
181

Constrained Patterns

Constraints limit what is possible. With respect to interlacement patterns,
constraints impose both color and structural limitations. Constraints can take
many forms. Expressed in terms of drawdowns, examples are:

1. The number of white cells and black cells must be equal.

2. No more than four consecutive cells in any row and column can be the
 same color.

3. Every cell must have at least one adjacent cell of the opposite color.

4. Constraints 1, 2, and 3 all must be satisfied.

Constraint 1 is a global constraint and is equivalent to requiring that a
weave be balanced. This constraint cannot be satisfied by a drawdown with an
odd number of cells. That is, of all drawdowns, only ones with even dimensions
can possibly satisfy this constraint.

Constraint 2 is more local and in more familiar terms limits float length.
Constraint 3 is local; it specifies a property that all neighborhoods must

have. [Cross-reference cellular automata.]
Constraint 4 requires that three constraints be simultaneously satisfied. It

is called a constraint set. In this sense, Constraints 1, 2, and 3 are constraint sets
containing only one constraint.

Constraint Analysis

Given a pattern, it generally is easy to determine if it satisfies a given
constraint set. For example, whether or not a pattern satisfies Constraint Set 1 can
be determined just by counting black and white cells. Similarly, whether or not
a pattern satisfies Constraint Set 2 can be determined by examination or using
the float-analysis feature of a weaving program.

Constraint Set 3 requires a little more work, since it may be necessary, in
general, to examine a large number of individual neighborhoods.

And, of course, determining whether or not a pattern satisfies Constraint
Set 4 can be determined by checking each of the constraints in its constraint set.

It is important to realize that there are constraint sets that no patterns
satisfy. For example, a constraint set that contains Constraint 1 and a constraint
that patterns must have an odd number of cells cannot be satisfied — it is
unsatisfiable. In this example, it is obvious that the two constraints are mutually
exclusive. In general, it may be difficult to determine whether or not a constraint
set can be satisfied any pattern.

182

Neighborhood Constraints

As far as weave structure is concerned, neighborhood constraints are
interesting, since they have a strong effect on appearance.

Neighborhood constraints can be characterized by neighborhood templates.
As with drawdown automata, there are many kinds of neighborhoods that can
be used. The von Neumann 5-cell neighborhood [2] is used in what follows. This
neighborhood is small enough to be computationally tractable but large enough
to characterize a wide range of structural characteristics.

Neighborhood constraints can be pictured like this:

None of these constraints taken alone is satisfiable, simply because they all
require every cell to be the same color (white in the first, black in the other two)
while simultaneously requiring that them to be surrounded by cells of other
colors.

Taken in combination in constraint sets, however, they may be satisfiable.
For example, the constraint set consisting of the templates

is satisfied by plain weave (and only plain weave).
On the other hand, the constraint set consisting of the templates

is unsatisfiable because it requires every cell to be black and at the time to have
adjacent white cells.

Neighborhood constraints can be looked at in several ways:

• Does a pattern satisfy a given neighborhood constraint set?

• What neighborhood constraint set does a given pattern satisfy?

• What patterns satisfy a specific neighborhood constraint set?

The first question is easy to answer: as mentioned above, it’s only necessary
to compare the cell neighborhoods to the templates in the constraint set.

 The second question also is generally easy to answer by cataloging the

183

neighborhoods of all cells, although there are some issues to be addressed, such
as how to handle cells at the borders that do not have complete neighborhoods.

The third question is, in general, much harder to answer. It is, nonetheless,
interesting. For example, it would be interesting to know what patterns satisfy
the same neighborhood constraint set that a 2/2 twill does. The problem is hard
because there is no is known way to construct patterns from constraint sets that
does not involve a large amount of computation.

Neighborhood Analysis

In the first article on constraints, we introduced the concept of neighbor-
hood constraints [1]. In this article, we’ll look at the problem of determining the
neighborhood constraint set of a pattern.

Consider the following pattern:

All that is necessary to determine the constraint set for this pattern is to
examine every cell and record the template for its neighborhood.

For example, the template for the cell outlined above is

This process is straightforward except for cells at the edges, which have
incomplete neighborhoods. There are several ways to handle such cells:

184

1. Don’t include the edge cells in the analysis.

2. Assume that the pattern repeats so that the edges wrap around.

3. Don’t assume the pattern repeats (for example, the Morse-Thue carpet
 does not [2]) but include partial neighborhoods of the edge cells.

Method 1 amounts to analyzing a sub-pattern, shown by the blue outline
below:

The problem with this approach is that the constraint set obtained may not
be complete. For example, the unit motif for plain weave is a 2 × 2 pattern:

This pattern only has edge cells. If they are ignored, there is no constraint set at
all, which obviously is incorrect.

