Simple Trandation of Goal-Directed Evaluation

Todd A. Proebsting*
The University of Arizona

Abstract

This paper presents a ssimple, powerful and flexible tech-
niquefor reasoning about and transl ating the goa -directed
evaluation of programming language constructsthat either
succeed (and generate sequences of values) or fail. The
technique generalizes the Byrd Box, a well-known device
for describing Prolog backtracking.

1 Motivation

In the current world of programming language develop-
ment, an enormous amount of effort isgoing into develop-
ing new ways of expressing and manipulating data values
(e.g., typetheory, object-oriented theory, etc.) and very lit-
tleeffort isgoing towardsincorporating richer control-flow
congtructs into modern languages. As evidence, note that
CLU-styleiterators have been well-understood for around
20 years [LSAS77] and yet they appear in no mainstream
language.!

Generators(iterators) and god -directed expression eval -
uation are extremely powerful control-flow mechanisms
for succinctly expressing operationsthat operate over ase-
guence of values. The Prolog programming language de-
rives much of itspower from goal-directed eva uation (i.e.,
backtracking) in combination with unification [Byr80].
The Icon programming language is an expression-oriented

*Address: Todd A. Proebsting, Department of Computer Science,
University of Arizona, Tucson, AZ 85721; Telephone: 520/621-4326;
Email: todd@cs.arizona.edu. http://www.cs.arizona.edu/people/todd/

!|t's ashameiterators were not adopted by the Javadesigners— Java
hype seemsto have revived garbage collection and might have done the
same for iterators.

language that combines generators and goal -directed eval -
uation into a powerful control-flow mechanism [GG83].
One possible explanation for the dlow adoption of gen-
erators and goal-directed evaluation into mainstream lan-
guages may be the perceived difficulty of implementing
them correctly and efficiently. This papers presents anew
technique for implementing goal-directed evaluation of
expressions that generate a sequence of values. The tech-
niqueissimple, understandable, and yields efficient code.

2 lcon Introduction

I will usethelcon programming language as abasisfor ex-
plaining the new tranglation scheme, athough thetransa
tion scheme isapplicableto other goal -directed languages.

All lcon expressions succeed in generating zero or more
values. An expression that cannot produce any more val-
ues fails. For example, the expression

l1to5b

generatesthevalues 1, 2, 3, 4, 5, and then fails.

Combining expressions with operators or function calls
creates a compound expression that combines all subex-
pression values and generates all possible result values
prior to failing. The expression

(1to3) * (1to 2

generatesthevaues 1, 2, 2, 4, 3, 6, and then fails. Subex-
pressions evauate left-to-right—the previous sequence
represents1 x 1,1 x2,2x1,2x2,3x1,3x2. Notethat
the right-hand expression is re-evaluated for each value
generated by the | eft-hand expression.

Generatorsmay have generatorsas subexpressions. The
expression

(1to2) to(2to 3)

generates 1, 2, 1, 2, 3, 2, 2, 3, and then fails. Those
values are produced because the outer (middi€) t o gener-
ator is actualy initiated four times: 1 to 2,1 to 3,
2to 2,and2 to 3.

Page 1



Icon's expression evaluation mechanism is god-
directed. Goal-directed evaluation forces expressions to
re-evaluate subexpressions as necessary to produce as
many values as possible. To demonstrate this, we in-
troduce Icon’s relational operator <. The < operator takes
two numeric operands and returns the value of the right
operand if it isgreater than thevalue of theleft, otherwise,
it fails (and, therefore, generates no value). Goal-directed
evaluation forces < to re-evaluate its operand expressions
as necessary to produce values on which it will succeed.
The expression

2 < (1to 4
generates the values 3, 4, and then fails. Similarly,
3<((1to3) * (1to 2)

generates 4, 6, and then fails.
Generatorsand goal -directed eval uation combineto cre-
ate succinct programswith implicit control flow.

