
Simple Translation of Goal-Directed Evaluation

Todd A. Proebsting�

The University of Arizona

Abstract

This paper presents a simple, powerful and flexible tech-
nique for reasoning about and translating the goal-directed
evaluation of programming language constructs that either
succeed (and generate sequences of values) or fail. The
technique generalizes the Byrd Box, a well-known device
for describing Prolog backtracking.

1 Motivation

In the current world of programming language develop-
ment, an enormous amount of effort is going into develop-
ing new ways of expressing and manipulating data values
(e.g., type theory, object-oriented theory, etc.) and very lit-
tle effort is going towards incorporating richer control-flow
constructs into modern languages. As evidence, note that
CLU-style iterators have been well-understood for around
20 years [LSAS77] and yet they appear in no mainstream
language.1

Generators (iterators) and goal-directed expression eval-
uation are extremely powerful control-flow mechanisms
for succinctly expressing operations that operate over a se-
quence of values. The Prolog programming language de-
rives much of its power from goal-directed evaluation (i.e.,
backtracking) in combination with unification [Byr80].
The Icon programming language is an expression-oriented

�Address: Todd A. Proebsting, Department of Computer Science,
University of Arizona, Tucson, AZ 85721; Telephone: 520/621-4326;
Email: todd@cs.arizona.edu. http://www.cs.arizona.edu/people/todd/

1It’s a shame iterators were not adopted by the Java designers — Java
hype seems to have revived garbage collection and might have done the
same for iterators.

language that combines generators and goal-directed eval-
uation into a powerful control-flow mechanism [GG83].

One possible explanation for the slow adoption of gen-
erators and goal-directed evaluation into mainstream lan-
guages may be the perceived difficulty of implementing
them correctly and efficiently. This papers presents a new
technique for implementing goal-directed evaluation of
expressions that generate a sequence of values. The tech-
nique is simple, understandable, and yields efficient code.

2 Icon Introduction

I will use the Icon programming language as a basis for ex-
plaining the new translation scheme, although the transla-
tion scheme is applicable to other goal-directed languages.

All Icon expressions succeed in generating zero or more
values. An expression that cannot produce any more val-
ues fails. For example, the expression

1 to 5

generates the values 1, 2, 3, 4, 5, and then fails.
Combining expressions with operators or function calls

creates a compound expression that combines all subex-
pression values and generates all possible result values
prior to failing. The expression

(1 to 3) * (1 to 2)

generates the values 1, 2, 2, 4, 3, 6, and then fails. Subex-
pressions evaluate left-to-right—the previous sequence
represents 1�1, 1�2, 2�1, 2�2, 3�1, 3�2. Note that
the right-hand expression is re-evaluated for each value
generated by the left-hand expression.

Generators may have generators as subexpressions. The
expression

(1 to 2) to (2 to 3)

generates 1, 2, 1, 2, 3, 2, 2, 3, and then fails. Those
values are produced because the outer (middle) to gener-
ator is actually initiated four times: 1 to 2, 1 to 3,
2 to 2, and 2 to 3.

Page 1

Icon’s expression evaluation mechanism is goal-
directed. Goal-directed evaluation forces expressions to
re-evaluate subexpressions as necessary to produce as
many values as possible. To demonstrate this, we in-
troduce Icon’s relational operator <. The < operator takes
two numeric operands and returns the value of the right
operand if it is greater than the value of the left, otherwise,
it fails (and, therefore, generates no value). Goal-directed
evaluation forces < to re-evaluate its operand expressions
as necessary to produce values on which it will succeed.
The expression

2 < (1 to 4)

generates the values 3, 4, and then fails. Similarly,

3 < ((1 to 3) * (1 to 2))

generates 4, 6, and then fails.
Generators and goal-directed evaluation combine to cre-

ate succinct programs with implicit control flow.

3 Byrd Box

Like Icon, Prolog evaluates programs in a goal-oriented
fashion. Unlike Icon, Prolog uses unification and back-
tracking to produce a sequence of substitutions. Nonethe-
less, their goal-directed evaluation mechanisms are similar
in that expressions (“calls” in Prolog) are started, succeed
or fail, and may be resumed.

Byrd [Byr80] concisely summarized the execution of
Prolog clauses by describing control-flow changes be-
tween pairs of calls via four ports:2

start The start port is the initial entry point into the eval-
uation of a particular call.

resume The resume port is the subsequent re-entry point
for all re-evaluations of a particular call.

fail The fail port is the departure point from a call that has
just failed.

succeed The succeed port is the departure point for all
successful satisfactions of a particular call.

For each call, Byrd constructed a box that consisted
of these four program points. Combining the boxes in
sequence models the backtracking control flow between
pairs of calls:

fail

start

resume

succeed

fail

start

resume

succeed

CallN CallN+1

�� �

- --

2Byrd called these call, redo, fail, and exit.

