
Cellular Automata

A cellular automaton is an array of identical, interacting cells, as shown in
Figure Ω.1

Figure 1. Cellular Automaton

The cells in cellular automata have states, indicated in Figure Ω.1 by
different colors. We’ll confine our attention to cellular automata in which the
cells have only two states, 1 and 0, indicated by black and white respectively.
Figure Ω.2 shows an example.

Figure Ω.2. Two-Color Cellular Automaton

Notice the resemblance in appearance of two-color cellular automata to
drawdowns. In fact, that’s the role of cellular automata here.

A cellular automaton, as a whole, passes through a succession of configu-
rations corresponding to the states of its cells. The automaton goes from one
configuration to another at discrete intervals of time, the states of all its cells
changing in parallel. The change of state of a cell is determined by a transition
rule that depends on the neighbors of the cell and is the same for all cells in the
automaton.

The neighborhood of a cell can be defined in different ways. Figure Ω.3
shows one of the most frequently used neighborhoods, which is named after
John von Neumann, who used it in his studies of self-reproducing machines. See
the side bar on the next page.
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Figure Ω.3. Von Neumann 5-Neighborhood

Cellular Automata Applications

John von Neumann, who played a major role
in the design of modern computers, was among
the first to use cellular automata as models for
abstract machines.

He proved that it is possible, in principle, to
design machines that not only are capable of re-
production but also of evolving into more compli-
cated machines.

Cellular automata are widely used as dis-
crete models of physical systems and have been
used to simulate a wide range of natural processes
such as turbulent fluid flow, gas diffusion, forest
fires, and avalanches. Cellular automata can even be used to generate
pseudo-random numbers.

Considered abstractly, cellular automata exhibit a wide variety of
behaviors: self organization, chaos, pattern formation, and fractals.

John Conway’s Game of Life [?] is the best known abstract application
of cellular automata. In it, a wide variety of patterns with life-like
properties are born, interact, and die in fascinating and complex ways.
Vast amounts of human and computer time have been expended explor-
ing this strange world.

John von Neumann
1903-1957



Cellular Automata 135

The cell itself is labeled C. Its four neighbors are labeled according to their
relative positions according to the points of the compass.

Figure Ω.4 shows another commonly used neighborhood, named after
Edward F. Moore, an early pioneer in studies of cellular automata.

Figure Ω.4. Moore 9-Neighborhood

Subscripts are used to denote times, which proceed 1, 2, 3, … . For example
C10 is the state of C at time 10.

A typical transition rule is the “parity rule” for the 5-neighborhood:

Ci+1 = (Ci + Ni + Ei + Si + Wi) mod 2

That is, Ci+1 = 1 if the sum of the neighborhood states (including C itself) is odd
and 0 otherwise.

Another interesting rule is the “voter rule” for the 5-neighborhood:

Ci+1 = 1 if (Ni + Ei + Si + Wi) > 2
Ci+1 = 0 if (Ni + Ei + Si + Wi) < 2
Ci+1 = ~Ci otherwise

where ~C is the complement of C: 1 if C = 0, 0 if C = 1.
Note that in the voter rule, the result may depend on the value of C, while

in the parity rule, it does not: In the parity rule, C is treated no differently than
its neighbors.

Cellular Automata Topology

There is a sticky issue: What happens to the cells at the edge of an
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automaton? What are their neighbors?
This problem can be dealt with in several ways. The way chosen depends

on the context in which the cellular automaton is considered.
One way is to consider the cellular automaton to be infinite without edges,

with cells extending off indefinitely in all four directions. Another way is to treat
the cells at the edges as unchanging, serving as a kind of static border.

A less obvious but natural and useful way in the context of drawdowns is
to consider the cellular automaton to wrap around from edge to edge. See Figure
Ω.5.

Figure Ω.5. Neighborhood Wrap-Around

Thus, the N neighbor of a cell on the top edge is the cell in the corresponding
row on the bottom edge, and so on.

From a topological point of view, this constitutes wrap-around of the
horizontal and vertical edges and also of the top and bottom edges. The result
is a three-dimensional surface known as a torus, as suggested by Figure Ω.6.

