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ABSTRACT
Nearest-neighbor queries, which ask for returning the near-
est neighbor of a query point in a set of points, are important
and widely studied in many fields because of a wide range
of applications. In many of these applications, such as sen-
sor databases, location based services, face recognition, and
mobile data, the location of data is imprecise. We therefore
study nearest neighbor queries in a probabilistic framework
in which the location of each input point and/or query point
is specified as a probability density function and the goal is
to return the point that minimizes the expected distance,
which we refer to as the expected nearest neighbor (ENN).
We present methods for computing an exact ENN or an ε-
approximate ENN, for a given error parameter 0 < ε < 1,
under different distance functions. These methods build an
index of near-linear size and answer ENN queries in poly-
logarithmic or sublinear time, depending on the underlying
function. As far as we know, these are the first nontrivial
methods for answering exact or ε-approximate ENN queries
with provable performance guarantees.

Categories and Subject Descriptors
F.2 [Analysis of algorithms and problem complexity]:
Nonnumerical algorithms and problems; H.3.1 [Information
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storage and retrieval]: Content analysis and indexing—
indexing methods

General Terms
Theory

Keywords
Indexing uncertain data, nearest-neighbor queries, expected
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1. INTRODUCTION
Motivated by a wide range of applications, nearest neigh-

bor searching has been studied in many different fields in-
cluding computational geometry, database systems and in-
formation retrieval; see [7, 14] for surveys on this topic. In
its simplest form, it asks for preprocessing a set S of n points
in Rd into an index so that the nearest neighbor (NN) in S of
a query point can be reported quickly. The earlier methods
for answering NN queries assumed that the input points and
the query points were precise. In many applications, such as
sensor databases, location based services, face recognition,
and mobile data, the location of data is imprecise. This has
led to a flurry of activity on query processing over uncer-
tain data, and algorithms for answering range query, top-k
queries, skyline queries and NN queries have been proposed,
among numerous results. See e.g. [4, 15] for recent work.

In this paper we are interested in answering NN queries
over uncertain data —the location of input points or the
query point is not precisely known, and we assume that it is
given as a probability density function. The existing meth-
ods for answering NN queries on precise data cannot be ap-
plied directly to this setting and new methods are needed.

Our model. An uncertain point P in Rd is represented as
a probability density function (pdf) fP : Rd → R≥0

1. We as-
sume fP to be a simple pdf such as Gaussian distribution, in-
verse distance function, or a histogram; we make this notion
more precise later. We also consider discrete pdfs, in which
P is represented as a finite set P = {p1, · · · , pk} ⊂ Rd along
with a set {w1, · · · , wk} ⊂ [0, 1] where wi = Pr{P is pi} and

1If the location of data is precise, we refer to it as certain.



∑k
i=1 wi = 1. Discrete pdfs arise in a wide range of appli-

cations [19, 23], e.g., because of multiple observations, and
continuous pdfs can be approximated as discrete pdfs.

Let d(·, ·) denote a distance function in Rd; we consider
L1, L2, L∞-metrics or squared Euclidean distance2. For a
given d(·, ·), the expected distance between two independent
uncertain points P and Q is defined as

Ed(P,Q) =

∫∫
fP (x)fQ(y)d(x, y)dxdy.

If fP and fQ are discrete pdfs of size k each, then

Ed(P,Q) =

k∑
i=1

k∑
j=1

wiw
′
jd(pi, qj),

where wi, w
′
j are the probabilities of P and Q being at pi and

qj respectively. If Q is a (certain) point in Rd, i.e., Q = {q},
then

Ed(P, q) =

k∑
i=1

wid(pi, q).

We say that the description complexity of fP is k if it
can be represented using O(k) parameters and certain ba-
sic primitive operations on fP can be performed in O(k)
time. In particular, Ed(P, x), for any x ∈ R2, can be com-
puted in O(k) time, and the expected location

∫
xfP (x)dx

of P , also called the centroid of P , can be computed in O(k)
time. Examples include a discrete pdf consisting of at most
k points, and piecewise-constant or piecewise-linear pdf con-
sisting of at most k pieces. Gaussian (under certain distance
functions) and inverse-distance distributions have constant
description complexity.

Let P = {P1, · · · , Pn} be a set of n uncertain points in
Rd, each of which is independently chosen. For simplicity,
let fi denote fPi , the pdf of Pi. For an uncertain point Q,
its expected nearest neighbor (ENN), denoted by ϕ(P, Q), is

ϕ(P, Q) = argmin
P∈P

Ed(P,Q).

For a parameter 0 < ε < 1, we call a point P ∈ P an ε-
approximate ENN (or ε-ENN, for brevity) of Q if

Ed(P,Q) ≤ (1 + ε)Ed(ϕ(P, Q), Q).

Next, we introduce the notion of the expected Voronoi di-
agram of P. For 1 ≤ i ≤ n, we define the expected Voronoi
cell EVor(Pi) as

EVor(Pi) = {x ∈ Rd | Ed(Pi, x) ≤ Ed(Pj , x), ∀j}.

The decomposition of Rd into maximal connected regions in-
duced by EVor(Pi), 1 ≤ i ≤ n, is called the expected Voronoi
diagram, EVD(P) of P. See Figure 2 for an example of an
EVD in R2 where d(·, ·) is the L1 metric. A decomposition of
Rd into connected cells, each cell τ labeled with λ(τ) ∈ P, is
called an ε-approximate EVD of P (ε-EVD(P), for brevity),
if for all x ∈ τ , λ(τ) is an ε-ENN of x.

In this paper, we study the problem of answering exact
or approximate ENN queries when input points are uncer-
tain or the query is an uncertain point. We also study the
problem of computing EVD(P) and ε-EVD(P).

2the squared Euclidean distance between two points p, q ∈
Rd is ||p− q||2 where || · || is the L2 metric.

Previous results. In the exact setting, Voronoi dia-
grams may be used to perform nearest neighbor searching
among a set of n input data points in R2 with O(n logn)
preprocessing time, O(n) space and O(logn) query time.

Unfortunately, the size of the Voronoi diagram is Θ(ndd/2e)
in Rd. The best known method for answering an NN query,
requires O((n/m1/dd/2e) polylog n) query time for an O(m)-

space structure, where n < m < ndd/2e [3]. To obtain better
performance, many researchers turned to approximate near-
est neighbor searching: Given any ε > 0, a point p is an ε-
approximate nearest neighbor of q if d(q, p) ≤ (1+ε)d(q, p∗),
where p∗ is the actual nearest neighbor. Arya et al. [6] gener-
alized space-time trade-offs for approximate nearest neigh-
bor searching: Given a tradeoff parameter γ, where 2 ≤
γ ≤ 1/ε, there exists an index of space O(nγd−1 log(1/ε))

that can answer queries in time O(log(nγ) + 1/(εγ)(d−1)/2).
There is also extensive work on answering approximate near-
est neighbor queries using locality sensitive hashing, when d
is not a constant and the goal is to have an algorithm whose
query time is polynomial in d; see e.g. [5, 18, 20].

