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Abstract
We present a near-quadratic time algorithm that computes a point inside a simple

polygon P having approximately the largest visibility polygon inside P , and a near-
linear time algorithm for finding the point that will have approximately the largest
Voronoi region when added to an n-point set. We apply the same technique to find the
translation that approximately maximizes the area of intersection of two polygonal
regions in near-quadratic time, and the rigid motion doing so in near-cubic time.

1 Introduction

We consider two problems where our goal is to find a point x such that the area of the
region V (x) “controlled” by x is as large as possible. In the first problem, we are given a
simple polygon P , and V (x) is the visibility polygon of x, that is, the region of points y
inside P such that the segment xy does not intersect the boundary of P . In the second
problem, we are given a set of points T , and V (x) is the Voronoi cell of x in the Voronoi
diagram of the set T ∪ {x}, that is, the set of points that are closer to x than to any point
in T .

In both problems, it is straightforward (but tedious) to write a closed formula describing
the area of the region controlled by a point x. This area function (inside a region where V (x)
has the same combinatorial structure) is the sum of the areas of triangles that depend on
the location of x. The function domain consists of a polynomial number of regions, and the
function has a different closed form in each region: it is the sum of Θ(n) low-degree rational
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functions in two variables, which do not have common denominator. See Appendix A for
a more detailed description of the area function. It seems difficult to solve the problem
of finding the maximum of the this function analytically and efficiently, and we resort to
approximation.

In this paper we address the question of efficiently finding a point x that approximately
maximizes the area of V (x). More precisely, let µ(x) be the area of V (x), and let µopt =
maxx µ(x) be the area for the optimal solution. Given δ > 0, we show how to find xapp

such that µ(xapp) ≥ (1− δ)µopt.

The main motivation for our first problem arises from art-gallery or sensor placement
problems. In a typical problem of this type, we are given a simple polygon P , and wish
to find a set of points (guards) so that each point of P is seen by least one guard. This
problem is NP-hard. Art-gallery problems have attracted a lot of research in the last thirty
years [O’R87, Urr00]. A natural heuristic for solving art-gallery problems is to use a greedy
approach based on area: We first find a guard that maximizes the area seen, next find a
guard that sees the maximal area not seen by the first guard, and so on until each point
of P is seen by some guard.

Ghosh [Gho87] used a similar greedy heuristic to obtain an O(log n)-approximation
on the number of guards needed to see an n-edge polygon, if guard locations are con-
strained to be on the vertices of P . (An improved algorithm obtains an O(log kopt)-
approximation [EH02].)

No approximation bounds for the greedy approach are known if guards can be located
in the interior of P . However, for the related problem of maximizing the area seen by
k guards, for a given number k, Hochbaum and Pathria [HP98] showed that k iterations
of the greedy algorithm mentioned above construct a (1− 1/e)-approximation to the more
general set-cover problem. In Section 2.4, we show how to apply our result to the problem
of finding k-guards that see as much as possible of the polygon P .

Ntafos and Tsoukalas [NT94] show how to find, for any δ > 0, a guard that sees
an area of size (1 − δ)µopt. Their algorithm requires O(n5/δ2) time in the worst case.
In Section 2.3, we give a probabilistic algorithm that finds a (1 − δ)-approximation in
time O((n2/δ4) log3(n/δ)) with high probability. We also show that approximating the
largest visible polygon up to a constant factor is 3sum-hard [GO95], implying that our
algorithm is probably close to optimal as far as the dependency on n is concerned.

Our second problem is motivated by the task of placing a new supermarket such that it
takes over as many customers as possible from the existing competition. If we assume that
customers are uniformly distributed and shop at the nearest supermarket, then our task is
indeed to find a point x such that the Voronoi region of x is as large as possible. The area
of Voronoi regions has been considered before in the context of games, such as the Voronoi
game [ACC+01, CHLM04] or the Hotelling game [OBSC00]. As far as we know, the only
previous paper discussing maximizing the Voronoi region of a new point is by Dehne et
al. [DKS02], who show that the area function has only a single local maximum inside a
region where the set of Voronoi neighbors does not change and is in convex position. They
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give an algorithm for finding (approximately) the optimal new point numerically based on
Newton approximation.

In Section 3 we show that given a set T of n points and a δ > 0, we can find a point xapp

such that µ(xapp) ≥ (1 − δ)µopt, where µ(x) is the area of the Voronoi region of x in the
Voronoi diagram of T ∪ {x}, and µopt = maxx µ(x). The (deterministic) running time of
the algorithm is O(n/δ4 + n log n).

Our framework captures a variety of other problems, where the goal is to maximize
the area of some region which depends on a multi-dimensional parameter. As an example
of such a further application, we consider the problem of matching two planar shapes P
and Q under translations or rigid motions. The area of overlap (or the area of the symmetric
difference) of two planar regions is a natural measure of their similarity that is insensitive
to noise [AFRW98, dBCD+98]. Mount et al. [MSW96] first studied the function mapping
a translation vector to the area of overlap of a translated simple polygon P with another
simple polygon Q, showing that it is continuous and piecewise polynomial of degree at
most two. If m and n are the number of vertices of P and Q, respectively, then the
function has O((nm)2) pieces, and can be computed within the same time bound. No
algorithm is known that computes the translation maximizing the area of overlap that
does not essentially construct the whole function graph. De Berg et al. [dBCD+98] gave an
O((n+m) log(n+m)) time algorithm to solve the problem in the case of convex polygons,
and gave a constant-factor approximation. Alt et al. [AFRW98] gave a constant-factor
approximation for the minimum area of the symmetric difference of two convex polygons.
Finally, de Berg et al. [dBGK+04] consider the case where P and Q are disjoint unions of
m and n unit disks, with m ≤ n. They compute a (1− ε)-approximation for the maximal
area of overlap of P and Q under translations in time O((nm/ε2) log(n/ε)), and under
rigid motions in time O((n2m2/ε3) log n). We are not aware of any previous result on
maximizing the overlap of more general shapes under rigid motions.

