Constrained Patterns

Constraints limit what is possible. With respect to interlacement patterns, constraints impose both color and structural limitations. Constraints can take many forms. Expressed in terms of drawdowns, examples are:

1. The number of white cells and black cells must be equal.
2. No more than four consecutive cells in any row and column can be the same color.
3. Every cell must have at least one adjacent cell of the opposite color.
4. Constraints 1, 2, and 3 all must be satisfied.

Constraint 1 is a global constraint and is equivalent to requiring that a weave be balanced. This constraint cannot be satisfied by a drawdown with an odd number of cells. That is, of all drawdowns, only ones with even dimensions can possibly satisfy this constraint.

Constraint 2 is more local and in more familiar terms limits float length.
Constraint 3 is local; it specifies a property that all neighborhoods must have. [Cross-reference cellular automata.]

Constraint 4 requires that three constraints be simultaneously satisfied. It is called a constraint set. In this sense, Constraints 1,2, and 3 are constraint sets containing only one constraint.

Constraint Analysis

Given a pattern, it generally is easy to determine if it satisfies a given constraint set. For example, whether or not a pattern satisfies ConstraintSet 1 can be determined just by counting black and white cells. Similarly, whether or not a pattern satisfies Constraint Set 2 can be determined by examination or using the float-analysis feature of a weaving program.

Constraint Set 3 requires a little more work, since it may be necessary, in general, to examine a large number of individual neighborhoods.

And, of course, determining whether or not a pattern satisfies Constraint Set 4 can be determined by checking each of the constraints in its constraint set.

It is important to realize that there are constraint sets that no patterns satisfy. For example, a constraint set that contains Constraint 1 and a constraint that patterns must have an odd number of cells cannot be satisfied - it is unsatisfiable. In this example, it is obvious that the two constraints are mutually exclusive. In general, it may be difficult to determine whether or not a constraint set can be satisfied any pattern.

Neighborhood Constraints

As far as weave structure is concerned, neighborhood constraints are interesting, since they have a strong effect on appearance.

Neighborhood constraints can be characterized by neighborhood templates. As with drawdown automata, there are many kinds of neighborhoods that can be used. The von Neumann 5-cell neighborhood [2] is used in what follows. This neighborhood is small enough to be computationally tractable but large enough to characterize a wide range of structural characteristics.

Neighborhood constraints can be pictured like this:

None of these constraints taken alone is satisfiable, simply because they all require every cell to be the same color (white in the first, black in the other two) while simultaneously requiring that them to be surrounded by cells of other colors.

Taken in combination in constraint sets, however, they may be satisfiable. For example, the constraint set consisting of the templates

is satisfied by plain weave (and only plain weave).
On the other hand, the constraint set consisting of the templates

is unsatisfiable because it requires every cell to be black and at the time to have adjacent white cells.

Neighborhood constraints can be looked at in several ways:

- Does a pattern satisfy a given neighborhood constraint set?
- What neighborhood constraint set does a given pattern satisfy?
- What patterns satisfy a specific neighborhood constraint set?

The first question is easy to answer: as mentioned above, it's only necessary to compare the cell neighborhoods to the templates in the constraint set.

The second question also is generally easy to answer by cataloging the
neighborhoods of all cells, although there are some issues to be addressed, such as how to handle cells at the borders that do not have complete neighborhoods.

The third question is, in general, much harder to answer. It is, nonetheless, interesting. For example, it would be interesting to know what patterns satisfy the same neighborhood constraint set that a $2 / 2$ twill does. The problem is hard because there is no is known way to construct patterns from constraint sets that does not involve a large amount of computation.

Neighborhood Analysis

In the first article on constraints, we introduced the concept of neighborhood constraints [1]. In this article, we'll look at the problem of determining the neighborhood constraint set of a pattern.

Consider the following pattern:

All that is necessary to determine the constraint set for this pattern is to examine every cell and record the template for its neighborhood.

For example, the template for the cell outlined above is

This process is straightforward except for cells at the edges, which have incomplete neighborhoods. There are several ways to handle such cells:

1. Don't include the edge cells in the analysis.
2. Assume that the pattern repeats so that the edges wrap around.
3. Don't assume the pattern repeats (for example, the Morse-Thue carpet does not [2]) but include partial neighborhoods of the edge cells.

Method 1 amounts to analyzing a sub-pattern, shown by the blue outline below:

The problem with this approach is that the constraint set obtained may not be complete. For example, the unit motif for plain weave is a 2×2 pattern:

This pattern only has edge cells. If they are ignored, there is no constraint set at all, which obviously is incorrect.