Different models have been proposed for geometric com-
puting on uncertain data: mainly classified into determinis-
tic models and probabilistic models. In deterministic models,
each point is assumed to be inside a given region (see e.g. [9,
10, 29, 37]). Probabilistic models can be further classified
into the existential model and the locational model. In the
existential model, each point is assumed to appear with cer-
tain probability. Suri et al. [22] proposed a linear-space in-
dex with O(logn) query time to compute an ε-approximate
value of the expected distance from a query point to its
nearest neighbor when the dimension d is a constant.

In the locational model, the coordinates of each point are
assumed to be chosen from a known probability distribu-
tion. In this paper, we focus on the locational model of un-
certainty to study the problem of nearest neighbor search-
ing. When the data is uncertain but the query is exact,
researchers have studied top-k probable nearest neighbor,
ranking queries, probabilistic nearest neighbor, and super-
seding nearest neighbor [8, 11, 12, 19, 23, 28, 36, 39]. Ljosa
et al. [28] investigated the expected k-NN under L1 met-
ric using and obtained ε-approximation. Cheng et al. [11]
studied the probabilistic nearest neighbor query that returns
those uncertain points whose probabilities of being the near-
est neighbor are higher than some threshold, allowing some
given error in the answers. All of these methods were based
on heuristics and did not provide any guarantee on the query
time in the worst case. Moreover, recent results that rely on
Voronoi diagram for supporting nearest neighbor queries un-
der uncertainty cannot be adapted to answer ENN (see [13,
21, 33]). We are not aware of any index that uses near-linear
space and returns in sublinear time the expected nearest
neighbor or a point that is the most likely nearest neighbor.

The problem of computing the expected nearest neigh-
bor when the queries are uncertain but the input is exact
is closely related to the aggregate nearest neighbors (ANN)
problem. Given a set of points P in a metric space X
with a distance function d, the aggregate nearest neigh-
bor to a set of query points Q is defined as ANN(Q,P) =
arg minp∈P g(p,Q), where g(p,Q) is some aggregation func-
tion of the distances from points of Q to p. The aggrega-
tion functions commonly considered are Sum, corresponding
to a summation of the individual distances and Max, cor-
responding to the minimization of the maximum distance.



If the pdf is a uniform distribution, the ENN problem is
the same as the ANN problem under the Sum aggregation
function. Several heuristics are known for answering ANN
queries [17, 25, 27, 30, 31, 34, 38]. Li et al. [24] provided
a polynomial-time approximation scheme for ANN queries
under the Max aggregation function. Li et al. [26] presented
approximation schemes under Max and Sum functions for
any metric space as long as an efficient nearest-neighbor al-
gorithm is provided. For the Sum function, they provide a
3-approximation which, to the best of our knowledge, is the
best approximation-factor known previously. See also [27].

Our results. We present efficient algorithms for answer-
ing ENN queries under various distance functions. For sim-
plicity, we state the results in R2, i.e., P = {P1, · · · , Pn}
is a set of n uncertain points in R2. We assume that the
description complexity of the pdf of each Pi is at most k.

Squared Euclidean distance. If d(·, ·) is the squared Eu-
clidean distance, then we show that a set P of n uncertain
points can be replaced by a set P of n weighted points such
that the weighted Voronoi diagram of P under d(·, ·) (also
called the power diagram of P [7]) is the same as EVD(P).
In particular, EVD(P) has linear size and can be computed
in O(n logn+ nk) time if the pdf of each Pi has description
complexity at most k. Furthermore, EVD(P) can be prepro-
cessed in O(n logn) time into a linear size index so that an
ENN query for a (certain) point can be answered in O(logn)
time. If the query is also an uncertain point Q, then we show
that ϕ(P, Q) is the same as ϕ(P, q), where q =

∫
xfQ(x)dx

is the centroid of Q.

Rectilinear distance. We assume that each pdf fi is a
discrete pdf consisting of k points. We show that EVD(P)
has O(n2k2α(n)) complexity and it can be computed in the
same time. We also show that there exists a set P of n
uncertain points with k = 2 such that EVD(P) has Ω(n2)
vertices. We then describe an index of size O(k2n log2 n)
that can answer an ENN query in O(log3(kn)) time. The
index can be built in O(k2n log3 n) time. Next, we show
that a set P of n (certain) points in R2 can be stored in an
index of size O(n log2 n) so that for an uncertain point with
discrete pdf consisting of at most k points, an ENN query
can be answered in O(k2 log3 n) time. The index can be built
in O(n log2 n) time. We note that L1 and L∞ metrics are
closely related, so these results also hold for the L∞ metric.

Euclidean distance. Since the expected distance function
under Euclidean distance is algebraically quite complex even
for discrete pdfs, we focus on answering ε-ENN queries.
First, we show that the expected distance to an uncertain
point P can be approximated by a piecewise-constant func-
tion, consisting of O(1/ε2 log(1/ε)) pieces, plus the distance
to the centroid of P . Using this result, we construct, in
O((n/ε2) log2 n log(n/ε) log(1/ε)) time, an ε-EVD of P of
size O((n/ε2) log(1/ε)); each face of the subdivision is the
region lying between two nested squares —it can be parti-
tioned into at most four rectangles, so that the ε-EVD is a
rectangular subdivision. Moreover, for any query point, we
can return its ε-ENN in O(log(n/ε)) time.

Finally, we show that a set P of n (certain) points in R2

can be stored in an index of linear size so that, for an un-
certain point with pdf of k description complexity, an ENN
query can be answered in O((k/ε2) log(1/ε) logn) time. The
index can be built in O(n logn) time. These results can be
extended to any Lp metric.

We remark that most of our algorithms extend to higher
dimensions, but the query time increases exponentially with
d; we mention specific results in the appropriate sections.

Outline of the paper. We begin in Section 2 by describ-
ing a few geometric concepts that will be useful. Section 3
describes our algorithms for the squared Euclidean distance
function, Section 4 for the L1 and L∞ metrics, and Section 5
for the Euclidean distance. We conclude by making a few
final remarks in Section 6.

2. PRELIMINARIES
In this section, we describe a few geometric concepts and

data structures that we need.

Lower envelopes and Voronoi diagrams. Let F =
{f1, · · · , fn} be a set of n bivariate functions. The lower
envelope of F is defined as

LF (x) = min
1≤i≤n

fi(x),

and the minimization diagram of F , denoted by M(F ), is the
projection of the graph of LF . M(F ) is a planar subdivision
in which the same function appears on the lower envelope for
all points inside a cell. The (combinatorial) complexity of
LF and M(F ) is the number of vertices, edges, and faces in
M(F ). If we define fi(x) to be Ed(Pi, x), then EVD(P) is the
minimization diagram of the resulting functions. Figure 1
shows the Voronoi diagram of a set of exact points as the
minimization diagram of its distance functions.

Figure 1. Euclidean Voronoi diagram of (certain) points as
the minimization diagram of their distance functions.

The notion of lower envelope and minimization diagram
can be extended to partially defined functions: fi is defined
over a region Vi ⊆ R2, then LF (x) is the minimum over all
functions fi of F that are defined at x, i.e., x ∈ Vi. Let R be
a set of polygons, each consisting of a constant number of
vertices (e.g., triangles, rectangles) in R3. By viewing each
of them as the graph of a partially-defined linear function,
we can define the lower envelope LR and minimization dia-
gram M(R) of R. It is known that the complexity of M(R)
is Θ(n2α(n)) and that it can be computed in O(n2α(n))
time [35], where α(n) is the inverse Ackermann function.