Our framework applies immediately to this problem: for a translation vector x, let P (x)
denote the translation of P by x, and let µ(x) be the ratio of the areas of P (x)∩Q and P .
Clearly, 0 ≤ µ(x) ≤ 1, where µ(x) = 1 for a perfect match (this model allows to search
for P appearing as a subpattern in Q). Let µopt := maxx µ(x). We show how to find a
translation xapp such that µ(xapp) ≥ µopt − ε. Note that the error is absolute here. This
makes sense in shape matching: if µopt is small (say less than 1/10), then P and Q cannot
be matched well. In many applications it will be sufficient to know that no decent match
is possible, rather than a precise estimate on how poor the match is.

If P and Q are polygonal regions of complexity m and n, the running time of our
procedure is O(m + (n2/ε4) log2 n). For the case of disjoint unit disks studied by de Berg
et al., this reduces to O((n/ε4) log3 n), saving one order of magnitude over their result
(which is, however, deterministic, approximates with a relative error, and has a better
dependence on ε).

Finally, we consider the case of arbitrary rigid motions, and give an O(m+(n3/ε4) log5 n)
time algorithm for polygonal regions.
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Our algorithms are based on the theory of ε-approximations. Instead of measuring area
directly, we estimate it by counting the number of points of an ε-approximation S inside
the region. The estimate is sufficiently tight such that the point that maximizes it is a
good approximation for the optimal solution. The beauty of this approach is that it turns
a continuous problem into a discrete one: we only need to find the point x such that V (x)
contains the largest number of points of S. If, for s ∈ S, we define W (s) = {x | s ∈ V (x)},
then this problem can be solved by computing the arrangement of the W (s), for s ∈ S,
and inspecting each face of this arrangement.

In Section 2.1, we show how to apply this approach to our first problem, maximizing the
visibility region. Unfortunately, it turns out that the size of the ε-approximation required
is prohibitively large. This is because the area of the optimal solution might only be of
the order of 1/n, so our ε-approximation needs to guarantee an error of less than δ/n. In
Sections 2.2 and 2.3 we show how to work around these problems, and improve the running
time to near-quadratic.

In Section 3, we consider the Voronoi region problem. Here we can exploit the geometry
of the optimal solution to decompose the problem into subproblems such that in each
subproblem a small ε-approximation is sufficient.

We generate ε-approximations by random sampling. The reader may wonder why,
if apparently random sampling works, we cannot simply generate a random sample X,
compute µ(x) for each x ∈ X, and pick the sample point maximizing µ(x). Such an
approach appears to work for maximizing the Voronoi region, but the required sample
size would be prohibitively large. The approach doesn’t work at all for maximizing the
visibility region, as we will see in Section 2.1. Our indirect use of random sampling makes
indeed all the difference.

2 Maximizing the visibility region

2.1 Using an ε-approximation

In the following, let P denote a simple polygon, let µ(·) denote the area measure, and
assume that the area of P is 1; that is, µ(P ) = 1. Given a point x ∈ P , let VP (x) denote
the visibility polygon of x inside P ; that is, the region in P visible from x. Formally,

VP (x) =
{

y
∣∣∣ xy ⊆ int(P )

}
.

Note that under this definition a visibility polygon is an open set. Let µ(x) denote the
area of VP (x), and let µopt = maxx∈P µ(x) denote the maximal area.

Definition 2.1 For a set S of points in P , and a point x ∈ P , let

eS(x) =
|VP (x) ∩ S|

|S|
,

be the estimate of the area visible from x.
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Consider the range space (P,V), where V = {VP (x) | x ∈ P}. The set S is an ε-
approximation for this range space if for any x ∈ P we have (recall that µ(P ) = 1)

|eS(x)− µ(x)| ≤ ε.

Valtr [Val98] showed that the VC-dimension of the range space (P,V) is bounded by 23. By
the ε-approximation theorem [AS00], a uniform random sample S of O((d/ε2) log (d/εδ))
points from a range space of of VC dimension d is an ε-approximation for this range space
with probability ≥ 1− δ.

A uniform sample of points from P can be easily obtained by triangulating P , and first
choosing the triangle (with probability proportional to its area), and then choosing a point
from inside the triangle. Thus, this uniform sampling can be done in O(log n) expected
time per sample point, after O(n log n) preprocessing (in fact, linear preprocessing is also
achievable).

We note now that µopt ≥ 1/(n−2), since this quantity is bounded from below by the area
of the largest triangle in a triangulation of P . Let’s assume that S is an ε-approximation
for ε = δ/2n, let xapp ∈ P be the point maximizing eS(xapp), and let xopt ∈ P be the point
maximizing µ(xopt). Then we have

µ(xapp) ≥ eS(xapp)− δ/2n ≥ eS(xopt)− δ/2n

≥ µ(xopt)− δ/n ≥ (1− δ)µopt.

