Pattern Tours, Part 2: Tour Basics

Perspective

As described in the first article in this series
[1], a pattern can be constructed from a tour that
visits every cell in some order and colors them
according to black-and-white band. Thus, a tour
serves to distribute the colors of the band over all
cells in a grid.

The number of possible tours for all but trivi-
ally small grids is enormous. If there are k cells,
there are k possibilities for the first cell on the tour.
This eliminates one cell butleaves k—1 possibilities
for the second cell. Therefore the number of pos-
sible tours for a grid of k cells is k x (k- 1) x (k- 2)
x...3%2x1=Fk!(kfactorial). For an 8 x 8 grid, there
are 64 cells and the number of possible tours is 64!,
which is

126,886,932,185,884,164,103,433,389,335,161,
480,802,865,516,174,545,192,198,801,894,375,
214,704,230,400,000,000,000,000

Obviously, tours must be chosen with some
plan or concept in mind, for a tour is the geometry
from which the eventual pattern is crafted. A ran-
dom tour is extremely unlikely to produce attrac-
tive results.

The problem of tour design is complicated by
the fact thatitalone does not determine the pattern;
the band plays a strong role in the final result. This
makes tour design challenging and interesting.

There are certain things that can be looked for
in tours. One is some kind of pattern in the tour
itself. A jumbled, chaotic tour, even if far from
random, is unlikely to produce attractive results
unless the band is developed along with the tour.
This is possible — take any pattern and any tour,
however disorganized, and read out the band. This
band, when read in by the tour, will reproduce the
original pattern. Some uses for tours and bands
produced in this way will be explored in a later
article, but the first concern is designing tours
independently of bands.

While designing tours and bands indepen-
dently requires both the application of some prin-
ciples and some serendipity, it is the core of a
process for getting attractive and unusual pat-
terns.

If tours are taken alone, their design needs to
be guided so that the tours themselves are attrac-
tive and interesting.

Tour Design

There are several properties to keep in mind
when designing tours.

Symmetry: Symmetric designs are attractive
to human beings (although no one knows exactly
why). Various kinds of symmetries are possible for
tours.

Repetition: Repetition of a unit within a design
can be useful in tours just as it is in tilings, weaves,
and other kinds of artistic constructions.

Variety: A little variety or an element of sur-
prise can break an otherwise monotonous design
and be aesthetically pleasing.

Continuity: Since a tour is a path in the general
sense, there is some value in continuity. For ex-
ample, the locations on a tour may be adjacent
(their cells sharing a side). There are various kinds
of continuity and technical names for them. The
problem will be discussed in the context of con-
straints.

Tour Constraints

Constraints can be useful in design; they limit
what is possible in a systematic way that prevents
accidental aberrations, and they provide for a cer-
tain degree of regularity.

The kind of constraints here are local ones that
allow tours to be built step-by-step. Such con-
straints might limit the distance from one location
on the tour to the next or limit the possible direc-
tions in which the next location may lie.

The neighborhood concept from cellular au-
tomata [2] is a useful model for this kind of con-
straint. For example, the von Neumann neighbor-
hood looks like this:

Viewed as a constraint, this neighborhood
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requires the location following the central location
to be one cell away, horizontally or vertically.
Staying putis notan option, since alocation cannot
appear twice in a tour. Locations that are off the
grid, when a cell is at an edge, obviously are
excluded. Similarly, locations that already are on
the tour are forbidden.

We'll call a tour constructed using this neigh-
borhood a von Neumann tour. Von Neumann tours
have a special kind of continuity, called unicursal in
graph theory. Von Neumann tours also are planar,
meaning there are no crossings on a line drawn
along the tour.

Here are examples of von Neumann tours:
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The Moore neighborhood allows more free-
dom of movement:

Moore tours include von Neumann tours as a
subset, but they allow considerably more variety,
including diagonal moves and non-planar tours.
Here are some examples of Moore tours that are
not von Neumann tours:
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The legal moves of chess pieces can be de-

scribed as neighborhoods. For example, the knight
has the neighborhood
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Note that the knight “jumps”; it cannot move to an
adjacent cell.

Knight's tours are sufficiently interesting and
difficult to design that they have occupied the
attention of chess players and mathematicians for
centuries. We'll have more to say about knight’s
tours in another article. For now, here is an ex-
ample:

Neighborhoods provide constraints that limit
the nature of tours. In constructing tours using
neighborhoods, there are, of course, choices. One
thing that can happen is getting into a situation in
which no further move is possible. There are ways
of dealing with this problem, which we’ll discuss
in a later article.

Tour Classification

Tours can be classified roughly according to
the methods by which they can be constructed and
places they can be found. In many cases, a tour will
fitinto more than one category, depending on how
it is created or viewed.

Algorithmic Tours: These tours are constructed
according to a fixed set of rules applied in a well-
defined fashion. An example of an algorithmic
tour is a square spiral:

Note that this also is a von Neumann tour.

The geometry of this kind of tour is obvious,
as are possible variations on it. You might find it
illuminating to construct an algorithm that pro-
duces square-spiral tours.

Neighborhood-Constrained Tours: These tours
are discussed above. They come in great variety
and will be the subject of subsequent articles.

Numerically Derived Tours: These tours are
derived from numerical problems and puzzles
that are not directly related to tours but that none-
theless can be interpreted as tours. An example is
this tour derived from a magic square, in which the
sums of the rows, columns, and main diagonals are
all equal:

Miscellaneous: There is the inevitable “other”
category containing tours that do not fitelsewhere.
Here is an example of a tour that was constructed
by hand:

More Terminology

There are a few other terms related to tours
that are important in some contexts:

Re-Entrant Tours: A tour whose last location is
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within a legal move of its first location is called re-
entrant. An example of a re-entrant von Neumann
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Here is an example of a re-entrant knight’s
tour:

References:

Piece-Wise Tours: A piece-wise tour is one
composed of parts that satisfy some condition, but
the whole does not. Here is an example of a piece-

wise Moore tour:
L L L L

i i i i
Such tours can be made into regular tours by
connecting the end of one piece to the beginning of

the other, but it often is more useful to view the
parts independently.

Incomplete Tours: A path that does notinclude
every location in a grid is called incomplete or open.
Incomplete tours can be used for components of
piece-wise tours or alone in some applications.

Overtours: A path that includes a location
more that once is called an overtour. Overtours
also have their applications, which will be dis-
cussed in a future article.
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