Compressed quadtree. A square is called canonical if
its side length is 2l for an integer l and its bottom-left corner
is (2la, 2lb) for some integers a, b. Note that two canonical
squares are either disjoint or one of them is contained in the
other.

A quadtree on a canonical square H is a 4-way tree T ,
each of whose nodes v is associated with a canonical square
�v ⊆ H. The root of T is associated with H itself. The
squares associated with the children of a node v are obtained
by dividing each side of �v into two halves, thereby dividing
�v into four congruent canonical squares. If the side length



of H is 2L, then the nodes of T at depth δ induce a 2δ × 2δ

uniform grid inside H; each grid cell has side length 2L−δ.
Let B = {B1, · · · , Bm} be a set of m canonical squares

inside H. We construct a compressed quadtree T on (B, H)
as follows: Let T be the quadtree on H as described above.
A square B ∈ B is stored at a node v if �v = B. The leaves
of T are the lowest nodes that store a square of B. They
induce a subdivision of H into canonical squares, none of
them contains any square of B in its interior. If a node
v ∈ T does not store a square of B and both v and p(v),
the parent of v, have degree one, we delete v and the child
of v becomes the child of p(v). We repeat this step until
no such node is left. The size of T is O(m), and it can be
constructed directly, without constructing T , in O(m logm)
time [18].

We call a node v of T exposed if its degree is at most one.
We associate a region Rv with each exposed node v. If v is a
leaf, then Rv = �v. Otherwise, v has one child w and we set
Rv = �v \�w. For a point x ∈ Rv, v is the lowest node such
that x ∈ �v. The regions Rv of the exposed nodes induce a
partition M(B, H) of H of size O(m). Each face of M(B, H)
is a canonical square or the difference between two canonical
squares, and none of the faces contains a square of B in its
interior. The depth of T is Θ(m) in the worst case. Nev-
ertheless, using standard tree-decomposition schemes, for a
point x ∈ H, the lowest node of T such that x ∈ �v can be
computed in O(logm) time [18].

T can also be used to store a set S = {p1, · · · , pm} of
points in H. We again build a quadtree T on H. A node
v ∈ T is a leaf if |S ∩ �v| ≤ 1. We compress the nodes as
above and define the partition M(S,H) as earlier. Again,
using tree-decomposition schemes, we can now determine in
O(logm) time whether σ ∩ S 6= ∅ for a canonical square σ.
If the answer is yes, we can also return a point of S ∩σ. We
thus have the following:

Lemma 2.1. Let H be a canonical square, let B be a set
of m canonical squares in H, and let S be a set of n points
in H.

(i) A compressed quadtree T on (B, H) of size O(m) can
be constructed in O(m logm) time. Furthermore, it
can be processed in O(m logm) time into a linear-size
index, so that for a point q ∈ H, the lowest node v of
T such that q ∈ �v can be reported in O(logm) time.

(ii) A compressed quadtree T on (S,H) of size O(n) can be
constructed in O(n logn) time. Furthermore, it can be
processed in O(n logn) time into a linear-size index,
so that for a canonical square σ, a point of S ∩ σ can
be returned in O(logn) time if S ∩ σ 6= ∅.

3. SQUARED EUCLIDEAN DISTANCE
In this section, for two points a, b ∈ Rd, d(a, b) = ‖a−b‖2.

We first show how to compute the EVD of a set of uncertain
points, and then show how to answer an ENN query with
an uncertain point.

3.1 Uncertain data
Let P = {P1, . . . , Pn} be a set of n uncertain points in

R2. The following lemma, well known in mathematics, sug-
gests how to replace P with a set of weighted points. We
state the lemma in Rd and provide a proof for the sake of
completeness.

Lemma 3.1. Let P be an uncertain point in Rd, let f be
its pdf, let p be its centroid, and let σ2 =

∫
Rd ‖x−p‖2f(x)dx.

Then for any point q ∈ Rd,

Ed(P, q) = ‖q − p‖2 + σ2.

Proof. Let 〈p, q〉 denote the inner product of p and q,
and ‖ · ‖ denote the Euclidean metric. Using the fact that∫
Rd f(x)dx = 1, we obtain

Ed(P, q) =

∫
Rd

||q − x||2f(x)dx

=||q||2 − 2〈q,
∫
Rd

xf(x)dx〉+

∫
Rd

||x||2f(x)dx

=||q − p||2 − ||p||2 +

∫
Rd

||x||2f(x)dx

=||q − p||2 − 2||p||2

+

∫
Rd

(
||x− p||2 + 2〈x, p〉

)
f(x)dx

=||q − p||2 − 2||p||2 + σ2 + 2〈p, p〉
=||q − p||2 + σ2.

Let p be a weighted point in Rd with weight wp. For a
point q ∈ Rd, we define the (weighted) distance from q to p
as

δ(q, p) = ‖q − p‖2 + wp.

If we replace each point in Pi ∈ P by a weighted point pi
whose weight is σ2

i =
∫
Rd ‖x−pi‖2fi(x)dx, then by the above

lemma δ(q, pi) = Ed(Pi, q). Set P = {p1, . . . , pn}. EVD(P)
is the same as the Voronoi diagram of P under the distance
function δ(·, ·). We now show how to compute the Voronoi
diagram of P.

For each 1 ≤ i ≤ n, we define a linear function hi : R2 → R
as

hi(x) = 2〈pi, x〉 − ||pi||
2 − σ2

i .

The proof of the following lemma is straightforward.

Lemma 3.2. For any q ∈ R2,

arg min
1≤i≤n

δi(q, pi) = arg max
1≤i≤n

hi(q).

Let h+
i = {x ∈ R3 | hi(x) ≥ 0} be the halfspace lying above

the plane hi. Set H+ = {h+
i | 1 ≤ i ≤ n}. By Lemma 3.2,

the minimization diagram of functions {δ(x, pi)} is the same
as the xy-projection of

⋂
h+∈H+ h

+. Since the intersection

of n halfspaces in R3 has linear size and can be computed in
O(n logn) time [16], we conclude that the Voronoi diagram
of P, under δ(·, ·) as the distance function, can be computed
in O(n logn) time, and thus EVD(P) can be computed in
O(n logn + nk) time, where the extra O(nk) time is for
computing P. Furthermore, by preprocessing EVD(P) into
a linear-size index for point-location queries, an ENN query
for a point q ∈ R2 can be answered in O(logn) time. We
thus obtain the following.

Theorem 3.3. Let P be a set of n uncertain points in R2.
EVD(P) under the squared Euclidean distance has O(n) size.
If the description complexity of the pdf of every point in P

is k, then EVD(P) can be computed in O(n logn+nk) time.
Furthermore, EVD(P) can be preprocessed in a linear-size
index so that for a point q ∈ R2, an ENN query can be
answered in O(logn) time.



3.2 Uncertain query
Let Q be an uncertain query point in R2 represented as a

pdf fQ.

Lemma 3.4. For an uncertain point Q with a pdf fQ,

ϕ(P, Q) = arg min
p∈P

||q̄ − p||2,

where q̄ is the centroid of Q.

