
1 June 25, 2000; last revised August 1, 2004

Not being a mathematician, I am not obligated to
complicate my explanations by excessive mathematical
rigor.

— Petr Beckmann, The History of Pi

Introduction

Suppose you see a color pattern that strikes
your fancy and think “That would make a great
scarf; time to weave!”.

How do you get a draft? In fact, is it even
possible?

In the context of loom-controlled weaving (as
opposed to, say, tapestry weaving) there are many
patterns that can’t be woven. In fact, most can’t.
We’ll explore the problem of determining if a color
pattern can be woven as the perpendicular inter-
lacement of two sets of parallel threads.

The Problem

We can consider a rectangular color pattern as
a grid of colored cells. If the color pattern is an
image, the cells might be single pixels.

In a loom-controlled weave, every cell in the
grid corresponds to a point of interlacement be-
tween a vertical (warp) thread and horizontal (weft)
thread. Therefore, either the warp thread or the
weft thread must be the color of the cell.

To simplify the description that follows, we’ll
use letters to stand for colors. See pages 8 and 9 for
equivalent color patterns. Columns correspond to
warp threads and rows correspond to weft threads.
In order for the grid to be weavable, the columns
and rows must be labeled in a way that the label for
every square is its column label or its row label —
“satisfied”. Figure 1 shows an example grid.

A B C

C B A

r1

r2

c1 c2 c3

Figure 1. A Labeled Grid

We can assign column and row labels as fol-
lows. Starting with square (c1, r1), either c1 or r1
must be A. Arbitrarily pick c1 to be A. This forces r2
to be C. Figure 2 shows the labeling to this point.

A B C

C B A

r1

r2

c1 c2 c3

A

C

Figure 2. First Labeling Step

We now see that c3 must be A. This requires r1
to be C and hence c2 must be B. Figure 3 shows the
final labeling.

A B C

C B A

r1

r2

c1 c2 c3

A

C

B A

C

Figure 3. The Final Labeling

So far, so good. But what about the grid
shown in Figure 4?

A B C

C A B

r1

r2

c1 c2 c3

Figure 4. Another Grid

We can start as we did before, assigning A to
c1. This forces r2 to be C, which in turn forces c2 and
c3 to be A and B, respectively, as shown in Figure 5.

A B C

C A B

r1

r2

c1 c2 c3

A

C

� BA

Figure 5. First Step in Labeling

Now we’re stuck: r1 cannot be both B and C.
If we start anywhere else and try any other combi-
nation of labelings, we find it’s not possible to
satisfy the grid: The pattern cannot be woven.

Note that if a larger pattern contains such a
subpattern, the larger pattern cannot be woven
either. Furthermore, the rows and columns do not

Weavable Color Patterns

2 June 25, 2000; last revised August 1, 2004

have to be adjacent. The pattern shown in Figure 6
is equivalent to the pattern shown in Figure 5 as far
as weavability is concerned.

r1

r2

c1 c2 c3

A B C? ? ?

? ? ? ? ? ?

C A B? ? ?

? ? ? ? ? ?

Figure 6. Separated Rows and Columns

This is a very small pattern by weaving stan-
dards and it has only three colors. What then of
more colors and larger patterns?

The Number of Colors

Suppose a pattern has k colors. For k = 2, all
patterns can be woven — simply assign one color
to all columns (warp threads) and the other color to
all rows (weft threads) and pick one or the other
depending on the color at every intersection.

We’ve illustrated by example that for k = 3,
there are some patterns that cannot be woven. For
larger k there is a more fundamental problem. If a
pattern has m columns and n rows, there are only
m + n colors available. If k is greater than m + n, then
the pattern can’t be woven at all. Thus, there are
2×3 patterns that can’t be woven for this reason.
See Figure 7.

A B C

D E F

r1

r2

c1 c2 c3

Figure 7. A Pattern with Too Many Colors

For what follows, we’ll assume k ≤ m + n.

Approaches to Solving the Problem

There are several possible ways the problem
might be solved.

One way would be to try assigning the color

of every cell to the columns and rows in all possible
ways. This clearly is hopelessly time consuming
except for tiny patterns.

