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Fractal Sequences

The term fractal is used in a variety of ways,
formally and informally. It generally is under-
stood that a fractal exhibits self similarity — that it
appears the same at any scale.

This concept can be applied to integer se-
quences with respect to the magnitude and posi-
tion of terms, various patterns, and so forth.

For example, Hofstadter’s chaotic sequence
[1], which is produced by the nested recurrence

   q(i) = 1 i = 1, 2
   q(i) = q(i –  q(i  – 1)) + q(i –  q(i  – 2)) i > 2

shows self similarity as can be seen in Figure 1.

Figure 1. Hofstadter’s Chaotic Sequence

In this sequence, sections of wide variations
tailing off to minor variations double in length. The
magnitude of the variations roughly doubles also.
Within a section, you can see articulation of the
preceeding section. Despite its tantalizing struc-
ture, this sequence is not strictly fractal.

Kimberling Fractal Sequences

Clark Kimberling has a specific definition of
what he considers to be fractal integer sequences
[2]. First, a Kimberling fractal sequence must be
infinitive, which means that every positive integer
occurs in it an infinite number of times.

An infinitive sequence {xn} has an associative
array, a(i,j), whose values are the jth indices for
which xn = i for i, j = 1, 2, 3, … .

{xn} is a fractal sequence if the following two
conditions hold:

1. If xn = i+1, then there is an m < n such that xm =
i.

2. If h < i, then for every j there is exactly one  k
such that a(i,j) < a(h,k) < a(i,j+1).

It seems to me there must be a simpler (or at
least clearer) way to state this, but I haven’t puzzled
it out.

Such sequences have the property that if you
strike out the first instance of every value, the
resulting sequence is the same as the original (such
sequences are, of course, infinite, which allows the
concept of “same as” after deleting terms). An
example of such a sequence is

1, 1, 1, 1, 2, 1, 2, 1, 3, 2, 1, 3, 2, 1, 3, …

Striking out the first instance of every term,

1, 1, 1, 1, 2, 1, 2, 1, 3, 2, 1, 3, 2, 1, 3, …

produces
1, 1, 1, 1, 2, 1, 2, 1, 3, 2, 1, 3, …

which is the same as the original sequence, as far as
it goes.

There are two operations that when applied
to fractal sequences yield fractal sequences: upper
and lower trimming. Upper trimming is the “strike
out” operation illustrated above. Lower trimming
consists of subtracting 1 from every term and dis-
carding 0s. For sequence above, the result of lower
trimming is

1, 1, 2, 1, 2, 2, …

This is not the same as the original sequence, but it
is a fractal sequence nonetheless.

Signature Sequences

An interesting class of Kimberling fractal se-
quences consists of signature sequences for irratio-
nal numbers. The signature sequence of the irratio-
nal number x is obtained by putting the numbers

i + j ¥ x i, j = 1, 2, 3, …
in increasing order. Then the values of i for these
numbers is the signature sequence for x, which I’ll
denote by S(x).

Here’s the signature sequence for f, the golden
mean:

   1, 2, 1, 3, 2, 4, 1, 3, 5, 2, 4, 1, 6, 3, 5, 2, 7, 4, 1, 6, 3, 8,
      5, 2, 7, 4, 9, 1, 6, 3, 8, 5, 10, 2, 7, 4, 9, 1, 6, 11, …

Both upper trimming and lower trimming of
a signature sequence leave the sequence un-
changed.

Signature sequences have a characteristic ap-
pearance, but they vary considerably in detail de-
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pending of the value of x.

Signature sequences start with a run 1, 2, …
n+1, where n = xÎ ˚ , the integer part of x. The larger
the value of x, the more quickly terms in the se-
quence get larger. Most signature sequences dis-
play runs, either upward or downward or both —
which one is usually a matter of visual interpreta-
tion. At some point, most signature sequences
become interleaved runs. This sometimes gives the
illusion of curves.

Although signature sequences are defined
only for irrational numbers, the algorithm works
just as well for rational numbers. Although signa-
ture sequences for rational numbers are not fractal
sequences, they are as close as you could deter-
mine manually. The structure of a signature se-
quence depends on the magnitude of x. Further-
more, there are irrational numbers arbitrarily close
to any rational number. There is no difference in
the initial terms of signature sequences for num-
bers that are close together. For example, S(3.0) and
S(p) do not differ until their 117th terms.

