a description of the input specifications.

RN

global defs, ifile, in, limit, prompt, tswitch

procedure main(args)
local line, plist, s, opts, time

procedures to try on input lines
plist := [define, generate, grammar, source, comment, prompter, error]
defs := table() # table of definitions
defs['Ib"] = [["<"]] # built-in definitions
defs['rb"] := [[">"]]
defs['v0] := [['])
defs["'nl"] := [["\n"]]
defs["] = [["]

opts := getopt(args, "tl++")[1]
limit := \opts[""] | 1000
tswitch := \opts["t"]

&random := \opts["s"]

ifile := [&input] # stack of input files

prompt = "

while in := pop(ifile) do { # process all files
repeat {

if *prompt "= 0 then writes(prompt)
line := read(in) | break
while line[-1] == "\" do line := line[1:-1] || read(in) | break
(‘plist)(line)
}
close(in)

}

end

-79.

#
#
#
#
#

getopt(arg, optstring) -- Get command line options.

This procedure analyzes the -options on the command line invoking an
Ilcon program. The argument arg is the argument list as passed to the
main procedure, and optstring is the string of allowable option letters.

procedure getopt(arg, optstring)

local x,i,c,otab, flist, 0, p
/optstring := string(&lcase ++ &ucase)
otab := table()
flist == []
while x := get(arg) do
x ?{
if ="-" & not pos(0) then
while ¢ := move(1) do
if i := find(c, optstring) + 1 then
otab[c] :=
if any(:+.",0 := optstring[i]) then {
p = " "== tab(0) | get(arg) |
stop("No parameter following ", x)
case o of {
"p
“+". integer(p) |
stop("-",c," needs numeric parameter")
".": real(p) |
stop("-",¢," needs numeric parameter")
}
}

else 1
else stop("Unrecognized option: ", x)
else put(flist, x)

return [otab, flist]

end

#

process alternatives

procedure alts(defn)

local alist

alist == []

defn ? while put(alist, syms(tab(upto(’') | 0))) do move(1) | break
return alist

end

#

look for comment

procedure comment(line)

if line[1] == "#" then return

end

-80-

look for definition

procedure define(line)
return line ?
defs[2(="<", tab(find(">::=")))] := 2(move(4), alts(tab(0)))
end

note erroneous input line

procedure error(line)
write("*** erroneous line: ", line)
return

end

generate sentences

procedure gener(goal)
local pending, symbol
pending := [[(goal)]]
while symbol := get(pending) do {
if \tswitch then
write(&errout, symimage(symbol), listimage(pending))
case type(symbol) of {
"string": writes(symbol)
"list": {
pending = Ndefs[symbol[1]] |l pending | {
write(&errout, "*** undefined nonterminal: <",symbol[1], ">")
break

}
if *pending > \limit then {

write(&errout, "+** excessive symbols remaining")
break

-81-

look for generation specification

procedure generate(line)
local goal, count

it line ? {
="<" &
goal := tab(upto(’>")) \ 1 &
move(1) &

count = (pos(0) & 1) | integer(tab(0))
}

then {
every 1 to count do
gener(goal)
return
}
else fail
end

get right hand side of production

procedure getrhs(a)
local rhs
rhs = "
every rhs ||:= listimage(!a) || "|"
return rhs[1:-1]
end

-82-

look for request to write out grammar

procedure grammar(line)
local file, out, name
if line ? {
name := tab(find("->")) &
move(2) &
file := tab(0) &
out := if *file = 0 then &output else {
open(file,"W") | {
write(&errout, "x** cannot open " file)

fail
}
}
}
then {
(*name = 0) | (name[1] == "<" & name[-1] == ">") | falil

pwrite(name, out)
if *file "= 0 then close(out)
return

else fail
end

produce image of list of grammar symbols

procedure listimage(a)
local s, x
s ="
every x = la do
s |:= symimage(x)
return s
end

look for new prompt symbol

procedure prompter(line)

if line[1] == "=" then {
prompt := linef[2:0]
return
}
end

-83-

write out grammar

procedure pwrite(name, ofile)

local nt, a
static builtin
initial builtin = ["Ib","rb", "vb", "nlI","", "&lcase", "&ucase", "&digit"]
if *name = 0 then {

a := sort(defs,3)

while nt := get(a) do {

if nt == lbuiltin then {

get(a)
next
}
write(ofile, "<", nt, ">::=", getrhs(get(a)))
}
else write(ofile, name, "::=", getrhs(\defs[name[2:-1]])) |

