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Abstract

In proteomics 2–dimensional gel electrophoresis (2–DE) is a separation technique for proteins.
The resulting protein spots can be identified by either using picking robots and subsequent mass
spectrometry or by visual cross inspection of a new gel image with an already analyzed master
gel. Difficulties especially arise from inherent noise and irregular geometric distortions in 2–DE
images. Aiming at the automated analysis of large series of 2–DE images, or at the even more
difficult interlaboratory gel comparisons, the bottleneck is to solve the two most basic algorithmic
problems with high quality: Identifying protein spots and computing a matching between two
images. For the development of the analysis software CAROL at Freie Universit¨at Berlin we
have reconsidered these two problems and obtained new solutions which rely on methods from
computational geometry. Their novelties are: 1. Spot detection is also possible for complex
regions formed by several “merged” (usually saturated) spots; 2. User–defined landmarks are
not necessary for the matching. Furthermore, images for comparison are allowed to represent
different parts of the entire protein pattern, which only partially “overlap”. The implementation is
done in a client server architecture to allow queries via the Internet. We also discuss and point at
related theoretical questions in computational geometry.

1 Introduction

The proteomic research deals with the systematic analysis of complete profiles of the proteins ex-
pressed in a given cell, tissue or biological system at a given time. In this field, 2D–gel electrophoresis
(2–DE) is a well–established and widely used technique to separate proteins in a sample. A 2–DE gel
is the product of two sequentially performed separations in acrylamide gel media: isoelectric focus-
ing as first dimension and a separation by molecular weight as second dimension. The result of that
process is a 2D pattern of spots each representing a protein. There is a variety of staining methods to
display protein spots: Coomassie blue and silver-staining and / or fluorescent and radioactive label-
ing. Mass spectrometry and the visual (usually computer aided) comparison (matching) with already
analyzed gel images of such a sample are used to identify proteins. The visual analysis of such 2–
DE image series intends to identify those proteins that change their expression (size, intensity) and
reflect/cause certain biochemical and biomedical conditions of an organism, see [26]. However, this
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requires high throughput analysis tools and the major challenge is to obtain both robust and reliable
algorithmic solutions that work automatically, or at least need only little user interaction. As we
will see, this goal in conjunction with efficiency requirements makes it necessary to start with simple
(sometimes oversimplified) modelling assumptions.

A second strand of research was initiated in [22]. Here the challenge consists of creating analysis
software that is able to perform interlaboratory gel image comparisons and to deal with images from
various databases via the Internet.

The intensive research on these questions emphasizes the strong demand from the practitioners
for better algorithmic solutions.

The aim of this paper is to demonstrate how ideas from computational geometry help to meet
these challenges in the context of the two most basic problems in gel analysis:

� Spot detection:Given a scanned 2–DE gel image identify spot regions.
� Gel matching: Given two images by their spot lists, perform a matching procedure to identify

those spot pairs that correspond to each other, so that the matching reflects both geometric and
spot intensity resemblance of the images.

In this paper we survey algorithmic studies and implementation work that was done while developing
the 2–DE analysis software system CAROL ([9]). It contains both new results (Section 2, Subsection
3.4) and partly published ones (Section 3, [17]). Interestingly, this application problem has also lead
to new theoretical questions in geometry.

In Section 2 we address the spot detection question in the following context. Originally the
CAROL project was designed to answer only matching queries for gel images. It turned out that
available spot detection algorithms did not adequately support the underlying philosophy that is based
on the similarity of geometric point patterns. Thus the spot detection approach presented here aims
at determining the point pattern of a gel as precise as possible rather than computing exact shapes
and volume data of spots. We assume that each spot has approximately the shape of an axis-parallel
ellipse. This is a widely accepted, but surely simplified, modeling assumption, see for example [5] or
[14]. However, spots that are very close to each other may partially overlap and “merge”. This can
lead to rather complicated local pixel regions, as depicted in Figure 1, compare [20].

In [23] a spot detection algorithm is described that relies on a watershed transformation applied
to the gradient image. The most difficult part is the interpretation of twin spots, streaks (left side
in Fig.1), and so–calledcomplex regions(right side in Fig.1) as unions of ellipses. This especially
applies to the case of oversaturated regions in silver stained gels.

Figure 1: Twin spots, streaks, and a complex region

In fact, in [23] the latter case of interpreting complex regions was left open and in the implementation
the user had to edit these complex regions by hand. Here we present an algorithmic solution to this
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question based on a Linear Programming (LP) formulation. To the best of our knowledge it is the first
algorithmic attempt to deal with spot detection of complex oversaturated regions in a single image.
An alternative approach has been studied in [6], where the information of multiple already aligned
images is used for a subsequent spot detection.

There is an inherent uncertainty in the images due to the electrophoresis process itself which is
highly susceptible to faults and geometric distortions. The reader may argue just by looking at the
images, that there is no hope to come up with a perfect spot detection algorithm. This is certainly true.
Yet we can cope with this ambiguity, at least to some extent by computing a ranked list of proposals
how a complex region could be covered instead of computing only the “best” covering, which could
be erroneous. Then, in the matching algorithm, we have the possibility to accept the matching of two
ambiguous regions if there is a pair of proposed coverings that match.