3 Byrd Box

Like Icon, Prolog evaluates programs in a god-oriented
fashion. Unlike lcon, Prolog uses unification and back-
tracking to produce a sequence of substitutions. Nonethe-
less, their goal -directed eval uation mechanisms are similar
in that expressions (“calls’ in Prolog) are started, succeed
or fail, and may be resumed.

Byrd [Byr80] concisely summarized the execution of
Prolog clauses by describing control-flow changes be-
tween pairs of callsviafour ports:?

start The start port istheinitia entry point into the eval-
uation of aparticular cal.

resume The resume port isthe subsequent re-entry point
for al re-evaluations of a particular call.

fail Thefail portisthedeparture point fromacall that has
just failed.

succeed The succeed port is the departure point for all
successful satisfactions of a particular call.

For each call, Byrd constructed a box that consisted
of these four program points. Combining the boxes in
sequence models the backtracking control flow between
pairs of cals:

Cdly Calny:
—  dtart succeed Start succeed
- fail resume fail resume

2Byrd called these call, redo, fail, and exit.

Satisfyingonecall leadsdirectly totheinitia invocation
of asubordinatecall. Similarly, thefailureof acall causes
the re-evaluation of theinvoking call.

Finkel and Solomon [FS80, Fin96] independently devel -
oped asimilar four-port model of control flow. They used
it to describethe control flow of power loops. Power 1oops
backtrack and thusthe start/succeed/resume/fail model de-
scribestheir behavior well. UnlikeProlog, however, power
loops cannot be described by a simple sequentia connec-
tion of four-port boxes.

4 New Technique

The four-port technique of describing backtracking con-
trol flow is the basis for my technique of describing the
control flow of generators and goa-directed evaluation.
This new technique generalizes Byrd’s model and allows
the“boxes’ to be combined inwaysthat are more powerful
than Byrd’ssimplelinear model—similar in some respects
to the Finkel and Solomon model.3 Unlike any previous
uses of the four-port model, the new technique describes
control-flow constructs that require making some of the
connections between portsat run-time.

This trandation technique is syntax-directed. For each
operator in aprogram’s abstract syntax tree (AST), trans-
lation producesfour labeled chunks of code—onefor each
of Byrd'sports. Inaddition, each AST operator has a cor-
responding run-timetemporary variableto hold thevalues
it computes. Thus, the trandation will produce four code
chunksfor each operator, 6:

f.start Theinitial code executed for the entire expression
rooted at 6.

6.resume The code executed for resuming the expression
rooted at 6.

.fail The code executed when the expression rooted at 6
fails.

6.succeed The code executed when the expression rooted
at 0 succeeds at producing avalue.

The specification of these code chunksissimilar to the
specification of attribute grammars, except that nothing is
actually computed. Instead, each code chunk is specified
by a simple template. The start and resume chunks are
synthesized attributes. The fail and succeed chunks are
inherited attributes. Having both inherited and synthesi zed
chunks allows control to be threaded arbitrarily among an

3] learned of power loopsin aclass from Prof. Finkel in 1984 at the
University of Wisconsin. Undoubtedly, | got the basic idea of afour-port
translation scheme in that class, athough | thought | was inventing it
from scratch. To the best of my knowledge, the generalizations of the
four-port method are my own.

Page 2



operator anditschildren, whichisnecessary for somegoal -
directed operations. In the Byrd Box, ports are locations,
wheress here they are pieces of code.

The evaluation of some Icon operators requires addi-
tional temporary variables and code chunks.