write("*** undefined nonterminal: ", name)
end

look for file with input

procedure source(line)
local file
return line ? (="@" & push(ifile,in) & {
in := open(file := tab(0)) | {
write(&errout, "**x cannot open ", file)
fail
}
)

end
produce string image of grammar symbol

procedure symimage(x)
return case type(x) of {
"string”: X
ll"stﬂ: !l<" ” x[.‘] ” ﬂ>ll
}

end

-84-

process the symbols in an alternative

procedure syms(alt)
local slist
static nonbrack
initial nonbrack = ~'<’
slist := []
alt ? while put(slist, tab(many(nonbrack)) |
[(2(="<", tab(upto('>")), move(1)))])
return slist
end

stop, noting incorrect usage
procedure Usage()

stop('usage: [-t] [-| n] [-s n]")
end

-85-

TOURNAMENT

Compute partners for four-handed bridge, trying to avoid
duplicate pairings.

33 HIR

global zero, one, letters

procedure main(a)

every 1 to 3 do {

pair := table(0)

zero = table()

one:= table()

number := a[1] | 20

&random := a[2]

write("&random=", &random)

letters := &lcase || &ucase

labels := letters[1+:number] # Label the players with letters.

every ¢ = llabels do # Set things up.
zero[c] := singles(labels,c)

every ¢ := llabels do
one[c] := singles(labels,c)

every round := 1 to 8 do { # Go through each round.
write("\n", "round ", round, ":","\n")
players := shuffle(labels) # Mix up the players.
every 1 to number / 4 do { # Divide into tables.
setting := s1 := ?players # Pick one at random

players := remove(players,s1) # and remove from the pool.
write("s1=",s1)

until *setting = 4 do { # Attempt a setting.
s1 := select(s1, players, setting) | stop("cannot construct")
setting ||:= s1 # Add on a player.

write("setting=", setting)
players := remove(players,s1)

}

displays(setting) # Display the result.
aa = (]

every push(aa,1(s := string(!setting ++ !setting), *s = 2))
X := set(aa)

every pair[!x] +:= 1
}
write(repl("-",12))
analyze(pair, labels)

}

end

-86-

Shuffie the players.

procedure shuffle(x)
x = string(x)
if not(type(x) == ("string" | "list")) then xstop(x)
every Ix = 7x
return x
end

procedure xstop(x)
stop("Run-time error 102 in shuffle: ", image(x))
end

Add everyone else.

procedure singles(s, c)
S = sef([))
every insent(S,c "== !s)
return S

end

Make a selection.

procedure select(s1, base, setting)
local s2
if s2 := member(zero[s1], Ibase) then {
every delete(zero[!setting], s2)
every delete(zero[s2], !setting)

else if s2 := member(one[s1], lbase) then {
every delete(one[!setting]. s2)
every delete(one[s2], !setting)
}
else fail
return s2
end

procedure remove(s1,s2)
(s1[find(s2,s1)] := ") | stop("cannot remove")
return s1

end

procedure displays(s)
every writes(right(find('s, letters),3))
write()

end

-87-

See how well the assignment worked.

procedure analyze(t, s)
local hits, notes
hits := list(10,0)
notes := list(10,")
write("number of different pairings is ", *t)
every pair ;= string(!s ++ !s) & *pair = 2 do {
score = t[pair]
hits[score + 1] +:= 1
t[pair] := t[reverse(pair)] := 10
if (score = 0) | (score > 2) then
notes[score + 1] ||:= pair
}

write("pairings:")
every i := 1 to 10 do
write(i - 1,":","\t", hits]i])
write("\n", “notes:")
every i .= 0| (3 to 10) do
write(i, ":", \n", xlate(notes[i + 1]))

end

procedure xlate(s)
if *s = 0 then fail
st ="
every i := 1 to *s by 2 do
s1 |:= right(find(s[i], letters),3) || right(find(s[i + 1], letters),3) ||
mn
return s1
end

-88-

EIGHT - QUEENS(2)

This program solves the eight-queens problem iteratively,
and makes no use of goal-directed evaluation.