In other words, the point xapp ∈ P seeing the maximal number of points of S is a (1− δ)-
approximation to the point in P having the largest visibility polygon.

Now note that s ∈ VP (x) if and only if x ∈ VP (s). Let WS =
{

VP (s)
∣∣∣ s ∈ S

}
be the set of visibility polygons defined by the points of S, and let AP (S) denote the
arrangement A(WS). Our problem has reduced to finding a point in P that is contained
in the largest number of polygons in WS.

Lemma 2.2 Given a simple polygon P , and a parameter δ > 0, one can compute, in
O
(
(n5/δ4) log3(n/δ)

)
time, a point x ∈ P , such that µ(x) ≥ (1− δ)µopt.

Proof. Let ε = δ/2n. A uniform random sample S of

M = O(1/ε2 log (1/ε)) = O
(
(n2/δ2) log(n/δ)

)
points from P is an ε-approximation with high probability [AS00].

We compute, for each point s ∈ S, its visibility polygon VP (s) using sweeping. Let
WS be the resulting set of polygons. The complexity of the arrangement of A(WS) is
O(nM2) = O

(
(n5/δ4) log2(n/δ)

)
; it can be computed in O

(
(n5/δ4) log3(n/δ)

)
time.

To see the bound on the complexity, observe that a segment inside P might intersect the
boundary of a visibility polygon at most twice. The total number of edges of the visibility
polygons in WS is O(nM), and each such segment contains at most O(M) vertices of the
arrangement, implying the bound stated. See [GMMN90] for details.
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Figure 1: Canonical counterexample

Finally, we perform a simple traversal of the arrangement, where we compute for each
face the number of polygons of WS that contain it. We pick a point in the face where this
number is largest.

The size of the sample used is too large to make the above algorithm attractive. There
are two reasons for this: The value of ε has to be chosen sufficiently small to guarantee
correctness for the extreme case where µopt ≈ 1/n. Furthermore, an ε-approximation is
stronger than what is really required: it guarantees a good approximation for any range.
In the next section we will see that testing a “small” (that is, polynomial) number of
candidates is sufficient, and in Section 2.3 we will then deal with the problem of possibly
small µopt.

At this point, the reader may wonder why we do not take a more direct approach of
just sampling enough points, for each point computing its visibility polygon, and returning
the largest visibility polygon computed. Somewhat surprisingly, this does not work, as
demonstrated by the example depicted in Figure 1. Imagine that we stretch the horizontal
and vertical corridors until each of them has area 1/n− 1/n10, while the central room has
area 1/n9. With high probability, a random sample of size, say, O(n) would have sample
points only inside those corridors. Furthermore, the sample points would be “deep” in the
corridors. As such, every random sample point would see an area ≤ 1/n, while one can
place a point in the central room that sees area ≥ 2/n. In fact, the visibility arrangement
we get for such a sample has quadratic complexity and no point is contained in more than
two polygons.

2.2 Estimating the area directly

Given a point x ∈ P , we can estimate µ(x) by sampling a set S of points in P , and
computing the fraction that is visible from x (we assume that µ(P ) = 1).

Lemma 2.3 Let ν, δ be parameters, x be any point in P , such that µ(x) ≥ ν and 0 <
δ ≤ 1. Let S be a uniform sample from P of size M ≥ c1

log n
δ2ν

, where c1 is an appropriate
constant. Then,

Pr[|eS(x)− µ(x)| > δ · µ(x)] ≤ 1

n10
.
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Proof. This is immediate from the Chernoff inequality. Indeed, let X1, . . . , XM be indi-
cator variables, such that Xi = 1 if and only if the ith sample point si ∈ S is inside VP (x).
Let X =

∑
i Xi, c1 = 44 and

ρ = E[X] = µ(x)M ≥ ν · c1
log n

δ2ν
= 44

log n

δ2
.

By the (simplified form of the) Chernoff inequality [MR95], we have

Pr

[∣∣∣∣ |VP (x) ∩ S|
|S|

− µ(x)

∣∣∣∣ > δ · µ(x)

]
= Pr[|X − ρ| > δρ]

≤ e−δ2ρ/2 + e−δ2ρ/4 ≤ 2 exp

(
−δ2ρ

4

)
≤ 2 exp(−11 log n) ≤ 1

n10
.

The key observation in the above lemma is that because we are estimating µ(x) for
a single fixed point x only, the sample we need is considerably smaller than the sample
required by an ε-approximation, which guarantees the approximation bound for every
point x at the same time. Naturally, we would like to use such a small sample in the
algorithm of Lemma 2.2 and end up with a faster algorithm. However, one has now to be
careful, to argue that the random sample does not overestimate the area of the visibility
polygon of some other point in the polygon. We do so by arguing that the random sample
S correctly estimate the visibility for all vertices of the visibility arrangement induced by
S.

Lemma 2.4 Let ν, δ be parameters, let S be a uniform sample from P of size M ≥ c2
log n
δ2ν

,
where c2 is an appropriate constant, and let x be a vertex of the arrangement AP (S).

1. If µ(x) ≤ ν/4, then Pr[|eS(x)| ≥ ν/2] ≤ 1

n10
.

2. If µ(x) ≥ ν/4 then Pr[|eS(x)− µ(x)| > δ · µ(x)] ≤ 1

n10
.