Proof. For a point p ∈ P, we have

Ed(p,Q) =

∫
Rd

||p− x||2fQ(x)dx

=||p||2 +

∫
Rd

||x||2fQ(x)dx− 2〈p, q̄〉. (1)

Observing that the second term in RHS of (1) is independent
of p, we obtain

arg min
p∈P

Ed(p,Q) = arg min
p∈P

||p||2 − 2〈p, q̄〉

= arg min
p∈P

||p− q̄||2,

as claimed.

The preprocessing step is to compute the Voronoi diagram
VD(P) of the points P in time O(n logn). Once a query Q
with a pdf of description complexity k is given, we compute
its centroid q̄ in O(k) time and find the nearest neighbor
NN(P, q̄) = arg minp∈P ||q̄−p||2 in O(logn) time by querying
VD(P) with q.

Theorem 3.5. Let P be a set of n exact points in R2. We
can preprocess P into an index of size O(n) in O(n logn)
time so that, for a query point Q with a pdf of description
complexity k, ϕ(P, Q), under the squared Euclidean distance,
can be computed in O(k + logn) time.

Remarks. The algorithm extends to higher dimensions but
the query time becomes roughly O(n1−1/dd/2e).

4. RECTILINEAR METRIC
In this section we assume the distance function to be the

L1 metric. That is, for any two points p = (px, py) and
q = (qx, qy),

d(p, q) = |px − qx|+ |py − qy|.

The results in this section also hold for the L∞ metric, i.e.,
when d(p, q) = max{|px − qx|, |py − qy|}. We first consider
the case when the input is a set of n uncertain points in R2,
each with a discrete pdf, and the query is a certain point
and then consider the case when the input is a set of certain
points and the query is a uncertain point with a discrete pdf.

4.1 Uncertain data
Let P = {P1, · · · , Pn} be a set of n uncertain points in R2,

each with a discrete pdf of size k as described above. We
first prove a lower bound on the complexity of EVD(P) and
then present a near-linear-size index to answer ENN queries.

Expected Voronoi diagram. Fix a point Pi = {pi,1, pi,2,
· · · , pi,k} of P. Let H−i (resp. H

|
i) be the set of k horizontal

(resp. vertical) lines in R2 passing through the points of Pi.
Let Bi be the set of O(k2) rectangles in the grid induced

E
xp

ec
te
d
D
is
ta
n
ce

(E
d
)

y
x

p1

p2

Figure 3. Ed(Pi, q) when the uncertain point Pi is com-
posed of two points p1 and p2 with probabilities 0.5 each.

The grid induced by H−i and H
|
i is shown below and

Ed(Pi, q) is linear within each rectangle of Bi.

by the lines in H−i ∪ H
|
i . It can be checked that Ed(Pi, q)

is a linear function f� within each rectangle � of Bi; see
Figure 3. For each � ∈ Bi, let �↑ be the rectangle in R3

formed by restricting the graph of f� with �, i.e.,

�↑ = {(x, y, f�(x, y)) | (x, y) ∈ �}.

Let B↑i = {�↑ | � ∈ Bi}. By definition, the rectangles in B
↑
i

form the graph of the function Ed(Pi, q). Set B =
⋃n
i=1 Bi

and B↑ =
⋃n
i=1 B

↑
i . By construction and the discussion in

Section 2, EVD(P) is the minimization diagram M(B↑) of
B↑. We prove an almost tight bound on the complexity of
EVD(P).

Theorem 4.1. Let P be a set of n uncertain points in
R2, each with a discrete pdf consisting of k points, and let
d(·, ·) be the L1 metric. Then the complexity of EVD(P) is
O(k2n2α(n)), where α(n) is the inverse Ackermann func-
tion. Moreover, there is a set P of n uncertain points with
k = 2 such that EVD(P) has Ω(n2) size.

Proof. We first prove the upper bound. Set H− =⋃n
i=1 H

−
i and H | =

⋃n
i=1 H

|
i ; |H

−| = |H || = nk. We sort
the lines in H− by their y values and choose a subset G−

of n lines by selecting every kth line. Let G| be a similar
subset of H |. Let R be the set of rectangles in the non-
uniform grid formed by the lines in G− ∪G|. For each rect-
angle R ∈ R, let BR ⊆ B be the set of rectangles whose
boundaries intersect R, and let BR ⊆ B be the set of rect-
angles that contain R. Since R lies between two adjacent
lines of G− and G|, at most 2n lines of H− ∪ H | intersect
R, implying that |BR| ≤ 2n. |BR| ≤ n because at most
one rectangle of Bi can contain R for any 1 ≤ i ≤ n. Set

B
↑
R = {�↑ | � ∈ BR} and B

↑
R = {�↑ | � ∈ BR}. We note

that M(B↑)∩R = M(B↑R∪B
↑
R)∩R. Since |BR|+ |BR| ≤ 3n,

the complexity of M(B↑R ∪ B
↑
R) is O(n2α(n)). The O(k2)

rectangles in R tile the entire plane, therefore the complex-
ity of M(B↑), and thus of EVD(P), is O(k2n2α(n)).

Next, we show that there exists a set P of n uncertain
points in R2 with k = 2 such that EVD(P) has Ω(n2) size.
Assume that n = 2m for some positive integer m. Each
point Pi ∈ P has two possible locations pi1 and pi2, each with
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Figure 2. Lower bound construction for EVD. EVD of (a) 2 points, (b) 3 points, (c) 6 points on the boundary of a square
σ. (d) Bisectors of (Pi, Pj), (Pi, Pi+1), and (Pj , Pj+1).

probability 0.5. All the points lie on the boundary of the
square σ = [0, 2m]2 (see Figure 2). More specifically, for 1 ≤
i ≤ m, the two possible locations of Pi are pi1 = (0, 2i− 1)
and pi2 = (2m, 2i − 1). For 1 ≤ j ≤ m, the two possible
locations of Pm+j are pm+j,1 = (2j − 1, 0) and pm+j,2 =
(2j− 1, 2m). We claim that EVD(P) has Ω(n2) size. Notice
that for any pair 1 ≤ i ≤ m < j ≤ 2m, the bisector of
Pi and Pj inside the square σ consists of two lines: y =
x+2(m+i−j) and y = −x+2(i+j−m−1) (see Figure 2(d),
dashed lines). Let χij be the intersection point of these two
lines. We observe that Ed(Pi, χij) = Ed(Pj , χij) = m and
Ed(Pk, χij) > m for all k /∈ {i, j}. Hence χij is a vertex
of EVD(P). Similarly, for all 1 ≤ i < m, the bisector of
Pi and Pi+1 is the line y = 2i, and for all m < j < 2m,
the bisector of Pj and Pj+1 is the line x = 2j − 2m (see
Figure 2(d), solid lines). The intersection point of these two
bisectors, ξij = (2j − 2m, 2i), is also a vertex of EVD(P):
Ed(Pi, ξij) = Ed(Pi+1, ξij) = Ed(Pj , ξij) = Ed(Pj+1, ξij) =
m + 0.5 < Ed(Pk, ξij), for all k /∈ {i, i + 1, j, j + 1}. Hence
EVD(P) has Ω(n2) vertices inside σ.

Remark. By preprocessing EVD(P) for point-location que-
ries [32, 16], an ENN query can be answered in O(logn)
time using O(k2n2α(n)) space. For higher dimensions, the
complexity of EVD(P) is O(kdndα(n)).