WO 3 W I I

global up, down, rows, x

procedure main()
local i

up := list(15)
down := list(15)
rows := list(8)
x := list(8)

i=1

while i <= 15 do {
up[i] := down[i] := 0
i +:=1
}

i=1

while i <= 8 do {
rows[i] := 0
i +=1
}

queens2()

end

-89.-

procedure queens2()

local r,c
c:=1
r.=20
while 1 do {
while r <= 8 do {
r+:=1
if (rows[r] = up[r - ¢ + 8] = down|r + ¢ - 1] = 0) then {
x[c] ==
if (¢ = 8) then print() # print
else { # advance c
rows[r] := up[r - ¢ + 8] := down[r + ¢ - 1] = 1
c +=1
r=20
}
}
}
if ¢ =1 then return # done
else { # retreat c
c-=1
r = x[c]
rows[r] := up[r-c + 8] :=down[r + c - 1] =0
}
end

procedure print()
local k

k=1
while k <= 8 do {
writes(x[k]," ")
k +:= 1
}
write()
end

-90-

o

10.

11,

12.

13.

14,

15.

16.

17.

18.

19.

20.

REFERENCES
H. Abelson and G. J. Sussman, Structure and Interpretation of Computer Programs, MIT
Press, Cambridge. MA, 1985.

A. V. Aho, R. Sethi and J. D. Ullman. Compilers: Principles, Techniques, and Tools,
Addison Wesley, Reading, MA, 1986.

A. Barr and E. A. Feigenbaum (ed.), in The Handbook of Artificial Intelligence, Vol. 2,
HeurisTech Press , Stanford, California, 1982.

M. Bellia and G. Levi, ‘‘The Relation Between Logic and Functional Languages: A
Survey'’, The Journal of Logic Programming Vol.3(1986), 217-236.

M. Broynooghe and L. M. Pereira, Deduction revision by intelligent backtracking, in
Implementations of Prolog.). A. Campbell (ed.), Ellis Horwood Ltd., Chichester, 1984.

T. A. Budd, ‘‘An Implementation of Generators in C*’,J. Computer Lang. 7(1982), 69-87.
J. Campbell (ed), Implementations of Prolog, Ellis Horwood, 1984.

J. Cohen, ‘‘Describing Prolog by its Interpretation and Compilatioh”, Comm. ACM 28,12
(Dec. 1985), 1311-1324.

S. K. Debray and D. S. Warren, Detection and Optimization of Functional Computations in
Prolog. in Proceedings of the 1986 Symposium on Logic Programming, 1986.

J. N. Doyle, A Generalized Facility for the Analysis and Synthesis of Strings and a
Procedure-Based Model of an Implementation, SNOBOL4 Project Document S4D38,
University of Arizona, Feb. 1975.

A. P. Ershov, “‘On the essence of compilation’’, in Formal Description of Programming
Concepts, E. J. Neuhold (ed.), 1978, 391-420.

E. Gallesio. Inclusion de L’Evaluation Dirigee ‘par Le But Dans Un Langage de
Programmation Monomorphique, Doctoral Dissertation, University of Nice, 1986.

S. L. Graham, P. B. Kessler and M. K. McKusick, ‘‘An Execution Profiler for Modular
Programs’’, Software—Practice & Experience Vol. 13(1983). .

R. E. Griswold, J. F. Poage and 1. P. Polonsky, The SNOBOL4 Programming Language,
Prentice-Hall, Inc., Englewood Cliffs, NJ, second edition, 1971.

R. E. Griswold and D. R. Hanson, ‘‘An Alternative to the Use of Patterns in String
Processing’’, ACM Trans. Prog. Lang. and Systems 2,2 (1980), 153-172.

R. E. Griswold, D. R. Hanson and J. T. Korb, ‘‘Generators in Icon’’, ACM Trans. Prog.
Lang. and Systems 3,2 (Apr. 1981), 144-161.

R. E. Griswold, ‘‘The Evaluation of Expressions in Icon’’, ACM Trans. Prog. Lang. and
Systems 4, 4 (Oct. 1982), 563-584.

R. E. Griswold and M. T. Griswold, The Icon Programming Language, Prentice-Hall, Inc.,
Englewood Cliffs, NJ, 1983.

R. E. Griswold, ‘‘The Control of Searching and Backtracking in String Pattern Matching’’,
in Implementations of Prolog, J. Campbell (ed.), Ellis Horwood, 1984, 50-64.

R. E. Griswold and W. H. Mitchell, A Tour Through the C Implementation of Icon; Version
5.10, The Univ. of Arizona Tech. Rep. 85-19, 1985.