Method 2 can be handled by augmenting the pattern, adding cells around the edges that correspond to what would appear if the pattern were contained in a repeat:

Now the analysis can proceed for the cells enclosed in the red rectangle above;
effectively there are no edge cells.
This method is fine for repeating patterns, but it produces erroneous results for aperiodic patterns such as the Morse-Thue carpet.

Method 3 tries to deal with this situation by adding edges with unknown cell colors:

In this case, an edge cells such as the one outlined below has a neighborhood template with a cell of unspecified color:

Here is that template:

It can be added this partial constraint to the set. But note that there is other cells in the pattern with complete templates that have the same three cells as the partial constraint:

This neighborhood,

"covers" the incomplete one, it is not necessary to keep the incomplete one.
If partial constraints remain after analyzing all cells, one possibility is to just "force them" by arbitrarily coloring the unspecified cells.

What to do about an aperiodic patterns is an open question. One can analyze a portion of it using Method 3. But how can one tell if the constraint set obtained is complete? Would analyzing a larger portion add to the constraint set?

In the case of the Morse-Thue carpet, analyzing a modest portion yields a constraint set with 18 templates. Analyzing larger portions do not increase the size of the constraint set. It seems reasonable, examining the method by which the Morse-Thue carpet is constructed, that this constraint set applies to the entire, unlimited pattern.

But for other patterns, such as random ones, there is no basis for such an assumption. In fact, the constraint set for a randomly generated pattern may include all 32 possible constraints.

On the other hand, what is the point of trying to determine the neighborhood constraint set for a pattern without structure?

Representing Constraint Sets

Neighborhood constraint sets can be represented in several ways. For human understanding, graphical methods work best. For computer processing, textual representations or numerical codes are more appropriate.

Graphical Representations

In previous articles, we showed templates as neighborhoods laid out according to their natural geometrical interpretation, as in

Any constraint set then can be represented by a collection of such template images. For example, the constraint set for plain weave is

If a constraint set is large, this kind of representation takes a fair amount of space for images of a size sufficient to be readily understood. For example, the constraint set containing all constraints is

A less useful but more compact graphical representation is as a bar of 32 cells, each cell corresponding to one of the constraints. If a cell is in a constraint set, it is colored gray, otherwise white. Gray is used so the black dividing lines can be used as a guide to cell position. For example, the cell bar for the plainweave constraint set is

$\square \square \square$

The problem with the cell-bar representation is that the templates are coded by position, so that to determine the constraints, it's necessary to know where individual templates are in the bar and the order of the templates (which is as shown in the image for all templates, reading left to right and top to bottom. Determining the actual templates in this way is tedious and error prone, so the cell-bar representation is not appropriate for that purpose. It is suitable, however, for getting an idea of the number of constraints in a set and comparing
patterns of different constraint sets.

Textual Representations

The graphic representation as a series of templates has a natural counterpart as a list of 5-bit binary strings in which a bit is 1 if the corresponding cell in the neighborhood is black and 0 otherwise.

A convention is needed to determine the order of the bits in the bit string. The convention we'll use here numbers the cells starting with the center cell and continuing clockwise around the outer cells:

5
412
3
Therefore the plain-weave constraint set has the textual representation
01111
10000
(Since this represents a set, the order of the constraints is not important, but a useful convention is to order the binary strings by magnitude, as we have done in this example.)

A more compact textual representation of constraint sets is as 32-bit binary strings in which a bit is one if the corresponding constraint is in the set and 0 otherwise. For example, the plain-weave constraint set represented in this way is

$$
00000000000000011000000000000000
$$

Note that although the cell-bar representation is difficulty for a human being to interpret in its entirety, the 32-bit binary string representation presents no problem for a program: It's just another decoding task of the kind that programs have to handle all the time.

Numerical Codes

A variation on the textual representations is to think of bit strings as base2 integers. These base- 2 integers then can be converted to conventional base-10 integers. For example, in terms of 5-bit constraints, the plain-weave constraint set has the numerical codes
while the 32-bit representation has the numerical code 98305.
For computer programs, these are just other ways of encoding and present no more problems than the textual forms. Base-10 integers have advantages for programming in some situations because all commonly used programming languages support integer arithmetic. However, the equivalents of 32 -bit bit strings can be very large: as large as $4,294,967,296$, which is beyond the range of integer arithmetic in most programming languages.

Numerical codes are somewhere between graphical representations, suitable for human beings, and textual representations, suitable for computers. For human beings, they do have value as labels, if arbitrary, and are only about onethird the length of the corresponding binary strings, as well as being easier to differentiate than bit strings.

von Neumann Constraint Pattern Catalog

[This section has not been published on the Web.]
Wolfram [1] has shown that only 171 repeating patterns are needed to characterize all the von Neumann neighborhood constraint sets [2]. (Rotations, reflections, and color reversals are omitted.)