Near-linear size index. Next we show that despite the
size of EVD(P) being Ω(n2), we can build an index of size
O(k2n log2 n) so that an ENN query can be answered in
O(log3(kn)) time.

For a query point q ∈ R2, let lq be the line parallel to the
z-axis passing through q, and oriented in the (+z)-direction.
Then ϕ(P, q) is Pi if the first rectangle of B↑ that lq intersects

belongs to Bi. We label each rectangle �↑ in B
↑
i with i and

build an index on B↑ so that the first rectangle intersected
by a line parallel to the z-axis can be reported quickly. The
index works in two stages. In the first stage, it builds a
family F = {C1, C2, · · · , Cu} of canonical subsets of B, i.e.,
each Ci ⊆ B, so that for a query point q ∈ R2, the subset
Bq ⊆ B of rectangles containing q can be represented as
the union of O(log2(kn)) canonical subsets of F. That is,
there exists a subset Fq ⊆ F of size O(log2 n) such that
Bq =

⋃
Fq. Furthermore,

∑
i≥1 |Ci| = O(k2n log2 n). Next,

for a rectangle � ∈ B, let γ� be the plane containing the
rectangle �↑, i.e., the graph of the linear function f�. For

each 1 ≤ i ≤ u, set Ti = {γ� | � ∈ Ci}. We build an
index of linear size on Ti that can report the first plane of
Ti intersected by a vertical line lq in O(logn) time [16]. This
index is similar to one described by Agarwal et al. [1], so we
omit the details from here and conclude the following.

Theorem 4.2. Let P be a set of n uncertain points in R2,
each with a discrete pdf consisting of k points, and let d(·, ·)
be the L1 or L∞ metric. P can be stored in an index of
size O(k2n log2 n), so that an ENN query can be answered
in O(log3(kn)) time. The index can be built in O(k2n log3 n)
time.

Remarks. The algorithm extends to higher dimension. For
d ≥ 3, the size of the index will be O(kdn logd n) and the

query time will be O(n1−1/dd/2e logO(d) n) [3].

4.2 Uncertain query
Let P = {p1, p2 . . . , pn} be a set of n certain input data

points in R2. We first build an index such that the ENN
of an uncertain query point Q, which is represented as a
discrete pdf of k points, can be found quickly.

Given an uncertain query Q, which has a discrete pdf of k
points {q1, . . . , qk} with associated probabilities {w1, . . . , wk},
let H− (resp. H |) be the set of k horizontal (resp. verti-
cal) lines in R2 passing through the points of Q. Let B be
the set of O(k2) rectangles in the grid induced by the lines

in H− ∪ H | (see Figure 4(a)). For every rectangle 2 ∈ B,
let P2 = P ∩ 2. Let knw denote the number of points of
Q which are above and to the right of 2. We similarly
define kne, ksw, kse for points of Q which are at top-right,
bottom-left and bottom-right of 2. We call these regions
the quadrants of 2; see Figure 4(b).

Lemma 4.3. For every point p = (xp, yp) ∈ 2,

Ed(p,Q) = kxxp + kyyp + c,

where kx = knw +ksw−kne−kse, ky = ksw +kse−knw−kne

and c is independent of p.

Proof. Note that no point of Q lies vertically above or
below, or horizontally to the left or right of 2. Let vnw =
(xnw, ynw) (resp. vne, vsw, vse) denote the top-left (resp. top-
right, bottom-left, bottom-right) corner of 2. Let Qnw, Qne,
Qsw and Qse denote the points of Q that lie in the top-
left, top-right, bottom-left and bottom-right quadrants of 2



�

knw = 2 kne = 2

kse = 2ksw = 1

�

(a) (b)

Figure 4. (a) The set of rectangles B induced by horizontal

lines H− and vertical lines H | through the points of Q. A
single rectangle 2 is also shown. (b) The four quadrants of
2 are shown along with the number of points of Q in each.
The points P2 in 2 are shown as red squares.

respectively, and let q ∈ Qnw. Then d(p, q) = d(p, vnw) +
d(vnw, q). Thus the total contributions of points of Q in this
quadrant to Ed(p,Q) is∑

q∈Qnw

d(q, vnw) + knwd(vnw, q)

=
∑

q∈Qnw

d(q, vnw) + knw(xp − xnw) + knw(ynw − yp).

Similar expressions holds for the remaining quadrants.
Thus, summing over all quadrants, the lemma follows.

Lemma 4.4. The point p∗ such that

p∗ = arg min
p∈P2

Ed(p,Q)

is a vertex of the convex hull conv(P2) of P2.

Proof. By Lemma 4.3, p∗ is an extreme point of P2

minimizing a linear function of p ∈ P2. Thus, without loss
of generality, it realizes its minimum when p∗ is a vertex of
conv(P2).

Preprocessing step. Our index is simply a two dimen-
sional range-tree on the points in P [16] with a single mod-
ification to enable efficient ENN queries. The range-tree
consists of two levels. We first construct a balanced binary
tree T on the x-coordinates of the points of P. We call this
the primary tree. Its leaves store the points of P in sorted
x-order from left to right, and internal nodes store splitting
values to guide the search. Each node v in this tree corre-
sponds to a subset of the points of P whose x-coordinates lie
in the interval corresponding to the node. For each node v
in the tree, a similar balanced binary tree Tv is constructed
on the y-coordinates of the points of P in the subtree of T

rooted at v. We call these secondary trees. For a node u in
a secondary tree Tv corresponding to a node v in T, we have
an associated subset of the points of P. All such subsets are
termed as canonical subsets. Given a query rectangle, the
points of P in the rectangle are reported as the disjoint union
of O(log2 n) canonical subsets. See [16] for more details on
range-trees.

We make the following modification to the range-tree struc-
ture. For any canonical subset Pu corresponding to a node
u in a secondary tree Tv, we store the convex hull conv(Pu)

of the points of Pu. For any secondary tree Tv, the convex
hull of the canonical subsets may be computed by perform-
ing a bottom-up traversal while merging the convex hulls
of the children at any internal node. Thus, if there are m
nodes in Tv, the total time for constructing the convex hulls
is O(m logm). This, in turn, implies that the total prepro-
cessing time is O(n log2 n) and the space required for the
index is O(n log2 n) as well.

Query step. When a query Q is given, we construct B

as above, and compute, for each rectangle 2 ∈ B, the values
kne, knw, kse and ksw. Next, we perform a range query in T,
to find the points of P2 as the union of O(log2 n) canonical
subsets of P. We find the point p∗ by performing a binary
search on the points on the convex hulls of each subset and
picking the minimum over all subsets. By Lemma 4.4, the
point p∗ must be among these points. Hence, the total time
is O(k2 log3 n).

Theorem 4.5. Let P be a set of n exact points in R2 and
let d(·, ·) be the L1 or L∞ metric. P can be stored in an index
of size O(n log2 n), which can be constructed in O(n log2 n)
time, such that for an uncertain query Q as a discrete pdf
with k points, its ENN can be reported in O(k2 log3 n) time.

Remark. If we know an upper bound on k in advance of
the query, we may perform further preprocessing to obtain
a query time of O(k2 log2 n log k) since the linear function
from Lemma 4.3 can have at most O(k2) orientations, cor-
responding to the possible coefficients of xp and yp. Thus,
we may find the minimum of this function for all the O(k2)
possible orientations in advance.