Proof. Observe, that x is the intersection of the boundary of two visibility polygons of
WS, which are defined by two points of S. Let T be the set resulting from S by removing
those two points. Clearly, the random sample T is independent of x. We have

eT (x) =
|VP (x) ∩ T |

|T |
=
|VP (x) ∩ S|

|S|
· |S|
|T |

= eS(x)

(
1 +

2

M − 2

)
≤ eS(x)

(
1 +

νδ2

10

)
,
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since, by definition, the visibility polygons are open sets, and for c2 large enough. In
particular, we have |eS(x)− eT (x)| ≤ νδ2/10.

Thus, if µ(x) ≤ ν/4 then eS(x) ≤ eT (x) ≤ ν/2 with high probability, by the Chernoff
inequality, as can be easily verified. Alternatively, for µ(x) ≥ ν/4, we have by Lemma 2.3
that

Pr

[
|eT (x)− µ(x)| > δ

2
· µ(x)

]
≤ 1

n10
.

Observe that

|eS(x)− µ(x)| ≤ |eT (x)− µ(x)|+ |eS(x)− eT (x)|
≤ |eT (x)− µ(x)|+ δ2ν/10,

and since µ(x) ≥ ν/4, we have

Pr[|eS(x)− µ(x)| > δµ(x)] ≤ Pr

[
|eT (x)− µ(x)|+ δ2ν

10
> δµ(x)

]
≤ Pr

[
|eT (x)− µ(x)| > δ

2
µ(x)

]
≤ 1

n10
.

It is now natural to pick the vertex in the visibility arrangement contained in the
largest number of visibility polygons as the best placement for a guard. The following
lemma testifies that this indeed works with high probability.

Lemma 2.5 Let ν, δ be parameters such that δ > 1/n0.1 and ν > 1/n. Let S be a uniform
sample from P of size M ≥ c3

log n
δ2ν

, where c3 is an appropriate constant, and let x∗ be the
vertex of the arrangement AP (S) that maximizes eS(x∗).

1. If µopt ≤ ν/4, then Pr[eS(x∗) ≥ ν/2] ≤ 1

n6
.

2. If µopt ≥ ν/4 then Pr[|eS(x∗)− µopt| > δ · µopt(x
∗)] ≤ 1

n6
.

Proof. As we can argue quite similarly to Lemma 2.4, we only sketch the needed mod-
ifications. Consider the point xopt that realizes maxp∈P µ(p). Let x∗ be a vertex of f ,
where f is the face of AP (S) that contains xopt. It is easy to verify, that eS(x∗) is “close”
to eS(xopt). Thus, applying Lemma 2.4 to all vertices of AP (S), we have that eS(x∗) is
a good estimate to the maximum area visibility polygon in P . The arrangement AP (S)
has O(nM2) = o(n4) vertices, by the assumptions on δ and ν. Thus, it follows that the
probability that those estimates fail, is smaller than (1/n10)o(n4) < 1/n6.
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Lemma 2.5 yields an immediate algorithm for estimating the maximum area visibil-
ity polygon in P . Indeed, set ν = 1/n, compute a sample S inside P of size M =
O((n log n)/δ2), compute the arrangement AP (S), and find the vertex that is contained in
the largest number of visibility polygons induced by the points of S. Clearly, the overall
running time of this algorithm is O(nM2 log n) = O((n3/δ4) log3(n/δ)). This algorithm
succeeds with high probability. We conclude:

Theorem 2.6 Given a simple polygon P , and a parameter δ > 0, one can compute, in
O
(
(n3/δ4) log3(n/δ)

)
time, a point x ∈ P , such that µ(x) ≥ (1 − δ)µopt. This algorithm

succeeds with high probability.

2.3 Estimating the area of the optimal solution

The running time of Theorem 2.6 is dominated by the worst-case value of ν (which is a
lower-bound on the area of the largest visibility polygon). Thus, it is natural to perform
an exponential search for the right value of ν. Indeed, set ν = 1/2, and use Lemma 2.5.
Clearly, in near linear time, we either found the required visibility polygon, or alternatively,
we know (with high probability) that µopt ≤ 1/2.

In the ith iteration, let νi = 1/2i, and we check whether µopt ≤ νi, or alternatively, we
get a (1− δ)-approximation to the area of the largest visibility polygon.

What is the benefit in this approach? Well, in the ith iteration, we know that µopt ≤ νi−1

(with high probability). Thus, with high probability, no point of AP (Si) is contained in
more than L = 2νi−1Mi visibility polygons (see Lemma 2.12 below for a formal proof of

this intuitive claim). Here Si is the sample used in the ith iteration, of size Mi = O
(

log n
δ2νi

)
.

Furthermore,

L = 2νi−1Mi = O

(
log n

δ2

)
,

and thus the arrangement AP (Si) is L-shallow.

Definition 2.7 A set S of points in P is t-shallow if no point in P is contained inside
more than t visibility polygons of WS.

Lemma 2.8 If S is t-shallow, then the complexity of the arrangement AP (S) is O(nkt),
where n is the complexity of the polygon P , and k = |S|.

Proof. The complexity of the union of k such visibility polygons is O(nk) [GMMN90].
By Clarkson and Shor [CS89] this implies that the complexity of the at most t-level is
O(t2n(k/t)) = O(nkt). Since in our case, the at most t-level is the entire arrangement, the
lemma follows.