Figure Ω.6. Torus

The cells on this torus are distorted because the “horizontal” circumference
is larger than the “vertical” circumference so that the general shape to be seen
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more easily. Perspective causes the shapes of the cells to be skewed.
It is not necessary to actually make a toroidal cellular automaton. It is only

necessary, when applying rules, to determine the neighbors according to the
wraparound topology.

It is worth noting that edge wrap-around is equivalent to an infinite plane
of repeats.

Pattern Sequences

When a cellular automaton is started in a specific configuration and a rule
is applied repeatedly, a pattern sequence results.

Figure Ω.7 shows the beginning of the pattern sequence that results from
applying the 5-neighborhood parity rule to the pattern shown in Figure Ω.2. The
complete sequence has 511 distinct patterns; at the next iteration, the original
pattern reappears; after this, there are no new patterns.

   

   

   

…
Figure Ω.7. Parity Rule Sequence
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Figure Ω.8 shows the pattern sequence that results from applying the voter
rule to the pattern shown in Figure 2. In this case, there are only three distinct
patterns; the fourth is the same as the second.

   

   

Figure Ω.8. Voter Rule Example

Figure Ω9 shows the beginning of the pattern sequence for the 5-neighbor-
hood parity rule starting with a symmetric pattern. There are 511 distinct
patterns in all, the 512th being the same as the first.

   

   Ç
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…
Figure Ω.9. Parity Rule with Symmetric Pattern

The voter rule, as in the previous example, yields fewer distinct patterns
starting with this initial pattern, the seventh being the same as the first. See
Figure Ω.10.
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Figure 10. Voter Rule with Symmetric Pattern

An interesting way to explore the effects of a rule is to start with a “seed”,
a single black cell in a field of white ones.

In such pattern sequences, it usually takes some time for the seed to spread
results to a sufficient extent that useful patterns result. Figure Ω.11 shows the
pattern sequence for a single seed and the 5-neighborhood parity rule. There are
511 different patterns in all. The first eight are shown in this Figure. Figure Ω.12
shows four of the more interesting patterns from the first 64.

   

   

…
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…
Figure Ω1.1. Parity Pattern Sequence Start-up

   

   

Figure Ω.12. Selections from First 64

An apparently uninteresting 9-neighborhood rule, called “1-of-8”, is

Ci+1 = 1 if (NWi + Ni + NE i + Ei + SEi +
     Si + SWi + Si) = 1

Ci+1 = Ci otherwise
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This rule, starting with a single seed, produces a fascination fractal pattern. See
Figure Ω.13.
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Figure Ω.13. 1-of-8 Rule Fractal Pattern

All patterns after the 10th are the same as the 10th.
Putting the seed off center illustrates the effect of wraparound topology.

See Figure Ω.14.
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Figure Ω.14. Offset and Wrap-Around

The patterns in Figure Ω.14 are the same as those in Figure Ω.13; they are
just at different positions on the torus.

Structural and Aesthetic Concerns

Many patterns produced by cellular automata are unsuitable for weaving
for structural reasons. Notable examples are the initial patterns in sequences
starting with a single seed. Other patterns simply are unattractive.

Cellular automata can produce thousands of patterns quickly. Even with
the rejection of obviously unsuitable patterns, the problem is one of excess. How
can really good patterns be found in seas of possibilities?

One approach is to start with a conventional drawdown pattern such as the
one shown in Figure Ω.2 and look for interesting examples “of type”.

Another approach is to start with an attractive and structurally sound
symmetric pattern and apply a symmetric rule (one, like the parity rule, in which
the result does not depend on the actual positions of specific neighbors). This
avoids the problem with an overwhelming cascade of chaotic patterns that may
result by starting with a pattern without much structure and applying an
asymmetric rule.

Size matters also. 19 × 19 patterns are used in this article for presentation
purposes. Large patterns usually lead to longer pattern sequences and allow
more interesting results, as illustrated by this large 1-of-8 pattern.
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