The pages that follow show unit weaves for these patterns in the order given in Reference 1. Below each pattern are its dimensions and, if weavable from a drawup, the loom resources required. At the bottom is a cell bar showing the constraints involved [3].

Some of the patterns that are unweavable as drawups can be drafted using color-and-weave effects. Obvious examples are the stripes.

All of the patterns that are weavable from drawn-up drafts "hang together" [4]. [Cross reference; consider changing "weavable"to "draftable" here and elsewhere.]

190

$\begin{aligned} & 1 \\ & \square \end{aligned}$ 1×1		3 目 2×4	$\begin{aligned} & 12 \times 12 \\ & 12 \times 12 \end{aligned}$
5 日 1×3 	6 四 \square 6×2	7 1×2	8 皿 3×4
9 $\begin{aligned} & 3 \times 3 \\ & 3 \times 3 \end{aligned}$	6×3 3×3	11 H \square 5x5 5×5	12 \＃ 4×4 4×4
13 \square 5×10 5×10	14 囲 3×9		$\begin{array}{r} 16 \\ \hline \end{array}$ 4×4 4×4

\begin{tabular}{|c|c|c|c|}
\hline $$
\begin{gathered}
17 \\
\text { 巴 }
\end{gathered}
$$
$$
3 \times 3
$$ \& $$
\begin{aligned}
& 9 \times 9 \\
& 9 \times 9
\end{aligned}
$$ \& 19
$\#$
$\#$
$$
3 \times 12
$$ \& 20

4×4
4×2

\hline $$
\stackrel{21}{\stackrel{⿴ 囗 ⿻ 丷 木 ⿴ 囗 十}{8}}
$$

\[
$$
\begin{aligned}
& 8 \times 4 \\
& 4 \times 4
\end{aligned}
$$

\] \& | 22 |
| :--- |
| 5×4 5×4 | \& \[

$$
\begin{aligned}
& 4 \times 8 \\
& 4 \times 8
\end{aligned}
$$
\] \&

\hline \& $$
\begin{aligned}
& 26 \\
& \#
\end{aligned}
$$

$$
\begin{aligned}
& 4 \times 3 \\
& 3 \times 3
\end{aligned}
$$ \& \& 28

$$
\begin{gathered}
12 \times 3 \\
6 \times 3
\end{gathered}
$$

\hline \& | 30 |
| :--- |
| 㽗 3x2 | \& \[

$$
\begin{aligned}
& 31 \\
& \hline ⿴ 囗 十 力
\end{aligned}
$$
\]

\[
$$
\begin{aligned}
& 4 \times 2 \\
& 2 \times 2
\end{aligned}
$$

\] \& | 10×10 |
| :--- |
| 10×10 |

\hline
\end{tabular}

$\begin{gathered} 33 \\ \text { E } \\ \hline \end{gathered}$ $\begin{aligned} & 3 \times 6 \\ & 3 \times 6 \end{aligned}$	$\begin{aligned} & 7 \times 14 \\ & 7 \times 14 \end{aligned}$	$\begin{gathered} 35 \\ \# \end{gathered}$ 4×3	$\begin{aligned} & 36 \\ & H \end{aligned}$ 3×3
		$\begin{aligned} & 39 \\ & \text { 雨 } \end{aligned}$ 3×5	
		16×20 16×20	12×3

$\begin{aligned} & 13 \times 13 \\ & 13 \times 13 \end{aligned}$	15×5 10×5	51 \square 果 10×5 10×5	$\begin{aligned} & 4 \times 16 \\ & 4 \times 16 \end{aligned}$
10×10 10×10		$\begin{aligned} & 7 \times 20 \\ & 7 \times 20 \end{aligned}$	$\begin{aligned} & 20 \times 7 \\ & 20 \times 7 \end{aligned}$
	$\begin{aligned} & 4 \times 6 \\ & 4 \times 6 \end{aligned}$	59 \square － 4×3 3×3	$\begin{aligned} & 20 \times 20 \\ & 20 \times 20 \end{aligned}$
61 20×20 20×20	5×10 5×10	63 15×3	