4.1 Trandating“N”

Possibly the simplest expression to trandate is a single
numeric literal (e.g., “3"). A numeric literal represents a
sequence of length one. The code for anumeric literal will
immediately produceitsvalueand exit. Upon resumption,
itwill fail. Notethat the code chunksfor handling success
and failure are “inherited” from an enclosing expression,
and therefore cannot be specified here.

literal

literal 5 .value < N
got o literal v .succeed

literal v .Start

literal;.resume : got o literal y.fail

4.2 Trandating Unary Operators

Mathematical unary operators such as negation are also
easy to trandate, and they give a simpleidea of how suc-
ceed and fail chunks are created. Starting and resuming
the negation expression requires starting and resuming its
subexpression. Negating an expression is straightforward:
for each value the subexpression generates, smply negate
that value and succeed; fail when the subexpression fails.

uminus(£)
uminus.start got o I .start
uminus.resume got o E.resume
[ fal : got o uminusfall

E .succeed uminus.value «— —E.value

got 0 uminus.succeed

4.3 Trandating Binary Addition

Binary operatorsintroducethefirst interesting threading of
control among the various code chunks. Trandating £ +
5 requiresthat al valuesof £ be produced for each value
of Fy and that the sums of those values be generated in
order. Thus, resuming the addition initiates a resumption
of £y, and F; isresumed when E; failsto produceanother
result. Startingthe additionexpression requiresthat £ be
started, and for each value E; generates, F; must be (re-
)started (not resumed). The addition fails when F; can
no longer produce results. The following specification
captures the semantics cleanly.

pl US(El, Ez)
plus.start got o F; . dtart
plus.resume got o Fy.resume
Fy fall got o plusfail
' .succeed got o £, start
B, fal got o E;.resume
E'5.succeed plusvalue « £, .valuet FE-.value

got o plus.succeed

Unlike addition, a relationa operator (e.g., >, =, €tc.)
may fail to produce a value after its subexpressions suc-
ceed. When a comparison fails, it resumes execution of
its right operand in order to have other subexpressionsto
compare (i.e, itisgoal-directed, and seeks success):

LessThan(E+, E»)

L essThan.gtart got o E, .dtart

LessThan.resume got o Es.resume

E, fal got o LessThan.fail

' .succeed got o I, start

B, fal got o E;.resume

E5.succeed i f (Fyp.value> FEs.value) goto

FEs.resume
LessThan.value «+ Fs.value
got o LessThan.succeed

4.4 Trandating Builtin Generators

Builtin operations, like“FE; t o ", are equaly easy to
trandate in thisframework. The“t 0" generator produces
every integer from £, to F- in ascending order. Further-
more, it must generate thosevauesfor every pair of values
that £, and I, produce. The code below uses an extra
code chunk as well as an additional temporary variable.

tO(El, Ez)
to.start got o Fy.dart
to.resume to.] «to/+1
got o to.code
E, fal got o to.fal
' .succeed got o I, start
B, fal got o E;.resume
E5.succeed to.l «+ F;.value
got o to.code
to.code if (tof > FEsvalue) goto
FEs.resume
to.value < to./
got o to.succeed

Page 3



45 Trandating Conditional Control-Flow

The previoustrand ationsused direct gotosto connect var-
ious chunksin afixed fashion a compile time. For some
operationsthisisnot possible. Thei f expression,

if Eythen E;el se F3

Evduates I/, exactly once, simply to determineiif it suc-
ceeds or falls. If £y succeeds then the i f expression
generates the F» sequence (and failswhen F5 fails), oth-
erwisethei f generatesthe E'5 sequence until failure.

Trandating an i f statement into the four-port model
requires defering the i f 's resumption action until run-
time. If ', succeeds, then thei f 's resume action must
be to resume £,. Otherwise, thei f 'sresume actionisto
resume F5. Thistrandatesintoanindirect got o based on
atemporary value, “gate” F;’'s succeed and fail chunks
set gateto the appropriate chunk’s—either £, ’'sor £y's—
resume label.

|fgmt(E1, Ez, Eg)

ifstmt.start got o F; dart

ifstmt.resume got o [ifstmt.gate]

E, fail ifstmt.gate< addr OF Es.resume
got o Fs.dtart

' .succeed ifstmt.gate< addr O £5.resume
got o F».start

B, fail got o ifstmt fail

E'5.succeed ifssmt.value «— E5.value
got o ifstmt.succeed

E5 fail got o ifstmt fail

E'5.succeed ifssmt.value + E'5.value

got o ifstmt.succeed

4.6 Trandating Other Operations

Thisnew four-port model is capabl e of succinctly describ-
ing every type of Icon operator, including loops, condi-
tionals, and function calls. The previousexamplesinclude
all the necessary parts(i.e, got 0’s, indirect got 0’s, and
simple computations) for buildingthe code chunks. Trans-
lating a function call that generates a sequence of values
requires amechanism for suspending and resuming afunc-
tioninvocation.