Two colleagues produced viable methods and
wrote programs to determine if a color image is
weavable. One method recognizes the problem as
an instance of the 2-satisifiabilty (2SAT) problem,
for which there is a known algorithm [1]. The other
solution is heuristic in nature.

We’ll describe the heuristic solution here for
several reasons:

• It’s original as far as we know.

• It’s interesting.

• It’s fast for most patterns.

• It illustrates an approach that is worth con-
sidering for other problems.

The Heuristic Solution

Heuristics

A word about heuristics is in order, since they
often are misunderstood. Heuristics use insights
into the nature of a problem and intelligent guesses
to build a solution method tailored to the problem.

Using heuristics doesn’t mean wild guessing
or proceeding blindly, just hoping to find a solu-
tion. Nor need a heuristic solution give incorrect
answers, although proving a heuristic method is
correct and terminates — and hence is an algo-
rithm — may be difficult.

Heuristics can be used in many ways. For the
problem here, one possibility would be look for a
fast way to reject a pattern because it contains an
unsolvable subpattern (such as the ones shown
earlier). Of course, the absence of a known
unweavable subpattern does not prove the whole
pattern is weavable — so that problem would still
exist.

Checking for special cases such as this one
often takes more time on average than it saves.
Since it’s difficult — even impractical — to analyze
the effects of such heuristics without implement-
ing them and doing performance testing, such
heuristics should be viewed with skepticism.

A good heuristic method relies on under-
standing the nature of the problem and, if possible,
breaking the problem down into smaller, more
tractable, subproblems.

3 June 25, 2000; last revised August 1, 2004

Insights into Color Weavability

For the color weavability problem, the fol-
lowing observations are particularly useful.

• If a row or column is all one color, that color
can be assigned to the corresponding row or
column without affecting the rest of the prob-
lem. Hence such rows and columns can be
eliminated from further consideration.

• Duplicate rows and columns can be elimi-
nated for the same reason.

• The pattern can be rotated without changing
the problem; in this sense, there is no differ-
ence between rows and columns.

• Rows can be interchanged (rearranged) with-
out changing the problem, and the same is
true of columns.

To get ideas for the heuristic approach to the
problem, we can look at small subpatterns and see
what implications they have for a pattern as a
whole.

Two-colored patterns aren’t particularly in-
teresting, since all can be satisfied.

There are only two distinct three-colored 2×2
patterns; all others are equivalent to these by rota-
tion or row and column interchange. See Figures 8
and 9.

A B

C A

r1

r2

c1 c2

Figure 8. Three-Colored 2×××××2 Pattern One

A A

B C

r1

r2

c1 c2

Figure 9. Three-Colored 2×××××2 Pattern Two

The pattern in Figure 8 imposes some con-
straints on any larger pattern in which it is embed-
ded: c1 must be A or C, c2 must be B or A, and
similarly for the two rows.

For the pattern in Figure 9, however, c1, c2, and
r2 are not constrained but r1 is completely deter-

mined. It must be A for the entire pattern in which
this subpattern is embedded.

This particular subpattern turns out to pro-
vide a sufficient basis for a heuristic solution; no
others need be considered. We’ll call this AA/BC
pattern the forcing pattern.

A Program

What follows is a sketch of a program that
implements the heuristic solution. The complete
program is available on the Web [2].

Data Structures

The representation used for the pattern data
is crucial. The main data structure is a vector that is
used for both rows and columns.

A vector has several components, including:
an index of the row or column
a label differentiating rows and columns
a list of colors in cells
an identification of being “active” or not

An active vector is one still to be assigned a color.
All vectors are active initially.

Program Structure

The program starts by reading an image file
for the pattern and initializing data.

Next, duplicate rows and columns, as well as
solid-colored vectors, are marked inactive. This
may reduce the problem size significantly, espe-
cially for patterns with symmetries.

The main loop in the program then iterates
over the pattern, developing constraints and set-
ting colors determined by forcing patterns.