5. EUCLIDEAN DISTANCE
We now consider the case when d(·, ·) is the Euclidean

distance. For any two points a, b ∈ R2, we use ||a − b|| to
denote the Euclidean distance d(a, b). Since the expected
distance under the Euclidean distance is algebraically quite
complex, we focus on answering ε-ENN queries in this sec-
tion. We first describe an algorithm for computing a func-
tion that approximates the expected distance from a fixed
uncertain point to any (certain) point in R2. The construc-
tion is similar to the one given in [2]. We use this algorithm
to answer ε-ENN queries, first when the input is a set of
uncertain points but the query is a certain point and next,
when the input data points are certain but the query point is
uncertain. In the former case, we construct an approximate
expected Voronoi diagram of P.

5.1 Approximation of the expected Euclidean
distance

Let P be an uncertain point in R2, and let fP : R2 →
R≥0 be its pdf. Let the description complexity of fP be
k. We construct a function gP : R2 → R≥0 of description
complexity O((1/ε2) log(1/ε)) such that for any x ∈ R2,

Ed(P, x) ≤ gP (x) ≤ (1 + ε)Ed(P, x).

Let p be the centroid of P . The following two lemmas
follow from the triangle inequality.

Lemma 5.1. For any two points a, b ∈ R2,

|Ed(P, a)− Ed(P, b)| ≤ ||a− b||.



Proof.

|Ed(P, a)− Ed(P, b)| =
∫
R2

fP (x)|‖x− a‖ − ‖x− b‖|dx

≤
∫
R2

fP (x)‖a− b‖dx

=‖a− b‖.

Lemma 5.2. Ed(P, p) ≤ 2 min
x∈R2

Ed(P, x).

Proof. Let pmin = arg minx∈R2 Ed(P, x). By Lemma 5.1,

|Ed(P, p)− Ed(P, pmin)| ≤ ‖p− pmin‖

= ||pmin −
∫
R2

xfP (x)dx||

= ||
∫
R2

fP (x)(x− pmin)dx||

≤
∫
R2

fP (x)||x− pmin||dx

= Ed(P, pmin).

The lemma now follows.

Lemma 5.3. Let 0 < ε < 1 be a parameter, let ρ̄ =
Ed(P, p̄), and for any x ∈ R2, let

g(x) = ‖x− p̄‖+ ρ̄.

Then for any point q ∈ R2 such that ||q − p|| > 8ρ̄/ε, we
have

Ed(P, q) ≤ g(q) ≤ (1 + ε)Ed(P, q).

Proof. Let q ∈ R2 be a point with ||q − p|| > 8ρ̄/ε. By
Lemma 5.1,

Ed(P, q) ≤ Ed(P, p̄) + ‖q − p̄‖ = ρ̄+ ‖q − p̄‖ ≤ g(q).

Similarly,

Ed(P, q) ≥ ‖q − p̄‖ − Ed(P, p̄) = ‖q − p̄‖ − ρ̄.

Therefore

g(q) = ‖q − p̄‖+ ρ̄ ≤ Ed(P, q) + 2ρ̄. (2)

Let D be the disk of radius 4ρ̄/ε centered at p̄. For any
point x 6∈ D, ‖x− p̄‖ > 4ρ̄/ε. Hence,

ρ̄ =

∫
R2

‖x− p̄‖fP (x)dx ≥
∫
R2\D

‖x− p̄‖fP (x)dx

≥ 4ρ̄

ε

∫
R2\D

fP (x)dx,

implying that∫
R2\D

fP (x)dx ≤ ε/4 and

∫
D

fP (x)dx ≥ 1− ε/4.

On the other hand, for any point x ∈ D, ‖x − q‖ > 4ρ̄/ε.
Therefore

Ed(P, q) =

∫
R2

‖x− q‖fP (x)dx ≥
∫
D

‖x− q‖fP (x)dx

≥ 4ρ̄

ε

∫
D

fP (x)dx ≥ 4ρ̄

ε
(1− ε/4) ≥ 2ρ̄

ε
,

B1

B0

B2

Figure 5. Covering Bl with four canonical squares and
drawing an exponential grid composed of canonical squares.

which implies that ρ̄ ≤ εEd(P, q)/2. Substituting this in (2),

g(q) ≤ (1 + ε)Ed(P, q).

Set ρ = Ed(P, p). For a point x ∈ R2 and a value r ≥ 0,
let B(x, r) denote the square of side length 2r centered at
x. Let l = dlog2(8/ε)e. For 0 ≤ i ≤ l, set Bi = B(p, ρ2i);
set B−1 = ∅. Finally, set ρi = ε2iρ/8.

We cover Bl by at most four congruent canonical squares
C1, . . . , C4 of side length at most 2ρl = ρ2l+1. The union of
C1, . . . , C4 is also a square C; see Figure 5. We set

gP (x) = ‖x− p‖+ ρ, ∀x /∈ C.

For 1 ≤ j ≤ 4 and 0 ≤ i ≤ l, we cover Cj ∩ (Bi \ Bi−1)
with canonical squares of size 2∆i where ∆i = blog2 ρic; see
Figure 5. For each such square �, let a� be its center and
set

δ� = Ed(P, a�) + 4 · 2∆i .

Finally, we also cover C \ Bl with canonical squares of
size 2∆l and set δ� as above. Let B be the resulting set
of O((1/ε2) log(1/ε)) canonical squares. We construct a
compressed quadtree T on (B, C) as described in Section 2.
It can be checked that each exposed node on T is a leaf
and therefore the rectilinear subdividision of C induced by
M = M(B, C) is a hierarchical grid composed of canonical
squares. If a square σ in M lies in multiple squares of B, we
set δσ = δ� where � is the smallest square of B containing
σ. Finally, for every σ ∈ M, we set

gP (x) = δσ, ∀x ∈ σ.

Lemma 5.4. Let P be an uncertain point in R2 with a
pdf of description complexity k, and let 0 < ε < 1 be a
parameter. A function gP : R2 → R≥0 can be constructed in
O((k/ε2) log(1/ε)) time such that

(i) gP is piecewise constant inside a square C, which is
the union of four canonical squares.

(ii) Each piece of gP is defined over a canonical square,
and the number of pieces is O((1/ε2) log(1/ε)).

(iii) C ⊇ B[p, 8Ed(P, p)/ε] and gP (x) = ||x− p||+Ed(P, p)
for x /∈ C.

(iv) Ed(P, x) ≤ gP (x) ≤ (1 + ε)Ed(P, x) for all x ∈ R2.
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Figure 6. (a) A single pair (A,B) in an α-WSPD. (b) The D1, . . . , Ds for a suitable s = O(log(1/ε)) constructed for a pair
(Ai, Bi) in a (1/8)-WSPD. Dj has radius 2j−3 and is covered by canonical squares of side length γj .

Proof. (i) and (ii) follow from the construction, and (iii)
follows from Lemma 5.3, so we only need to prove (iv). We
describe the proof for the case when x ∈ B0, a similar argu-
ment holds when x ∈ Bi \Bi−1, for i ≥ 1. Suppose x lies in
a grid cell τ of B0. Then, using Lemma 5.1,

gP (x) = Ed(P, aτ ) + 4 · 2∆0

≥ Ed(P, x)− ‖x− aτ‖+ 2ρ0

≥ Ed(P, x).