5 Example Trandation

Trangdating |con expressions in a syntax-directed fashion
with these four-port templates is easy. For instance, the
trand ation of

5> ((1toy 2) * (3 toy 4))

requires expanding the templatesfor 1, 2, 3, 4, 5, *, t 04,
t 04, and >. Figure 1 gives dl of the code chunks for the
nine expanded templ ates.

The example demonstrates that while the technique is
simple, it suffersfrom generating many simple copies and
many branchesto branches. Propagating copiesand elim-
inating branches to branches (by branch chaining and re-
ordering the code) optimizesthecodewell. Figure2 gives
theresult of performing these optimizationson thecodein
Figure 1. The result closely resembles code that would be
produced from two generic f or loops, which is exactly
what one would hopefor.

6 Related Work

Independently, Byrd, and Finkel and Solomon devel oped
a four-port model for describing backtracking control
flow—see Section 3 for more details. It is not clear if
Byrd invented the four-port box for trandation purposes,
or for debugging purposes [Byr80Q]. It appears that Byrd
used theboxesto model control flow between callswithina
single clause, but not to model theflow of control between
clauses within a procedure, nor to model the control-flow
in and out of a procedure. Finkel and Solomon used their
four-port scheme to describe power loops. In neither case
wastheideaof four-portsgeneraizedintoamechanismfor
describing how four pieces of code might begenerated and
stitched together for various operators in a goa -directed
language.

Many peopl e have studied thetranslation of 1con’sgoal-
directed evaluation. The popular Icon trandlation system,
which trangates Icon into a bytecode for interpretation,
controlsgoal -directed eval uation by maintai ning astack of
generator frames that indicate, among other things, what
action should be taken upon failure [ GG86]. Special byte-
codes act to manipul ate this stack—by pushing, popping or
modifying generator frames—to achieve the desired goal-
directed behavior. The new scheme requires nothing more
powerful than conditional, direct, and indirect jumps.

O’ Bagy and Griswold devel oped a technique for trans-
lating lcon that utilized recursive interpreters [OG87].
The basic idea behind recursive interpreters for goal-
directed evaluation is that each generator that produces
a value does so by recursively invoking the interpreter.
Doing so preserves (suspends) the generator’s state for
possible resumption when the just-invoked interpreter re-
turns. A recursively invoked interpreter’sreturn value in-
dicates whether the suspended generator should resume or
fail. O'Bagy’sinterpreter executes the same bytecode as
the original Icon interpreter. Recursive interpreters suffer
from the overhead of recursive function cals.

Gudeman devel oped a goal-directed eval uation mecha
nism that uses continuation-passing to direct control flow

Page 4



Labe Code | Label Code
1.start lvalue+ 1 1.resume got o 1fail
got o 1.succeed
2.start 2value + 2 2.resume got o 2fail
got o 2.succeed
3.dart 3.value + 3 3.resume got o 3fall
got o 3.succeed
4. start 4value + 4 4.resume got o 4fail
got o 4.succeed
5.gtart 5.value + 5 5.resume got o 5fall
got o 5.succeed
mult.start got o to; .start mult.resume got o tos.resume
to; .fail got o mult.fail to; .succeed got o to..start
to,.fail got o to;.resume to..succeed mult.value < to; .value * to,.value
got o0 mult.succeed
to; .start got o 1.start to; .resume to;.l «to;.l+1
got o to;.code
1fal got o to; fail 1.succeed got o 2.dtart
2 fail got o 1.resume 2.succeed to;.l « l.value
got o to;.code
to,.code i f (to;.I> 2.value) got 0 2.resume
to;.value « to; .|
got o to;.succeed
to,.start got o 3.start to,.resume too.l «—tool +1
got o tos.code
3. fail got o to,.fail 3.succeed got o 4.dtart
4 fal got o 3.resume 4.succeed to..l «+ 3.value
got o tos.code
to..code i f (tos.I> 4.value) got o 4.resume
tos.value « to..l
got o to-.succeed
greater.stat got o 5.start greater.resume got o mult.resume
5.fail got o greater.fail 5.succeed got o mult.start
mult.fail got o 5.resume mult.succeed i f (5.value< mult.value)
got o mult.resume
grester.value + mult.value
got o greater.succeed