If at any time the pattern can be completely
solved by simple means (see below), the problem is
solved. Otherwise, all 2×2 subpatterns are exam-
ined for instances of the forcing pattern.

If a forcing pattern is found, the colors it forces
are set and the loop continues. Since the cells of a
forcing pattern need not be adjacent, all possible
combinations of rows and columns are examined
for forcing patterns.

When there are no more instances of the forc-
ing pattern, an attempt is made solve the pattern by
simple means. If this succeeds, the pattern is solved.
If it fails, the pattern cannot be solved.

A pattern has a simple solution if one of the
following applies:

4 June 25, 2000; last revised August 1, 2004

1. The pattern is 1×n (or, equivalently, n× 1) or
2×2, for which there are obvious solutions. See
Figures 10 and 11.

A B

C D

��

A� D�

B

C

Figure 10. A 2 ××××× 2 Pattern

A

B

C

D

��A�

D�

B

C

EE

Figure 11. A 1 ××××× 5 Pattern

2. The pattern is solid colored except for a
diagonal or part of one. Again, a solution is
simple. See Figure 12 for an example.

AB

C

A

B
�

DC

A

A AA

A A A

A A A

D

E

A

A

A

A

A

Figure 12. A 4××××× 4 Diagonal Pattern

3. It can be solved by setting the color of a
vector to one possibility, chosen arbitrarily,
then setting colors of other vectors this forces,
and continuing until all vectors have been
assigned colors.

Output

On completion, the program writes a line
indicating whether or not the pattern could be
solved and produces lists of the row and column

colors. An enlarged version of the pattern then is
displayed in a window with row and column color
assignments along the top, bottom, and sides. If the
pattern could not be solved, the colors just reflect
the program state at termination. Figure 13 shows
a solved color pattern.

Figure 13. A Solved Pattern

Sketch of a Proof

A formal proof that the method described
above is correct and terminates with a result — and
hence is an algorithm — would require a formal-
ism and a lengthy and not particularly illuminat-
ing argument.

In the spirit of the quotation at the beginning
of this article, we’ll just provide a sketch of a proof
that, we hope, will provide some insight.

Consider what remains after eliminating du-
plicate rows and columns, solid-colored rows and
columns, and applying all the forcing patterns.

If the remaining pattern is 1×n, 2×2, or diago-
nal, the solution is trivial as shown earlier. Other-
wise there is a 3×2 (or, equivalently, 2×3) or larger
pattern containing no AA/BC forcing pattern.

If there are no rows or columns with duplicate
colors, then the pattern is insoluble: a 3×2 color
pattern with no duplicate color in one row or
column is insoluble, as is every larger pattern of
which it is a part.

The other possibility is that there is a AA/AB
pattern There also may be AA/BB patterns, but
there must be at least one AA/AB pattern, for
otherwise the AA/BB pattern would identify two
identical rows and columns, but they were elimi-
nated earlier.

5 June 25, 2000; last revised August 1, 2004

Given an AA/AB subpattern, there are only
two possibilities that lead to a solution: The pattern
has only two colors or it is a diagonal pattern.

This exhausts the possible patterns. Every
original pattern eventually reduces to one of these
cases, so the procedure terminates with a definite
answer.

Getting a Draft

What remains is to use the results of a solution
to create a draft — threading and treadling se-
quences and a tie-up.

From the color assignments for columns and
rows we can get a drawdown by looking at the
color of each point of intersection. Then from this
we can get a draft.

For every cell in the pattern, there are three
possibilities for a drawdown:

1. The corresponding row and column colors
are the same, in which case either the warp or
weft thread can be on top.

2. The column color is the same as the color of
the point, in which case the warp thread is on
top.

3. The row color is the same as the color of the
point, in which case the weft thread is on top.

The first case, an option point, presents a
problem — how to choose? The choice potentially
is important, because it can affect the length of
floats and the loom resources required.

For many patterns that might be candidates
for weaving, the number of option points is huge.
For the pattern shown in Figure 13, 256 of the 4,096
points are option points. So there are 2256 possible
drafts.

It’s clearly hopeless to explore even a small
fraction of possible drafts that result from making
different decisions at option points.