Satisfying one call leads directly to the initial invocation
of a subordinate call. Similarly, the failure of a call causes
the re-evaluation of the invoking call.

Finkel and Solomon [FS80, Fin96] independently devel-
oped a similar four-port model of control flow. They used
it to describe the control flow of power loops. Power loops
backtrack and thus the start/succeed/resume/fail model de-
scribes their behavior well. Unlike Prolog,however, power
loops cannot be described by a simple sequential connec-
tion of four-port boxes.

4 New Technique

The four-port technique of describing backtracking con-
trol flow is the basis for my technique of describing the
control flow of generators and goal-directed evaluation.
This new technique generalizes Byrd’s model and allows
the “boxes” to be combined in ways that are more powerful
than Byrd’s simple linear model—similar in some respects
to the Finkel and Solomon model.3 Unlike any previous
uses of the four-port model, the new technique describes
control-flow constructs that require making some of the
connections between ports at run-time.

This translation technique is syntax-directed. For each
operator in a program’s abstract syntax tree (AST), trans-
lation produces four labeled chunks of code—one for each
of Byrd’s ports. In addition, each AST operator has a cor-
responding run-time temporary variable to hold the values
it computes. Thus, the translation will produce four code
chunks for each operator, �:

�.start The initial code executed for the entire expression
rooted at �.

�.resume The code executed for resuming the expression
rooted at �.

�.fail The code executed when the expression rooted at �
fails.

�.succeed The code executed when the expression rooted
at � succeeds at producing a value.

The specification of these code chunks is similar to the
specification of attribute grammars, except that nothing is
actually computed. Instead, each code chunk is specified
by a simple template. The start and resume chunks are
synthesized attributes. The fail and succeed chunks are
inherited attributes. Having both inherited and synthesized
chunks allows control to be threaded arbitrarily among an

3I learned of power loops in a class from Prof. Finkel in 1984 at the
University of Wisconsin. Undoubtedly, I got the basic idea of a four-port
translation scheme in that class, although I thought I was inventing it
from scratch. To the best of my knowledge, the generalizations of the
four-port method are my own.

Page 2

operator and its children,which is necessary for some goal-
directed operations. In the Byrd Box, ports are locations,
whereas here they are pieces of code.

The evaluation of some Icon operators requires addi-
tional temporary variables and code chunks.

4.1 Translating “N”

Possibly the simplest expression to translate is a single
numeric literal (e.g., “3”). A numeric literal represents a
sequence of length one. The code for a numeric literal will
immediately produce its value and exit. Upon resumption,
it will fail. Note that the code chunks for handling success
and failure are “inherited” from an enclosing expression,
and therefore cannot be specified here.

literalN
literalN .start : literalN .value N

: goto literalN .succeed
literalN .resume : goto literalN .fail

4.2 Translating Unary Operators

Mathematical unary operators such as negation are also
easy to translate, and they give a simple idea of how suc-
ceed and fail chunks are created. Starting and resuming
the negation expression requires starting and resuming its
subexpression. Negating an expression is straightforward:
for each value the subexpression generates, simply negate
that value and succeed; fail when the subexpression fails.

uminus(E)

uminus.start : goto E.start
uminus.resume : goto E.resume
E.fail : goto uminus.fail
E.succeed : uminus.value �E.value

: goto uminus.succeed

4.3 Translating Binary Addition

Binary operators introduce the first interesting threading of
control among the various code chunks. TranslatingE1+

E2 requires that all values ofE2be produced for each value
of E1 and that the sums of those values be generated in
order. Thus, resuming the addition initiates a resumption
ofE2, andE1 is resumed whenE2 fails to produce another
result. Starting the addition expression requires thatE1 be
started, and for each value E1 generates, E2 must be (re-
)started (not resumed). The addition fails when E1 can
no longer produce results. The following specification
captures the semantics cleanly.

plus(E1; E2)

plus.start : goto E1.start
plus.resume : goto E2.resume
E1.fail : goto plus.fail
E1.succeed : goto E2.start
E2.fail : goto E1.resume
E2.succeed : plus.value E1.value+E2.value

: goto plus.succeed

Unlike addition, a relational operator (e.g., >, =, etc.)
may fail to produce a value after its subexpressions suc-
ceed. When a comparison fails, it resumes execution of
its right operand in order to have other subexpressions to
compare (i.e., it is goal-directed, and seeks success):

LessThan(E1; E2)

LessThan.start : goto E1.start
LessThan.resume: goto E2.resume
E1.fail : goto LessThan.fail
E1.succeed : goto E2.start
E2.fail : goto E1.resume
E2.succeed : if (E1.value � E2.value) goto