This implies that in the ith iteration, the algorithm computes an arrangement of com-
plexity

O(nMiL) = O

(
n

(
log n

δ2νi

)
log n

δ2

)
.

9



Thus, the running time of the algorithm is dominated by the running time of the last
iteration, which takes O(nMIL log(nMIL)) time, where I = dlog2 ne. We conclude:

Theorem 2.9 Given a simple polygon P , and a parameter δ > 0, one can compute, in
O
(
(n2/δ4) log3(n/δ)

)
time, a point x ∈ P , such that µ(x) ≥ (1 − δ)µopt. This algorithm

succeeds with high probability.

Interestingly, as pointed out to us by Jeff Erickson, this problem is 3sum-hard [GO95].
As this indicates that a subquadratic algorithm is unlikely, the result of Theorem 2.9 is
probably close to optimal.

Lemma 2.10 Given a simple polygon P , there is a constant c > 0, such that (1 − c)-
approximating the largest visible polygon in P is 3sum-hard.

Proof. The details of the proof are tedious but straightforward, and we only outline it.
The basic idea is to carefully extend the example of Figure 1 for the case of n arbitrary
lines.

Let L be a set of n lines with integer coefficients. Deciding whether three lines of L
pass through a common point is 3sum-hard. Furthermore, either L has three common lines
through a single point, or alternatively, the distance between any vertex of the arrangement
A(L) and a third line of L is at least δ > 0, where δ can be computed in linear time.
Indeed, the intersection of two lines y = ax + b and y = a′x + b′ is point (x0, y0) where
x0 = −(b − b′)/(a − a′) and y0 = ax0 + b. The distance of this point from a third line
y = a′′x + b′′ is η = (a′′x0 + b′′ − y0)/

√
a′′2 + b′′2 + 1. Now, if all coefficients are integers

bounded by U, then the denominator of x0 and y0 is bounded by 2U. And as such, the
enumerator of η, is a rational number with denominator bounded by 4U2. As such, either
η is zero, or δ = |η| ≥ 1/(4U2(2U2 + 1)). Which establish the lower bound we need.

One can resize and translate L, in O(n log n) time, such that all the vertices of the
arrangement of L lie in the square [0.25, 0.75]2. Next, consider the axis-parallel square S
of side length M10 centered at the origin, and replace every line ` ∈ L by thickening it into
a “rectangle” r` (that is, take the Minkowski sum of ` with an appropriately small axis
parallel square) such that the intersection of r` with S is of area 2. Here M ≥ n10 is an
appropriate large number, and a function of the input. Furthermore, all those rectangles
are disjoint outside the unit square (this can be guaranteed by picking M to be large
enough). Let R denote the resulting set of rectangles. By picking M large enough, it is
easy to guarantee that the topology of the union of the rectangles of R is identical to the
topology of the union of lines (that is, no faces outside the union disappear, and so on).
In particular, the value of M can be derived from the value of δ.

Next, consider the polygon P =

(⋃
r∈R

r

)
∪ [0, 1]2. We can compute P in O(n log n)

time. Now, if there are three lines in L that pass through a common point, then there is a
point that stabs three rectangles of R, and sees an area ≥ 3 · 2− o(1) inside P . Similarly,
if there is no point that is contained in three lines of L, then every point inside P sees at
most an area 2 · 2 + 1 + o(1) (the area of two rectangles corresponding to two lines, and
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the area of the unit square, plus some minor additional portions of rectangles that might
be locally visible).

This implies that there is a constant gap between the largest visible polygon in P
depending on whether L has three lines that share a point. Thus, the problem of approxi-
mating the largest visible polygon up to a constant factor is 3sum-hard.

In many cases we do not expect to encounter inputs where the visibility polygon is
truly small (that is ≈ 1/n of the total area of P ). The following corollary might be useful
in such a situation.

Corollary 2.11 Given a simple polygon P , and a parameter δ > 0, one can compute, in

O
(

n
µoptδ4 log3 n

δ

)
time, a point x ∈ P , such that µ(x) ≥ (1−δ)µopt. This algorithm succeeds

with high probability.

We also have the following combinatorial lemma.

Lemma 2.12 Let P be a simple polygon of area 1, such that the largest visibility polygon
in P has area at most ν, and let S be a uniform sample of size M ≥ (c1 log n)/ν, for some
constant c1. Then, with high probability, no point in P sees more than 2Mν points of S.

Proof. It is sufficient to prove this for all the vertices of the arrangement A = AP (S).
Consider a vertex v of A, defined by the visibility polygon of two points p, q ∈ S, and
observe that the number of visibility polygons of WS that covers v is determined by the
set S \ {p, q}. This is a random variable independent of p, with expectation at most
ρ = ν(M − 2) = Ω(log n). Arguing as in Lemma 2.3, it follows from the Chernoff in-
equality that the probability that p is contained in more than 2νM − 2 polygons of WS

is smaller than 2 exp
(
−ρ

4

)
≤ n−c1/8. This implies the lemma, as the number of vertices of

WS is bounded by O(nM2).