The program that creates a draft [3] provides
four ways of handling option points:

choose the warp or weft at random
always chose the warp
always chose the weft
chose the warp and weft alternately
Trying each of the four methods generally

gives an idea of how important the method used is
and which is best. Figure 14 shows a warp-choice
draft for the pattern shown Figure 13.

Figure 14. Warp-Choice Draft

The effects on float lengths of the method of
making decisions at option points are shown in
Figures 15 through 18.

Figure 15. Random-Choice Floats

Figure 16. Warp-Choice Floats

6 June 25, 2000; last revised August 1, 2004

Figure 17. Weft-Choice Floats

Figure 18. Alternating-Choice Floats

Another, often more important, consideration
is the number of shafts and treadles the draft
requires. The warp-choice draft shown in Figure 14
requires 31 shafts and 31 treadles. The weft-choice
draft, shown in Figure 19, requires only 16 shafts
and 16 treadles.

Figure 19. Weft-Choice Draft

More strikingly, the random-choice draft re-
quires 56 shafts and 52 treadles, while the alternat-
ing choice draft requires 62 shafts and 31 treadles,
making them out of the question for actual weav-
ing.

Open Questions

The heuristic method only gives one set of
colors for a solution. In some cases there may be
other color assignments that satisfy the pattern,
and they, in turn, might give solutions with differ-
ent float structures and loom requirements. The
number of alternative color assignments may be
impossibly large and preclude systematic search-
ing. The exploration of alternative solutions under
the guidance of a sophisticated user might be worth-
while.

A question of more practical concern is what
changes might make an unweavable pattern
weavable. One possibility is to examine the effect
of changes in color in forcing patterns.

7 June 25, 2000; last revised August 1, 2004

Another question that could be studied is the
determination of weavable subpatterns within a
larger unweavable pattern.

The method described here also could be
applied to the design of weavable color patterns.

Acknowledgments

Will Evans wrote the program for the 2SAT
solution. Gregg Townsend developed the heuris-
tic method, wrote the program, and supplied the
proof.

References

1. Introduction to Algorithms: A Creative Approach, Udi Manber, Addison-Wesley, 1989.

2. Analysis Program, Gregg M. Townsend, 2000:
 http://www.cs.arizona.edu/patterns/weaving/CAP/unravel.icn

3. Color Drawup Program, Ralph E. Griswold, 2000:
 http://www.cs.arizona.edu/patterns/weaving/CAP/colorup.icn

Ralph E. Griswold
Department of Computer Science

The University of Arizona
Tucson, Arizona

© 2000, 2004 Ralph E. Griswold

Ralph E. Griswold
http://www.cs.arizona.edu/patterns/weaving/CAP/unravel.icn

Ralph E. Griswold
http://www.cs.arizona.edu/patterns/weaving/CAP/colorup.icn

http://www.cs.arizona.edu/patterns/weaving/CAP/unravel.icn
http://www.cs.arizona.edu/patterns/weaving/CAP/colorup.icn

8 June 25, 2000; last revised August 1, 2004

r1

r2

c1 c2 c3

Figure 1. A Labeled Grid

r1

r2

c1 c2 c3

Figure 2. First Labeling Step

r1

r2

c1 c2 c3

Figure 3. The Final Labeling

r1

r2

c1 c2 c3

Figure 4. Another Grid

r1

r2

c1 c2 c3

Figure 5. First Step in Labeling

r1

r2

c1 c2 c3

Figure 6. Separated Rows and Columns

r1

r2

c1 c2 c3

Figure 7. A Pattern with Too Many Colors

r1

r2

c1 c2

Figure 8. Three-Colored 2×××××2 Pattern One

r1

r2

c1 c2

Figure 9. Three-Colored 2×××××2 Pattern Two

��

Figure 10. A 2××××× 2 Pattern

Color Figures

9 June 25, 2000; last revised August 1, 2004

Figure 13. Solved Pattern

��

Figure 11. A 1××××× n pattern

�

Figure 12. A 4××××× 4 Diagonal Pattern