On the other hand,

gP (x) ≤ Ed(P, x) + ‖x− aτ‖+ 4 · 2∆0

≤ Ed(P, x) + 2ρ0 + 4ρ0

≤ Ed(P, x) +
3ε

4
ρ

≤ (1 + ε)Ed(P, x).

Remark. We remark that a similar function can be con-
structed that approximates Ed(P, x) even when d(·, ·) is any
Lp metric.

5.2 Uncertain data
Let P = {P1, · · · , Pn} be a set of n uncertain points in R2,

each with a pdf of description complexity k. We describe a
method for computing an ε-ENN of a query point q ∈ R2 in
P. For each 1 ≤ i ≤ n, we construct the function gi : R2 →
R≥0, using Lemma 5.4, such that gi(q) ≤ (1+ε/3)Ed(Pi, q),
for all q ∈ R2. Let Ci be the canonical square inside which
gi is a piecewise-constant function. Let G = {g1, . . . , gn}.
By definition, the minimization diagram M(G) of G is an
ε-EVD(P). Hence, it suffices to construct M(G) and build
an index on M(G) for point-location queries. The difficulty
with this approach is that we do not have a near-linear upper
bound on the complexity of M(G) even in R2. Moreover, the

complexity of M(G) is Ω(ndd/2e) in higher dimensions, so
this approach will not be practical for d ≥ 3. We circumvent
this problem by using the ideas from Arya et al. [6] and
constructing a different ε-EVD(P) of near-linear size.

Here is the outline of the algorithm. We construct two sets
Bin and Bout of canonical squares. Set B = Bin ∪Bout. The
size of B, denoted by m, will be O((n/ε2) log(1/ε)), and
we construct B in O(n logn + (n/ε2) log(1/ε)) time. We

build, in O(m logm) time, a compressed quad tree T of size
O(m) on B, and preprocess it in additional O(m) time so
that for a point q ∈ R2, the exposed node of T containing
q can be computed in O(logm) time. Let M be the planar
subdivision induced by the exposed nodes of T. We refine
each cell of M into O(1) faces to construct an ε-EVD of P.
More precisely, for a point x ∈ R2, let Pin[x] = {Pi | x ∈ Ci
and Pout[x] = {Pi | x /∈ Ci}. T has the property that for
every exposed node v, Pin[x] and Pout[x] are the same for all
points in the region Rv. We denote these sets by Pin[v] and
Pout[v]. We associate two representative points P in

v ∈ Pin[v],
P out
v ∈ Pout[v] such that P in

v is an ε-ENN of any point of
Rv in Pin[v] and P out

v is an ε-ENN of any point of Rv in
Pout[v]. If P in

v = Pi, we store the canonical square �v of the
function gi that contains Rv, and if P out

v = Pj , we also store
the centroid pj of Pj at v.

For all x ∈ Rv, gi(x) is constant and gj(x) = ‖x − pj‖ +
Ed(Pj , pj). The minimization diagram of gi and gj within
Rv, denoted by Σv, has O(1) size; see Figure 7(a). We com-
pute Σv for all exposed nodes of T and show that the planar
subdivision induced by the Σv’s is the desired ε-EVD of P;
Figure 7(b) shows a section of such a planar subdivision.

We first describe the computation of Bin and Bout followed
by the computation of the representative points P in

v and
P out
v for each exposed node v in T. Finally, we describe how

to construct an ε-EVD using the representative points.

Constructing Bin. For 1 ≤ i ≤ n, let Bi be the set
of canonical squares that define the pieces of the piecewise-
constant portion of gi. Set Bin =

⋃n
i=1 Bi. For each � ∈ Bi,

we associate a value δ� with �, which is gi(x) for any x ∈ �.
If a square � appears in multiple Bi’s, we keep only one copy
of � in Bin and δ� is the minimum of the values associated
with the different copies of �. For each square � ∈ Bi, we
set P� = Pi.

Constructing Bout. Bout is constructed using the algo-
rithm by Arya et al. [6] for computing an ε-VD of a set S of
N (certain) points. We therefore sketch their algorithm in
R2. Two point sets A,B ⊂ R2 are called α-well-separated if
A and B can be contained in disks DA and DB respectively,
whose centers are at distance ∆ and whose radii are at most
α∆; see Figure 6(a). A partition of S × S into a family
Z = {(A1, B1), . . . , (AM , BM )} of α-well-separated pairs is
called an α-well-separated pair decomposition (α-WSPD) of
S. It is well known that an α-WSPD of S with O(N/ε2)
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Figure 7. (a) The minimization diagram, Σv (shown below) of b↑v and hv for an exposed node v of T. The complexity of
Σv is O(1). (b) A portion of the ε-EVD (shown below) obtained by replacing each cell of M by Σv. The corresponding b↑v’s
(raised squares) and hv’s (cones) are also shown.

pairs can be computed in O((N/ε2) logN) time [18]. Arya
et al. [6] first compute a (1/8)-WSPD Z of S. Let (Ai, Bi)
be a pair in Z. Without loss of generality, assume that Ai
and Bi are contained in disks of radii 1/8 and the centers
of these disks are at distance 1. Let ξi be the midpoint of
these centers. They construct a family of s = O(log2(1/ε))
disks D1, . . . , Ds centered at ξi where the radius of Dj is
2j−3. Let γj = 2j−c−dlog2(1/ε)e where c ≥ 3 is a constant.
Let Cj be the set of canonical squares of side length γj
that intersect Dj ; |Cj | = O(1/ε2); see Figure 6(b). Set

B̃i =
⋃

1≤j≤s Cj . They repeat the above procedure for each

pair in Z. Let B̃ be the overall set of canonical squares con-
structed; |B̃| = O((N/ε2) log(1/ε2)). B̃ can be constructed

in O((N/ε2) log(1/ε) + N logN) time. Next, they store B̃

into a compressed quadtree to construct an ε-VD of S.
We adapt their procedure as follows. For 1 ≤ i ≤ n, as

before, let pi be the centroid of Pi and Ci the square outside
which gi(x) = ‖x − pi‖ + Ed(Pi, pi). Set P = {pi | 1 ≤ i ≤
n}. We execute the procedure of Arya et al. [6] on P and
generate a set Bout of O((n/ε2) log(1/ε)) canonical squares.

Computing the representative points. For a point
x ∈ R2, let P out[x] = {pi | Pi ∈ Pout[x]}. Similar to the
index in Section 4.1, we construct an index for answering
stabbing queries which can find, for a query point q, which
squares in C =

⋃n
i=1 Ci do not contain q and thus, find

P out[q]. This index stores a family of canonical subsets of
P such that for any query point q, P out[q] can be repre-
sented as the union of O(log2 n) canonical subsets. For each
of the canonical subsets, we also store an (ε/12)-VD from
Arya et al. [6] of this subset. The total space required for the
index is O((n/ε2) log2 n log(1/ε)) and it takes the same time
to construct. For a query point q, we can now compute an
(ε/12)-NN of q in P out[q] in O(log2 n log(n/ε)) time. This
index is only needed for preprocessing and removed after
representative points have been computed.