2.4 Finding a good set of guards

As discussed in the introduction, we want to use the greedy algorithm to find k “good”
guards for P . Namely, at every step we pick a guard that sees as much as possible of the
regions of the polygon of P not covered yet. We find the first guard using Theorem 2.9.
To find the following guards, we need to slightly modify the algorithm, as the uncovered
region is no longer a simple polygon. Indeed, assume that {g1 . . . gi} are guards that
were already assigned, and let Qi ⊆ P be the region not seen by these guards, namely
Qi = P \

⋃i
j=1 VP (gj). The complexity of Qi is O(ni), as Qi is the complement of the union

of i visibility polygons inside P [GMMN90]. We modify the algorithm to pick random
sample points only from Qi, and normalize the area of Qi to be 1. It is straightforward
to modify the algorithm of Theorem 2.6 to handle this more complicated case, and verify
that the algorithm still work. The only major difference being that we set in Theorem 2.6,
ν = 1/(ni) since Qi can be decomposed into O(ni) triangles. Hence the running time
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increases to O
(
(i3n3/δ4) log3(n/δ)

)
. Similarly, the runtime of Theorem 2.9 increases to

O
(
(i2n2/δ4) log3(n/δ)

)
. To analyze the performance of this algorithm, we use the result

of [HP98] that shows that a β-approximation algorithm to the heaviest set in a set-cover
instance, when used repeatedly k times, results in a 1 − exp(−β) approximation to the
heaviest cover with k sets. Combining our approximation algorithm with the analysis of
[HP98] yields the following result.

Theorem 2.13 Given a simple polygon P , a parameter δ > 0, and a positive integer k,
one can compute, in O

(
(k3n2/δ4) log3(n/δ)

)
time, a set of k guards {g∗1 . . . g∗k} ⊂ P such

that

µ

(
k⋃

i=1

VP (g∗i )

)
≥
(
1− eδ−1

)
max

{g1...gk}⊂P
µ

(
k⋃

i=1

VP (gi)

)
.

This algorithm succeeds with high probability.

Of course, one can continue running the algorithm past the first k iterations. In general,
this would result in m = O(k log(1/ε)) guards guarding an area at least 1 − ε times the
area guarded by the optimal k guards.

3 Maximizing the Voronoi region

Let T be a given fixed set of n points in the plane. For a point x not necessarily in T ,
let VT (x) denote the Voronoi region of x in the Voronoi diagram of T ∪ {x}, and let µ(x)
denote the area of VT (x). We are looking for a point xopt maximizing µopt = µ(xopt). For
points x outside the convex hull of T , µ(x) would be infinite. There are quite a few ways
of avoiding these boundary situations: using torus topology, restricting the point (i.e.,
supermarket) to lie within a polygon (i.e., city limits), or by adding a boundary that acts
as an additional site. In the following we choose the first option, and assume the input
is a set of points in a unit square with torus topology. The reader can easily modify the
arguments to handle the boundary in a different way.

The reach of a Voronoi region VT (x) is the distance between the site x and the fur-
thest point inside VT (x), or, in other words, the radius of the smallest disc centered at x
containing VT (x). We can estimate µopt as follows.

Lemma 3.1 Let ` be the largest reach of any Voronoi region VT (t), for t ∈ T . Then

π`2/4 ≤ µopt ≤ π`2.

Proof. Let p be a point realizing the reach `, that is, its distance to the nearest site is `.
It follows that VT (p) contains the disc with center p and radius `/2, and so µ(p) ≥ π`2/4.
The lower bound follows.

Let now x be the point realizing the optimal solution, that is µ(x) = µopt, and let
y ∈ VT (x) be the point furthest from x. Its distance to the nearest site in T is at most `,
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and so its distance to x is at most `. It follows that VT (x) is contained in the disc with
radius ` and center x, implying the upper bound.

Note that the largest reach ` is also the radius of the largest empty circle. It can be
computed in O(n log n) time by computing the Voronoi diagram V of T and inspecting
every vertex of V .

Our goal is to find a point xapp such that µ(xapp) ≥ (1−δ)µopt, for some parameter δ > 0.
We partition the unit square (containing T ) into a grid of squares with side length `. For
each grid cell Q, we will apply the ε-approximation technique of Section 2.1. We will define
an estimate function eS, such that for any x ∈ Q we have

|eS(x)− µ(x)| ≤ δπ`2

8
,

and we pick a point xQ ∈ Q maximizing eS(xQ). Let’s first argue that this solves the
problem: Let xapp be the point xQ that maximizes eS(xQ). Then

µ(xapp) ≥ eS(xapp)−
δπ`2

8
≥ eS(xopt)−

δπ`2

8
≥ µopt −

δπ`2

4
≥ µopt − δµopt

= (1− δ)µopt,

and so xapp is the desired approximate solution.
It remains to show how to define eS and how to find the point xQ, for each grid cell Q.

Let’s fix a grid cell Q, and let x be a point in Q. The reach of VT (x) is at most `, and
so VT (x) can intersect only Q itself and its eight neighboring grid cells. Consequently, all
points of T participating in the definition of VT (x) lie in Q and the 24 grid cells at distance
at most 2`. Let Q′ denote the union of these 25 grid cells, and let TQ = T ∩Q′.

We make use of the following simple lemma.

Lemma 3.2 Let S be a square grid of density ε in the plane, that is, the distance between
neighboring grid points is ε, and let C be a convex body of diameter at most D. Then∣∣µ(C)− ε2 |C ∩ S|

∣∣ ≤ 4Dε.

Proof. Consider the tessellation of the plane into little squares of side length ε, where
each point of S is the center of one little square. The boundary of C intersects at most
4D/ε little squares, which implies the bound.