It‘s also worth noting that there really is no
way, in general, to perform exact computations for
irrational numbers. Computers approximate real
numbers, and hence irrational numbers, using float-
ing-point arithmetic. A floating-point number rep-
resenting an irrational number is just a (very good)
rational approximation to the irrational number.
For example, the standard 64-bit floating-point
encoding for p is

7074237752028440/251

Figure 2 shows grid plots for some signature
sequences. I didn’t include signature sequences for
large numbers because they become unwieldy.

Using Signature Sequences in Weaving
Drafts

Signature sequences can be used as the basis
for threading and treadling sequences. To use sig-
nature sequences for this purpose, it is necessary to
bring the values of terms within the bounds of the
number of shafts and treadles used. The math-
ematically reasonable way is to take their residues,
modulo the number of shafts or treadles, using 1-
based arithmetic [3]. Figure 3 shows residue se-
quences derived from signature sequences. In most
cases, taking residues preserves  the essential char-
acteristics of signature sequences.

Sequences like these, if used directly, produce

drawdown patterns that lack repeats or symmetry.
More attractive patterns can be obtained by taking
a small portion of a signature sequence and then
reflecting it to get symmetric repeats.

Figure 4 shows a draft for such a sequence
with 16 shafts and treadles and a  twill tie-up.

It seems natural to use initial terms of a signa-
ture sequence. The structure of signature sequences,
however, changes as the sequence goes on. Figure
5 shows magnified portions of the drawdown pat-
tern for a signature sequence. This suggests that it
might be worth trying subsequences of signature
sequences in various locations.

Figure 6 shows some drawdown patterns for
various combinations of signature sequences. All
have 16 shafts and treadles and   twill tie-ups.

References

1. Gödel, Escher, Bach: An Eternal Golden Braid, Dou-
glas R. Hofstadter, Basic Books, 1979, pp. 137-138.

2. CRC Concise Encyclopedia of Mathematics, Eric W.
Weisstein, Chapman & Hall/CRC, 1999, pp. 674.

3. Residue Sequences in Weave Design, Ralph E.
Griswold, 2000:
   http://www.cs.arizona.edu/patterns/
   weaving/gre_res.pdf

Ralph E. Griswold
Department of Computer Science

The University of Arizona
Tucson, Arizona

© 2000, 2002 Ralph E. Griswold



3 November 25, 2000; last modified December 16, 2002

S(1.0)

Figure 2. Grid Plots for Signature Sequences

S(0.1)

S(0.2)

S(0.5)

S(0.7)

S(0.9)

S(1.1)

S(1.2)

S(1.5)



4 November 25, 2000; last modified December 16, 2002

Figure 2, continued. Grid Plots for Signature Sequences
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Figure 3. Signature Sequence Residues
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Figure 4. Drawdown for A Reflected Portion of S(ppppp)
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Figure 5. Magnified Portions of the f ¥ ff ¥ ff ¥ ff ¥ ff ¥ f Signature Drawdown Plane
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Figure 6. Drawdown Patterns for Signature Sequences

threading: p, terms 1-30
treadling: p, terms 1-30

threading: p, terms 1-60
treadling: p, terms 1-60

threading: f, terms 61-120
treadling: f, terms 61-120

threading: e, terms 1-60
treadling: e, terms 1-60
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Figure 6, continued. Drawdown Patterns for Signature Sequences

threading: p, terms 61-120
treadling: e, terms 61-120

threading: e, terms 1-60

treadling: e , terms 1-40

threading: e, terms 1-60
treadling: f, terms 1-60

threading: 0.9, terms 61-120
treadling: 0.9, terms 61-120
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Figure 6, continued. Drawdown Patterns for Signature Sequences

threading: 1.0, terms 1-60
treadling: 1.0, terms 1-60

threading: 1.0, terms 61-120
treadling: 1.0, terms 61-120

threading: 0.9, terms 1-60
treadling: 1.1, terms 1-60

threading: 0.5, terms 61-120
treadling: 1.5, terms 31-90