E2.resume
: LessThan.value E2.value
: goto LessThan.succeed

4.4 Translating Builtin Generators

Builtin operations, like “E1 to E2”, are equally easy to
translate in this framework. The “to” generator produces
every integer from E1 to E2 in ascending order. Further-
more, it must generate those values for every pair of values
that E1 and E2 produce. The code below uses an extra
code chunk as well as an additional temporary variable.

to(E1; E2)

to.start : goto E1.start
to.resume : to.I to.I + 1

: goto to.code
E1.fail : goto to.fail
E1.succeed : goto E2.start
E2.fail : goto E1.resume
E2.succeed : to.I E1.value

: goto to.code
to.code : if (to.I > E2.value) goto

E2.resume
: to.value to.I
: goto to.succeed

Page 3

4.5 Translating Conditional Control-Flow

The previous translations used direct gotos to connect var-
ious chunks in a fixed fashion at compile time. For some
operations this is not possible. The if expression,

if E1 then E2 else E3

Evaluates E1 exactly once, simply to determine if it suc-
ceeds or fails. If E1 succeeds then the if expression
generates the E2 sequence (and fails when E2 fails), oth-
erwise the if generates the E3 sequence until failure.

Translating an if statement into the four-port model
requires defering the if’s resumption action until run-
time. If E1 succeeds, then the if’s resume action must
be to resume E2. Otherwise, the if’s resume action is to
resumeE3. This translates into an indirect goto based on
a temporary value, “gate.” E1’s succeed and fail chunks
set gate to the appropriate chunk’s—eitherE1’s orE2’s—
resume label.

ifstmt(E1; E2; E3)

ifstmt.start : goto E1.start
ifstmt.resume : goto [ifstmt.gate]
E1.fail : ifstmt.gate addrOfE3.resume

: goto E3.start
E1.succeed : ifstmt.gate addrOfE2.resume

: goto E2.start
E2.fail : goto ifstmt.fail
E2.succeed : ifstmt.value E2.value

: goto ifstmt.succeed
E3.fail : goto ifstmt.fail
E3.succeed : ifstmt.value E3.value

: goto ifstmt.succeed

4.6 Translating Other Operations

This new four-port model is capable of succinctly describ-
ing every type of Icon operator, including loops, condi-
tionals, and function calls. The previous examples include
all the necessary parts (i.e., goto’s, indirect goto’s, and
simple computations) for building the code chunks. Trans-
lating a function call that generates a sequence of values
requires a mechanism for suspending and resuming a func-
tion invocation.

5 Example Translation

Translating Icon expressions in a syntax-directed fashion
with these four-port templates is easy. For instance, the
translation of

5 > ((1 to1 2) * (3 to2 4))

requires expanding the templates for 1, 2, 3, 4, 5, *, to1,
to2, and >. Figure 1 gives all of the code chunks for the
nine expanded templates.

The example demonstrates that while the technique is
simple, it suffers from generating many simple copies and
many branches to branches. Propagating copies and elim-
inating branches to branches (by branch chaining and re-
ordering the code) optimizes the code well. Figure 2 gives
the result of performing these optimizations on the code in
Figure 1. The result closely resembles code that would be
produced from two generic for loops, which is exactly
what one would hope for.

6 Related Work

Independently, Byrd, and Finkel and Solomon developed
a four-port model for describing backtracking control
flow—see Section 3 for more details. It is not clear if
Byrd invented the four-port box for translation purposes,
or for debugging purposes [Byr80]. It appears that Byrd
used the boxes to model control flow between calls within a
single clause, but not to model the flow of control between
clauses within a procedure, nor to model the control-flow
in and out of a procedure. Finkel and Solomon used their
four-port scheme to describe power loops. In neither case
was the idea of four-ports generalized into a mechanism for
describing how four pieces of code might be generated and
stitched together for various operators in a goal-directed
language.

Many people have studied the translation of Icon’s goal-
directed evaluation. The popular Icon translation system,
which translates Icon into a bytecode for interpretation,
controls goal-directed evaluation by maintaining a stack of
generator frames that indicate, among other things, what
action should be taken upon failure [GG86]. Special byte-
codes act to manipulate this stack—by pushing,popping or
modifying generator frames—to achieve the desired goal-
directed behavior. The new scheme requires nothing more
powerful than conditional, direct, and indirect jumps.

O’Bagy and Griswold developed a technique for trans-
lating Icon that utilized recursive interpreters [OG87].
The basic idea behind recursive interpreters for goal-
directed evaluation is that each generator that produces
a value does so by recursively invoking the interpreter.
Doing so preserves (suspends) the generator’s state for
possible resumption when the just-invoked interpreter re-
turns. A recursively invoked interpreter’s return value in-
dicates whether the suspended generator should resume or
fail. O’Bagy’s interpreter executes the same bytecode as
the original Icon interpreter. Recursive interpreters suffer
from the overhead of recursive function calls.