We set ε = δπ`/64 and let S be a square grid of density ε, covering Q′. For a point
x ∈ Q, let

eS(x) = ε2 |VT (x) ∩ S|

be the estimate of the Voronoi region of x. Making use of the fact that the diameter of
VT (x) is at most 2`, we then have by Lemma 3.2

|eS(x)− µ(x)| ≤ 8`ε ≤ δπ`2/8,
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and by what we observed above, it remains to find the point xQ ∈ Q maximizing eS(xQ).
To this end, we define

W (s) =
{

x ∈ Q
∣∣∣ s ∈ VT (x)

}
.

Note that W (s) is simply the largest disc with center s that contains no point of T in its
interior, clipped to Q. Let WS = {W (s) | s ∈ S} and consider the arrangement A(WS).
As in Section 2.1, our problem has reduced to finding a point in Q that is contained in the
largest number of clipped discs in WS.

Theorem 3.3 Given a set T of n points in the plane and a parameter δ > 0, one can
deterministically compute, in time O(n/δ4 + n log n), a point xapp such that µ(xapp) ≥
(1− δ)µopt.

Proof. We start by computing the Voronoi diagram of T and inspecting its vertices to
determine the largest reach `. We then define the square grid, and determine the set of
points TQ relevant in each grid cell. Since a point of T is relevant in at most 25 grid cells,
the total size of the sets TQ is O(n).

For each grid cell Q we take a square grid S of density ε = δπ`/64. It consists of
M = 25`2/ε2 = O(1/δ2) points. For s ∈ S, the clipped disc W (s) can be determined by
finding the nearest neighbor to s in TQ. We do this by simply comparing the distance
from s to each point in TQ. The arrangement WS is computed by a sweep-line algorithm
in time O(M2). The number of discs containing each face of the arrangement can again
be determined by a simple transversal. We pick a point xQ from the face maximizing the
estimate eS(xQ).

By the choice of `, every grid cell is within distance at most 2` from a point of T .
The number of grid cells handled is therefore at most O(n). Each point of T appears at
most 25M times in a nearest-neighbor computation, and so the overall running time is
O(n log n + nM + nM2) = O(n/δ4 + n log n).

4 Shape matching

To round off our presentation, we now briefly discuss an application of our framework to
the shape matching problem. Let P and Q be polygonal regions of complexity m and n,
respectively. For a translation vector x, let VPQ(x) denote P (x)∩Q, where P (x) = {p+x |
p ∈ P} is the region obtained by translating P by x. Let µ(x) = µ(VPQ(x))/µ(P ) denote
the ratio of the areas of VPQ(x) and P . Our goal is to find the translation x maximizing
µ(x). As before, let µopt be maxx µ(x), and let xopt be such that µopt = xopt.

We normalize such that µ(P ) = 1, and so µ(x) becomes simply µ(VPQ(x)). We sample
a set S of M points in P , and for a translation x (identified with a point x in the plane),
we count the fraction of sample points that is translated into Q to obtain the estimate

eS(x) =
|S(x) ∩Q|

|S|
,
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where S(x) = {s + x | s ∈ S}.
We will use the following Chernoff-bound for the absolute error.

Lemma 4.1 Let Xi, i = 1, ..., r, be independent random variables with values 0 and 1, let
X =

∑r
i=1 Xi, and let ε be a parameter with 0 < ε < 1. Then

Pr[|X − E[X]| > εr] < 2 exp(−ε2r/2).

Proof. Let ρ = E[X]. By the simplified Chernoff bound [MR95, Theorem 4.2], we have

Pr[X < (1− δ)ρ] < exp(−ρδ2/2),

for 0 < δ ≤ 1. We use this to prove that

Pr[X < ρ− εr] < exp(−ε2r/2).

This is clearly true if ρ ≤ εr. Otherwise, set δ = εr/ρ < 1, and the result follows from

ρδ2 = ρε2r2/ρ2 = ε2r2/ρ ≥ ε2r.

Finally, by considering the random variables X ′
i = 1−Xi, we can conclude that

Pr[X > ρ + εr] < exp(−ε2r/2)

as well, and the result follows.

We now define, for s ∈ S, W (s) = {x | s + x ∈ Q}. Obviously, W (s) is a translated
copy of Q. Let AQ(S) be the arrangement of all regions W (s). As before, we choose the
vertex xapp of AQ(S) that maximizes eS(xapp). We have the following lemma.

Lemma 4.2 Let 0 < ε < 1 be a parameter, let S be a uniform sample from P of size
M ≥ c log n

ε2 + 2, for a suitable constant c, and let x be a vertex of the arrangement AQ(S).
Then,

Pr[|eS(x)− µ(x)| > ε] ≤ 1

n6
.

Proof. Consider a fixed vertex x of AQ(S). We observe that x is the intersection of the
boundaries of W (s1) and W (s2), for two points s1, s2 ∈ S. Let T = S \ {s1, s2}. The
random sample T is independent of x. As in the proof of Lemma 2.4, we find that

|eT (x)− eS(x)| ≤ 2/(M − 2) ≤ ε/10,

for c large enough.
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We now define random variables Xs, for s ∈ T , as follows: Xs = 1 if s + x ∈ Q, else
Xs = 0. Let X =

∑
s∈T Xs and let r = |T | = M − 2. We then have X = eT (x) · r, and

E[X] = µ(x) · r. By Lemma 4.1, we have

Pr[|eT (x)− µ(x)| > ε/2] = Pr[|X − E[X]| > εr/2] < 2 exp(−ε2r/8) ≤ 2

nc/8
.