We build a compressed quadtree T on B = Bin ∪ Bout as
mentioned above. Let v be an exposed node of T. If none
of the ancestors of v (including v itself) stores a square of
Bin, P in

v is undefined. Otherwise, among the squares � of

Bin stored at the ancestors of v, let � be the one with the
smallest value of δ�. We set P in

v = P�, bv = �, and b↑v to

the square in R3 obtained by lifting � to the height δ�.
Next, we pick a point x ∈ Rv and compute an (ε/12)-NN

of x in P out[x], say pi. We set P out
v = Pi and pv = pi. Let

hv(x) = ‖x− pi‖+ Ed(Pi, pi).
Finally, we compute the minimization diagram Σv of b↑v

and hv within Rv; see Figure 7(a). By replacing each cell Rv
of M with Σv, we obtain the desired ε-EVD of P, whose size
is O(m) = O((n/ε2) log(1/ε)); Figure 7(b) shows a portion
of such an ε-EVD. The total time spent in constructing this
ε-EVD is O((n/ε2) log2 n log(n/ε) log(1/ε)).

The correctness of the algorithm follows from the following
lemma.

Lemma 5.5. Let q be a point lying in Rv for an exposed
node v of T. Let P out

q and P in
q be the expected nearest neigh-

bor of q in Pout[q] and Pin[q] respectively. Then,

(i) Ed(P in
v , q) ≤ (1 + ε)Ed(P in

q , q).

(ii) Ed(P out
v , q) ≤ (1 + ε)Ed(P out

q , q).

Proof. (i) Let Bq = {� ∈ Bin | Pi ∈ Pin[q]∧ q ∈ �}. By
construction, each square in Bq is stored at an ancestor of
v in T. Hence, P in

v = arg minPi∈Pin[q] gi(q). Now, (i) follows
from Lemma 5.4.

(ii) By construction, the set {Ci | x /∈ Ci} is the same
for all x ∈ Rv. Therefore, Pout[q] = Pout[v] and P out

v ∈
Pout[q]. Let pv and pq be the centroids of P out

v and P out
q

respectively. The argument in Arya et al. [6] implies that
‖pv − q‖ ≤ (1 + ε/3)‖pq − q‖. Hence,

Ed(P out
v , q) ≤ (1 + ε/3)‖pq − q‖+ Ed(P out

v , pv)

≤ (1 + ε/3)‖pq − q‖+ ε/24‖pv − q‖

≤ (1 + ε/3)(1 + ε/24)(‖pq − q‖+ Ed(P out
q , pq)).

Since Pv ∈ Pout[q], ‖pv − q‖ ≥ 24Ed(Pv, pv)/ε. Thus,

Ed(P out
v , q) ≤ (1+ε/2)(1+ε/3)Ed(P out

q , q) ≤ (1+ε)Ed(P out
q , q),

proving part (ii).



Putting everything together, we conclude the following.

Theorem 5.6. Let P be a set of n uncertain points in R2,
each with a pdf of description complexity k, let 0 < ε < 1
be a parameter and let d(·, ·) be the Euclidean distance. An
ε-EVD of P of size O((n/ε2) log(1/ε)) can be constructed
in O((n/ε2) log2 n log(n/ε) log(1/ε)) time. It can be pro-
cessed in additional O((n/ε2) log(1/ε))) time into an index
of O((n/ε2) log(1/ε)) size so that an ε-ENN of a query point
can be constructed in O(log(n/ε)) time.

Noting that for an uncertain point P , the function gP
that approximates Ed(P, x) under any Lp metric can be con-
structed in the same time, we also obtain the following.

Theorem 5.7. Let P be a set of n uncertain points in R2,
each with a pdf of description complexity k, let 0 < ε < 1
be a parameter. For any Lp metric, an ε-EVD of P of
size O((n/ε2) log(1/ε)) can be constructed in O((n/ε2) log2 n
log(n/ε) log(1/ε)) time. It can be processed in O((n/ε2)
log(1/ε)) additional time into an index of O((n/ε2) log(1/ε))
size so that an ε-ENN of a query point under the Lp metric
can be constructed in O(log(n/ε)) time.

Remarks. (i) Note that we do not have to construct the
minimization diagram Σv for each exposed node v ∈ T. We
can simply use P in

v , P
out
v , b↑v and hv stored at v to compute

an ε-ENN of a query point.
(ii) The algorithm can be extended to higher dimensions.

The size of the index becomes O((n/εd) log(1/ε)), the pre-
processing time become O((n/εd) logd n log(1/ε)), and the
query time remains the same.

5.3 Uncertain query
Let P = {p1, · · · , pn} be a set of (certain) points in R2. For

an uncertain query point Q of description complexity k and
a parameter 0 < ε < 1, we wish to compute its ε-ENN in P.
We preprocess P into a compressed quadtree T as described
in Section 2. We also preprocess P for answering NN queries,
by constructing its Voronoi diagram and preprocessing it for
point-location queries. The size of the index is O(n) and it
can be built in O(n logn) time [16].

To answer a given query Q, we construct the function gQ :
R2 → R≥0 using Lemma 5.4. Let B be the set of canonical
squares defining gQ. For each � ∈ B, we query T and report
a point p� ∈ �∩P if there exists one. Among all the points
reported, we return the point p∗ = arg minp� gQ(p�). If

no point is reported, then we return the point of P that
is closest to q, the centroid of Q. The correctness of the
algorithm follows from the Lemma 5.4. Querying each � ∈
B takes O(logn) time, by Lemma 2.1, and the NN of q can
be computed in O(logn) time, so we conclude the following:

Theorem 5.8. Let P be a set of n (certain) points in R2.
An index of O(n) size can be built on P in O(n logn) time so
that for an uncertain query point Q with a pdf of description
complexity k and for a parameter 0 < ε < 1, an ε-ENN of
Q can be computed in O((k/ε2) log(1/ε) logn) time.

Remarks. (i) The algorithm can be extended to higher di-
mensions. The size and the preprocessing time remain the
same, but the query time in Rd increases toO((k/εd) log(1/ε)
logn).

(ii) All pieces of the function gQ need not be computed in
the beginning itself. They can be constructed hierarchically

while querying the compressed quadtree on P. This does not
affect the worst-case running time but it is more efficient in
practice.

6. CONCLUSION
In this paper we considered the problem of answering NN

queries under uncertainty. We used a probabilistic frame-
work to model the uncertainty in the location of input data
or query point, and presented indexing schemes of linear or
near-linear size that answer exact or ε-approximate ENN
queries in R2 in polylog(n) time under squared Euclidean,
L1, L2, and L∞ distance functions. As far as we know, these
are the first methods to obtain such bounds. We conclude
by mentioning a few open problems:

(i) What is the combinatorial complexity of EVD(P) when
d(·, ·) is the Euclidean distance? Can a quadratic up-
per bound be proved? Although the algebraic com-
plexity of a bisector is large, the combinatorial com-
plexity, i.e., the number of vertices, can be small.

(ii) The expected distance is not a reliable indicator when
the variance of the pdfs is not small. In this case, one
is interested in computing a point that is the nearest
neighbor with highest probability or the points that
are the nearest neighbors with probability higher than
a given threshold. Is there a linear-size index to answer
these queries in sublinear time in the worst case? This
problem seems hard even for very simple pdfs such as
Gaussians.
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