Figure 1: Templatesfor “5 > ((1to; 2) * (3to: 4))"

grester.start to;.l «+1

got o to;.code
to;.resume toy.l «+to;.l +1
to,.code

tos.l « 3

got o tos.code

greater.resume
to,.code

tos.l «—toal +1
i f (tos.I> 4)got o to;.resume

mult.value < to; .l * to,.l
i f (5< mult.value) got o greater.resume
grester.value + mult.value
got o greater.succeed

i f (to;.I> 2) got o greater.fail

Figure 2: Optimized Codefor “5 > ((1to; 2) * (3to, 4))”

Page 5



[Gud92]. Different continuations for failure and success
are maintained for each generator. While continuations
can be compiled into efficient code they are notoriously
difficult to understand, and few target languages directly
support them.

Walker developed an Icon-to-C trand ator, which used a
mechanism very similar to theinterpreter’sfor controlling
goal-directed evaluation. This trandator concentrated its
efforts on data-flow optimizationsrather than control-flow
optimizations.

7 Conclusion and Future Work

These new techniques will be the basis for a new Icon
compiler that will trandlate Icon to Java bytecodes. The
trandation of an Icon program’s abstract syntax tree will
be asimple expansion of itsoperators, based entirely upon
templates like those given previoudly. After generating
code naively, copy propagation and branch elimination
will optimize the code. This code generation method is
simple to implement and generates efficient code.

8 Acknowledgments

Saumya Debray helped debug my explanation of Prolog
control flow—any remaining errorsare certainly my fault.

This research is partialy supported by grants from
IBM Corp., ATT Foundation, NSF (CCR-9502397, CCR-
9415932), and ARPA (N66001-96-C-8518, DABJ63-85-
C-0075).

References
[Byr80] Lawrence Byrd. Understanding the control of
prolog programs. Technical Report 151, Uni-
versity of Edinburgh, 1980.

[Fin96] Raphad A. Finkd. Advanced Programming
Language Design. Addison-Wesley Publish-

ing Company, 1996. |SBN 0-8053-1192-0.

Raphadl Finkel and Marvin Solomon. Nested
iteratorsand recursive backtracking. Technical
Report 388, University of Wisconsin-Madison,
June 1980.

[FS30]

[GG83] Ralph E. Griswold and Madge T. Griswold.
The Icon Programming Language. Prentice-

Hall, Inc., 1983. ISBN 0-13-449777-5.

[GG86] Ralph E. Griswold and Madge T. Griswold.
The Implementation of the Icon Programming
Language. Princeton University Press, 1986.

ISBN 0-691-08431-9.

[Gud92]

[LSAST77]

[0G87]

David A. Gudeman. Denotational semantics
of a goa-directed language. ACM Transac-
tions on Programming Languages and Sys-
tems, 14(1):107-125, January 1992.

B. Liskov, A. Snyder, R. Atkinson, and
C. Schaffert. Abstractionmechanismsin CLU.
Communications of the ACM, (8):564-576,
August 1977.

Janaee O'Bagy and Ralph E. Griswold. A re-
cursive interpreter for the icon programming
language. In Proceedings of the SGPLAN' 87
Symposium on Interpreters and Interpretive
Techniques, pages 138-149, St. Paul, Min-
nesota, June 1987.

Page 6