The arrangementAQ(S) consists of M translated copies of Q, and has at most M2n2 ver-
tices. This implies that the probability that for any vertex x of AQ(S) we have |eS(x) −
µ(x)| > ε is at most 2M2n2/nc/8, which is less than 1/n6 for large enough c.

Lemma 4.2 implies that with high probability the vertex xapp of AQ(S) maximizing eS(xapp)
fulfills µ(xapp) ≥ µ(xopt)− 2ε. We therefore have the following main theorem.

Theorem 4.3 Given polygonal shapes P and Q of complexity m and n in the plane. In
time O(m + (n2/ε4) log2 n) we can compute a translation xapp such that µ(xapp) ≥ µopt− ε
with high probability.

If P and Q are disjoint unions of m and n unit disks, then the running time reduces to
O((n/ε4) log3 n).

Proof. We start by triangulating P , so that we can take the sample S uniformly at random
from P . The arrangement AQ(S) can be computed in time O(n2M2) = O((n2/ε4) log2 n).
The vertex xapp maximizing eS(xapp) can then be found by a simple traversal of the ar-
rangement.

If P and Q are disjoint unions of unit disks (the case studied by de Berg et al. [dBGK+04]),
the arrangement AQ(S) consists of M translated copies of a set of n disjoint unit disks.
Each disk can intersect only a constant number of disks in each W (s), and so the total num-
ber of vertices of AQ(S) is at most O(nM2). It can be computed in time O(nM2 log n) =
O((n/ε4) log3 n), for instance by a plane sweep, and again xapp can be found using a traver-
sal.

Finally, we consider the problem of maximizing µ(VPQ(x)) under rigid motions x. The
probabilistic analysis above goes through nearly unchanged, using a three-dimensional
configuration space for x. It is, however, no longer attractive to explicitly compute the
arrangement AQ(S), as the regions W (s) are now bounded by curved surfaces. Fortunately,
we do not need the arrangement AQ(S) as long as we can somehow enumerate its vertices.
A vertex of AQ(S) is defined by a rigid motion that moves up to three points of S onto
the boundary of Q. For each triple of sample points from S and each triple of edges
of Q, this can happen only a constant number of times, and so we can enumerate all
possible vertices of AQ(S) in time O(M3n3) = O((n3/ε6) log3 n). For each candidate
motion x, we test whether it maps each s ∈ S into Q. Using a point location data
structure for Q, this can be done in time O(M log n), and so the total running time is
O(m + M4n3 log n) = O(m + (n3/ε4) log5 n).
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5 Conclusions

We have given a near-quadratic time algorithm for approximating the largest visible poly-
gon inside a simple polygon. Our algorithm runs in near-linear time if the visibility polygon
is reasonably large, a case that appears relevant in many applications. We also showed
that approximating the area of the largest visible polygon is a 3sum-hard problem [GO95],
and as such it is unlikely to have a subquadratic algorithm.

In the second part of the paper, we applied a similar technique to the problem of finding
the largest Voronoi cell one might occupy by a single point. Unlike the first problem, where
direct random sampling does not yield any guaranteed approximation in the worst case,
here direct random sampling seems to be possible. To do so, one has to prove that the
area of the region

A =
{

x
∣∣∣µ (x) ≥ (1− δ)µopt

}
is sufficiently large to be “hit” by a sample point. The bounds we were able to prove
on the area of A result in an algorithm far slower than the one presented here, and used
considerably more involved arguments. It seems that this problem is far from being well
understood, and we leave it as open problem for further research. (See [DKS02] for related
results.)
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A On the area function

A.1 The visibility polygon case

Let P be a simple polygon in the plane, and let p = (x, y) be a point inside it. Let V (p)
be the visibility polygon of p, and let µ(p) be the area of V (p). We are interested in giving
a closed form formula for µ(p). To this end, we triangulate V (p) around p, and consider
a triangle in this triangulation. In the most general case, such a triangle 4 is formed by
two rays emanating from p that pass through two vertices q = (a, b) and q′ = (c, d), and
end on an edge e. For the sake of simplicity of exposition, assume that b, d ≥ 0 and e lies

on the x-axis. The line through p and q intersects e at the point
(
x− y x−a

y−b
, 0
)
, while the

line through p and q′ intersects e at the point
(
x− y x−c

y−d
, 0
)
. The area of the triangle 4 is

then
y2

2

(
x− a

y − b
− x− c

y − d

)
,

assuming x−a
y−b

≥ x−c
y−d

.
In general, of course, e is not necessarily on the x-axis. After applying an affine transfor-

mation, we obtain a somewhat more complicated formula, which is still a rational function
of low degree. The function µ(p) can be written as the sum of at most n such terms.
Careful inspection of the expression above shows that these terms do not have a common
denominator.

A.2 The Voronoi diagram case

Let T be a set of n points in the plane, and let µ(p) denote the area of the cell C of p in the
Voronoi diagram of {p} ∪ T . We triangulate C by connecting p to each vertex of C. The
coordinates of the vertices of C are intersections of bisectors of p and a point of T , and
therefore rational functions of low degree in p. The area of each triangle can be written as
the determinant of its vertices, and is therefore again a low-degree rational function in p.
So again, the function µ(p) can be written as the sum of low-degree rational functions.
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