.91 -

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

R. E. Griswold, The Icon Program Library; Version 6, Release I, The Univ. of Arizona
Tech. Rep. 86-13b, 1986.

R. E. Griswold and M. T. Griswold, The Implementation of The Icon Programming
Language, Princeton University Press, 1986.

D. Gudeman, A Continuation Semantics for Icon Expressions, The Univ. of Arizona Tech.
Rep. 86-15, 1986.

C. T. Haynes, D. P. Friedman and M. Wand, *‘Obtaining Coroutines with Continuations’",
J. Computer Lang. Vol. 11, 3/4 (1986), 143-153.

C. Hewitt, PLANNER: A Language for Manipulating Models and Proving Theorems in a
Robot, in Proceedings of the International Joint Conference on Artificial Intelligence,
1971.

N. D. Jones, P. Sestoft and H. Sondergaard, ‘‘An Experiment in Partial Evaluation: The
Generation of a Compiler Generator’’, Lecture Notes in Computer Science Vol. 202(May
1985), 124-140.

P. Klint, An Overview of the SUMMER Programming Language, in Conference Record of
the Seventh Annual ACM Symp. on Prin. of Programming Languages, 1980.

J. T. Korb, The Design and Implementation of A Goal-Directed Programming Language,
Doctoral Dissertation, The University of Arizona, 1979.

R. Kowalski, ‘‘Predicate Logic as a Programming Language’’, in Proceedings of the
International Federation of Information Processing Congress, 74, 1974.

D. Kranz, R. Kelsey, J. Rees, P. Hudak, J. Philbin and N. Adams, ORBIT: An Optimizing
Compiler for Scheme, in Proceedings of the SIGPLAN Notices 1986 Symposium on
Compiler Construction, 1986, 219-233.

B. Liskov, CLU Reference Manual, Springer-Verlag, 1981.

J. McCarthy, P. W. Abrahams, D. J. Edwards and M. 1. Levin, in LISP 1.5 Programmer’s
Manual, MIT Press, Cambridge, MA, 1962.

C. S. Mellish, ‘‘Some Global Optimizations for a Prolog compiler’’, The Journal of Logic
Programming Vol. 2, No. 1(April, 1985), 43-66.

A. Newell, Information Processing Language-V Manual, Prentice-Hall, Inc., Englewood
Cliffs, NJ, 1961.

F. G. Pagan, ‘‘Converting Interpreters into Compilers’’, Software—Practice & Experzence
Vol. 18(6)(June 1988), 509-527.

T. W. Pratt, Programming Languages: Design and Implementation, Prentice-Hall, Inc.,
Englewood Cliffs, NJ, 1975.

J. T. Schwartz, R. B. K. Dewar, E. Dubinsky and E. Schonberg, Programming with Sets: an
Introduction to SETL, Springer Verlag, 1986.

G. Smolka, ‘‘Fresh: A Higher-Order Language with Unification and Multiple Results’’, in

LOGIC PROGRAMMING: Functions, Relations, and Equations, D. DeGroot and G.
Lindstrom (ed.), Prentice-Hall, Inc., Englewood Cliffs, NJ, 1986, 469-524.

-92-

39.
40.
41.

43.

45.

46.

47.

G. L. Steele, Rabbit: A Compiler for Scheme, Al Memo 474, MIT, 1978.

L. Sterling and E. Shapiro, The Art of Prolog, MIT Press, Cambridge, MA, 1986.

J. Stojanovksi, ‘*A Note on Implementing Prolog in Lisp’’, Inf. Proc. Letters 23(Nov.
1986), 261-264.

G. J. Sussman and D. V. McDermott, ‘‘From PLANNER to CONNIVER—A Genetic
Approach’’, in Proceedings of Joint Computer Conference 41. Part 11, Vol. 41, 1972,
1171-1179.

W. M. Waite and G. Goos, Compiler Construction, Springer-Verlag, New York, 1984.
K. Walker, A Type Inference System for Icon, The Univ. of Arizona Tech. Rep. 88-25, 1988.

S. B. Wampler, Control Mechanisms for Generators in Icon, Doctoral Dissertation, The
University of Arizona, 1981.

S. B. Wampler and R. E. Griswold, ‘*The Implementation of Generators and Goal-Directed
Evaluation in Icon’’, Software—Practice & Experience 13, 6 (June 1983), 495-518.

D. H. D. Warren, Implementing Prolog—Compiling Predicate Logic Programs, Research
Report 39, University of Edinburgh, 1977.

-93- ,//