Gudeman developed a goal-directed evaluation mecha-
nism that uses continuation-passing to direct control flow

Page 4

Label Code Label Code

1.start 1.value 1 1.resume goto 1.fail
goto 1.succeed

2.start 2.value 2 2.resume goto 2.fail
goto 2.succeed

3.start 3.value 3 3.resume goto 3.fail
goto 3.succeed

4.start 4.value 4 4.resume goto 4.fail
goto 4.succeed

5.start 5.value 5 5.resume goto 5.fail
goto 5.succeed

mult.start goto to1.start mult.resume goto to2.resume
to1.fail goto mult.fail to1.succeed goto to2.start
to2.fail goto to1.resume to2.succeed mult.value to1.value * to2.value

goto mult.succeed
to1.start goto 1.start to1.resume to1.I to1.I + 1

goto to1.code
1.fail goto to1.fail 1.succeed goto 2.start
2.fail goto 1.resume 2.succeed to1.I 1.value

goto to1.code
to1.code if (to1.I> 2.value) goto 2.resume

to1.value to1.I
goto to1.succeed

to2.start goto 3.start to2.resume to2.I to2.I + 1
goto to2.code

3.fail goto to2.fail 3.succeed goto 4.start
4.fail goto 3.resume 4.succeed to2.I 3.value

goto to2.code
to2.code if (to2.I> 4.value) goto 4.resume

to2.value to2.I
goto to2.succeed

greater.start goto 5.start greater.resume goto mult.resume
5.fail goto greater.fail 5.succeed goto mult.start
mult.fail goto 5.resume mult.succeed if (5.value� mult.value)

goto mult.resume
greater.value mult.value
goto greater.succeed

Figure 1: Templates for “5 > ((1 to1 2) * (3 to2 4))”

greater.start to1.I 1
goto to1.code

to1.resume to1.I to1.I + 1
to1.code if (to1.I> 2) goto greater.fail

to2.I 3
goto to2.code

greater.resume to2.I to2.I + 1
to2.code if (to2.I> 4) goto to1.resume

mult.value to1.I * to2.I
if (5 � mult.value) goto greater.resume
greater.value mult.value
goto greater.succeed

Figure 2: Optimized Code for “5 > ((1 to1 2) * (3 to2 4))”

Page 5

[Gud92]. Different continuations for failure and success
are maintained for each generator. While continuations
can be compiled into efficient code they are notoriously
difficult to understand, and few target languages directly
support them.

Walker developed an Icon-to-C translator, which used a
mechanism very similar to the interpreter’s for controlling
goal-directed evaluation. This translator concentrated its
efforts on data-flow optimizations rather than control-flow
optimizations.

7 Conclusion and Future Work

These new techniques will be the basis for a new Icon
compiler that will translate Icon to Java bytecodes. The
translation of an Icon program’s abstract syntax tree will
be a simple expansion of its operators, based entirely upon
templates like those given previously. After generating
code naively, copy propagation and branch elimination
will optimize the code. This code generation method is
simple to implement and generates efficient code.

8 Acknowledgments

Saumya Debray helped debug my explanation of Prolog
control flow—any remaining errors are certainly my fault.

This research is partially supported by grants from
IBM Corp., ATT Foundation, NSF (CCR-9502397, CCR-
9415932), and ARPA (N66001-96-C-8518, DABJ-63-85-
C-0075).

References

[Byr80] Lawrence Byrd. Understanding the control of
prolog programs. Technical Report 151, Uni-
versity of Edinburgh, 1980.

[Fin96] Raphael A. Finkel. Advanced Programming
Language Design. Addison-Wesley Publish-
ing Company, 1996. ISBN 0-8053-1192-0.

[FS80] Raphael Finkel and Marvin Solomon. Nested
iterators and recursive backtracking. Technical
Report 388, University of Wisconsin-Madison,
June 1980.

[GG83] Ralph E. Griswold and Madge T. Griswold.
The Icon Programming Language. Prentice-
Hall, Inc., 1983. ISBN 0-13-449777-5.

[GG86] Ralph E. Griswold and Madge T. Griswold.
The Implementation of the Icon Programming
Language. Princeton University Press, 1986.
ISBN 0-691-08431-9.

[Gud92] David A. Gudeman. Denotational semantics
of a goal-directed language. ACM Transac-
tions on Programming Languages and Sys-
tems, 14(1):107–125, January 1992.

[LSAS77] B. Liskov, A. Snyder, R. Atkinson, and
C. Schaffert. Abstraction mechanisms in CLU.
Communications of the ACM, (8):564–576,
August 1977.

[OG87] Janalee O’Bagy and Ralph E. Griswold. A re-
cursive interpreter for the icon programming
language. In Proceedings of the SIGPLAN’87
Symposium on Interpreters and Interpretive
Techniques, pages 138–149, St. Paul, Min-
nesota, June 1987.

Page 6