Method 2 can be handled by augmenting the pattern, adding cells around
the edges that correspond to what would appear if the pattern were contained
in a repeat:

Now the analysis can proceed for the cells enclosed in the red rectangle above;

185

effectively there are no edge cells.
This method is fine for repeating patterns, but it produces erroneous results

for aperiodic patterns such as the Morse-Thue carpet.
Method 3 tries to deal with this situation by adding edges with unknown

cell colors:

In this case, an edge cells such as the one outlined below has a neighborhood
template with a cell of unspecified color:

Here is that template:

It can be added this partial constraint to the set. But note that there is other cells
in the pattern with complete templates that have the same three cells as the
partial constraint:

186

This neighborhood,

“covers” the incomplete one, it is not necessary to keep the incomplete one.
If partial constraints remain after analyzing all cells, one possibility is to just

“force them” by arbitrarily coloring the unspecified cells.
What to do about an aperiodic patterns is an open question. One can

analyze a portion of it using Method 3. But how can one tell if the constraint set
obtained is complete? Would analyzing a larger portion add to the constraint
set?

In the case of the Morse-Thue carpet, analyzing a modest portion yields a
constraint set with 18 templates. Analyzing larger portions do not increase the
size of the constraint set. It seems reasonable, examining the method by which
the Morse-Thue carpet is constructed, that this constraint set applies to the
entire, unlimited pattern.

But for other patterns, such as random ones, there is no basis for such an
assumption. In fact, the constraint set for a randomly generated pattern may
include all 32 possible constraints.

On the other hand, what is the point of trying to determine the neighbor-
hood constraint set for a pattern without structure?

Representing Constraint Sets

Neighborhood constraint sets can be represented in several ways. For
human understanding, graphical methods work best. For computer processing,
textual representations or numerical codes are more appropriate.

187

Graphical Representations

In previous articles, we showed templates as neighborhoods laid out
according to their natural geometrical interpretation, as in

Any constraint set then can be represented by a collection of such template
images. For example, the constraint set for plain weave is

If a constraint set is large, this kind of representation takes a fair amount of
space for images of a size sufficient to be readily understood. For example, the
constraint set containing all constraints is

A less useful but more compact graphical representation is as a bar of 32
cells, each cell corresponding to one of the constraints. If a cell is in a constraint
set, it is colored gray, otherwise white. Gray is used so the black dividing lines
can be used as a guide to cell position. For example, the cell bar for the plain-
weave constraint set is

The problem with the cell-bar representation is that the templates are coded
by position, so that to determine the constraints, it’s necessary to know where
individual templates are in the bar and the order of the templates (which is as
shown in the image for all templates, reading left to right and top to bottom.
Determining the actual templates in this way is tedious and error prone, so the
cell-bar representation is not appropriate for that purpose. It is suitable, how-
ever, for getting an idea of the number of constraints in a set and comparing

188

patterns of different constraint sets.

Textual Representations

The graphic representation as a series of templates has a natural counter-
part as a list of 5-bit binary strings in which a bit is 1 if the corresponding cell in
the neighborhood is black and 0 otherwise.

A convention is needed to determine the order of the bits in the bit string.
The convention we’ll use here numbers the cells starting with the center cell and
continuing clockwise around the outer cells:

5
4 1 2

3
Therefore the plain-weave constraint set has the textual representation

01111
10000

(Since this represents a set, the order of the constraints is not important, but a
useful convention is to order the binary strings by magnitude, as we have done
in this example.)

A more compact textual representation of constraint sets is as 32-bit binary
strings in which a bit is one if the corresponding constraint is in the set and 0
otherwise. For example, the plain-weave constraint set represented in this way
is

00000000000000011000000000000000

Note that although the cell-bar representation is difficulty for a human
being to interpret in its entirety, the 32-bit binary string representation presents
no problem for a program: It’s just another decoding task of the kind that
programs have to handle all the time.

Numerical Codes

A variation on the textual representations is to think of bit strings as base-
2 integers. These base-2 integers then can be converted to conventional base-10
integers. For example, in terms of 5-bit constraints, the plain-weave constraint
set has the numerical codes

15
16

189

while the 32-bit representation has the numerical code 98305.
For computer programs, these are just other ways of encoding and present

no more problems than the textual forms. Base-10 integers have advantages for
programming in some situations because all commonly used programming
languages support integer arithmetic. However, the equivalents of 32-bit bit
strings can be very large: as large as 4,294,967,296, which is beyond the range of
integer arithmetic in most programming languages.

Numerical codes are somewhere between graphical representations, suit-
able for human beings, and textual representations, suitable for computers. For
human beings, they do have value as labels, if arbitrary, and are only about one-
third the length of the corresponding binary strings, as well as being easier to
differentiate than bit strings.

 von Neumann Constraint Pattern Catalog

[This section has not been published on the Web.]
Wolfram [1] has shown that only 171 repeating patterns are needed to

characterize all the von Neumann neighborhood constraint sets [2]. (Rotations,
reflections, and color reversals are omitted.)

The pages that follow show unit weaves for these patterns in the order
given in Reference 1. Below each pattern are its dimensions and, if weavable
from a drawup, the loom resources required. At the bottom is a cell bar showing
the constraints involved [3].

Some of the patterns that are unweavable as drawups can be drafted using
color-and-weave effects. Obvious examples are the stripes.

All of the patterns that are weavable from drawn-up drafts “hang together”
[4]. [Cross reference; consider changing “weavable”to “draftable” here and
elsewhere.]

190

191

192

193

194

195

196

197

198

199

200