7×14 7×14	12×4 12×4		$\begin{aligned} & 20 \times 20 \\ & 20 \times 20 \end{aligned}$
14×7 14×7	$\begin{aligned} & 15 \times 15 \\ & 15 \times 15 \end{aligned}$	7×14 7×14	
	$\begin{aligned} & 20 \times 9 \\ & 18 \times 9 \end{aligned}$	75 ■ $\begin{aligned} & 2 \times 2 \\ & 2 \times 2 \end{aligned}$	
16×20 16×20	14×14 14×14	$\begin{gathered} 79 \\ \hline \boldsymbol{m a n} \end{gathered}$ $\begin{gathered} 15 \times 3 \\ 6 \times 3 \end{gathered}$	

17×20 17x20	5×15 5×15	$\begin{aligned} & 16 \times 8 \\ & 16 \times 8 \end{aligned}$	20×20 20×20
	$\begin{gathered} 86 \\ \text { 巴曲 } \end{gathered}$ 4×6	$\stackrel{87}{\square}$ 6×3	7×14 7×14
	$\begin{aligned} & 11 \times 11 \\ & 11 \times 11 \end{aligned}$	10×4	
$\begin{aligned} & 8 \times 8 \\ & 8 \times 8 \end{aligned}$	$\begin{aligned} & 18 \times 9 \\ & 18 \times 9 \end{aligned}$	95 9 9	20×20 20×20

$\begin{gathered} 97 \\ \hdashline \\ \hline \end{gathered}$ 4×5		$\begin{aligned} & 20 \times 20 \\ & 20 \times 20 \end{aligned}$	6×9 6×9
	7×14 7×14	$\begin{aligned} & 15 \times 5 \\ & 10 \times 5 \end{aligned}$	
$\begin{aligned} & 20 \times 11 \\ & 20 \times 11 \end{aligned}$	17×17 17×17		
	$\begin{aligned} & 20 \times 9 \\ & 18 \times 9 \end{aligned}$		

7×14 7×14		$\begin{aligned} & 20 \times 20 \\ & 20 \times 20 \end{aligned}$	116 15x3
$\begin{aligned} & 8 \times 16 \\ & 8 \times 16 \end{aligned}$	18×3	15x3	
121 5×15 5×15	$\begin{aligned} & 4 \times 20 \\ & 4 \times 20 \end{aligned}$	4×12	20×20 17×20
	126 4 4×12 4×12	127 \# 3x6	$\begin{aligned} & 14 \times 7 \\ & 14 \times 7 \end{aligned}$

	20×20 18×20	131 표표 6×4 6×4	$\begin{aligned} & 20 \times 8 \\ & 20 \times 8 \end{aligned}$
$\begin{aligned} & 20 \times 4 \\ & 14 \times 4 \end{aligned}$		20×17 17×17	
$\begin{aligned} & 9 \times 20 \\ & 9 \times 20 \end{aligned}$	20×20 17×20		8×8 4×8
$\begin{gathered} 12 \times 4 \\ 5 \times 4 \end{gathered}$		(143	

$\begin{aligned} & 20 \times 20 \\ & 18 \times 20 \end{aligned}$	$\begin{aligned} & 20 \times 20 \\ & 20 \times 20 \end{aligned}$		
20×17 17×17	$\begin{aligned} & 20 \times 20 \\ & 20 \times 20 \end{aligned}$	$\begin{aligned} & 20 \times 11 \\ & 20 \times 11 \end{aligned}$	
$\begin{aligned} & 4 \times 10 \\ & 4 \times 10 \end{aligned}$	$\begin{aligned} & 18 \times 6 \\ & 15 \times 6 \end{aligned}$	$\begin{aligned} & 20 \times 20 \\ & 20 \times 20 \end{aligned}$	156 4×10 4×10
	$\begin{gathered} 10 \times 6 \\ 4 \times 6 \end{gathered}$	16x16 16×16	$\begin{aligned} & 18 \times 9 \\ & 18 \times 9 \end{aligned}$

$\begin{aligned} & 11 \times 20 \\ & 11 \times 20 \end{aligned}$	$\begin{gathered} 12 \times 6 \\ 9 \times 6 \end{gathered}$	$\begin{aligned} & 7 \times 14 \\ & 7 \times 14 \end{aligned}$	$\begin{aligned} & 20 \times 10 \\ & 20 \times 10 \end{aligned}$
	$\begin{aligned} & 20 \times 20 \\ & 20 \times 20 \end{aligned}$	$\begin{gathered} 167 \\ H \end{gathered}$ $\begin{aligned} & 6 \times 9 \\ & 6 \times 9 \end{aligned}$	$\begin{aligned} & 20 \times 20 \\ & 20 \times 20 \end{aligned}$
$\begin{aligned} & 20 \times 11 \\ & 20 \times 11 \end{aligned}$	170 4×1		