The matching algorithm itself is described in Section 3. Assume that a source and a target image
are given by their spot lists. We first transform the lists into geometric point patterns, where a spot is
represented by the ellipse center coordinates and additionally we code the real size/intensity of the spot
into a single integer value. The lists can be of significantly different size and, additionally, we allow
the images to show only partially overlapping sections of the gels. Thus the task is to find a maximal–
cardinality one–to–one matching of the spot lists, so that this mapping respects both the geometry of
the images and the relative spot intensities i.e., relatively intensive source spots should be mapped to
relatively intensive target spots. The geometric matching criterion is based on similarity of imaginary
edges which link spots. Two edges are similar if their length ratio and the difference of their angles
formed with thex–axis are within preset tolerance bounds. Our algorithmic solution, which we call
global–via–local matching, works in two stages. Firstly, we compute matchings for several small local
patterns, which are chosen in a grid–like fashion. For this local matching we use a modified alignment
method known from point pattern matching ([2]) combined with geometric hashing. A significant
speed–up is gained by reducing the set of all source / target edges to those belonging to the history
of the incremental Delaunay triangulation of the spot lists in the order of their decreasing intensities.
Having sets of matching candidates for each of the local patterns, we select a subset that is consistent
with the overall grid topology. The matching spot pairs computed this way later serve as “landmarks”
in the second stage. Landmarks were also used in previous algorithmic solutions, but they had to
be set manually. The novelty of our solution is to generate them automatically. The subsequent
extension from landmarks to a maximal global matching is rather standard by local neighborhood
comparisons. Since this step uses mainly geometric information, it is capable to match spots with
different intensities, that correspond to significantly regulated proteins. Moreover in the extension
step it is possible to exploit the proposal lists for ambigious spot regions, as computed in the spot
detection. This way, we present a first step towards the simulation of how an expert would compare
images by visual inspection, namely, by intertwining the spot detection with the matching process.

Figure 2 shows two 2–DE gel images originated from a transfection experiment of cultured EaHy
cells with 800 (left) and 1000 protein spots. Their original size is about 23cm by 29cm. For the
purpose of illustration in Figure 3 and 4 more details are shown of the small rectangular window
regions marked in Figure 2. (For simplicity ellipses were replaced by circles.)

In both Sections 2 and 3 we also refer to related theoretical issues and open problems in compu-
tational geometry that could further improve our solution. In Section 4 we outline implementation
issues and describe experimental results.

3



Figure 2: Two gel images of cultured EaHy cells from a transfection experiment

Figure 3: Detailed local images of Fig.2, a selected pattern on the left side and a partial matching

2 Spot Detection in Complex Regions as an Ellipse Covering Problem

2.1 Modeling of the Core Problem

Spot detection is to a wide extent an image processing problem. In fact, if the spots are well sepa-
rated, classical methods like filtering and watershed transformation on the gradient image provide a
satisfying algorithmic solution, see [23]. As mentioned above, the core combinatorial problem is the
interpretation of complex pixel regions as unions of axis parallel ellipses.

The following formalization is a compromise stemming from discussions with practitioners who
solve these covering instances by peer review. First, we remark that complex regions are typically
saturated (black), and therefore gray level information does not help for the detection. We assume that
a connected pixel patternR is given, which is fat in the sense that there are neither short horizontal
nor vertical cuts consisting of only two pixels. In the applicationR is usually a simply connected
subpattern of a100 � 100–pixel square.
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Figure 4: Spot sets detected with black spots indicating the local matching

To make use of the powerful machinery of geometric approximation algorithms we identify pixels
with their center points. Then the regionR can be represented by two sets of pointsC andF , where
C is a sample of points to becovered(insideR) andF is a set offorbiddenpoints (outsideR). One
can obtain these sets walking along the boundary ofR and choosing points inside and outside within
a small distance. This approach somehow mimics the general practice of experts who are looking
for ellipses approximating long parts of the boundary ofR. The advantage that both sets are of small
cardinality has to be paid for by the fact that the computed cover could have some hole in the interior of
the region. To avoid this one also can chooseC as the set of all grid points inR (from an appropriately
dense grid). Then, of course, the cardinalitym of C can be quadratic inn, the size ofF .

Now we can formulate the approximate covering problem from the application point of view. For
numbers0 � Æ; � � 1 the problem is to find a smallest-cardinality setE of axis–parallel ellipses
fulfilling the following conditions.

1. (Fitting) Each ellipseE 2 E respectsF , i.e., it does not intersectF .

2. (Intersection) The boundaries of every pair of ellipsesE;E0 in E intersects in at most 2 points,
and area(E \E0) � Æ �minfarea(E);area(E0)g.

3. (Covering)
S

E2E
E covers at least a (1� �)–portion of pixels inC.

The aim to find minimal–cardinality coverings is in accordance with Occam’s razor principle, since
the smallest cardinality set is, in absence of a master gel, the simplest hypothesis to explain how
a complex region could have been evolved. At first sight one would require to cover all points in
R, however in order to cope with noise the covering condition allows to leave a small portion of
points uncovered. The fitting condition ensures that the selected ellipses do not cover much more
than the regionR. From the way the gel production process spreads a protein in the two dimensions,
practitioners usually conclude that two spots do not form a cross. We incorporated this notion in the
intersection condition.

Following the standard methodology of set cover approximation, our ellipse covering problem
splits into two parts:

1. Find a basic setE of ellipses such that each ellipseE 2 E fulfills the fitting property, and
R �

S
E2E

E.
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Figure 5: Ellipse covering computed by brute force method (left) and by LP approach (right)

2. Select a minimum cardinality subsetE � E which respects the intersection and covering prop-
erties.

Remark that (the boundary of) an axis–parallel ellipse can be represented by the solutions of the
equation

(x� c)2

a2
+

(y � d)2

b2
� 1 = 0 (1)

with parametersa; b; c; d 2 IR, where(c; d) is the ellipse center, anda and b are the lengths of
the halfaxes. Thus a straightforward approach is to discretize the parameter space of all possible
ellipses, and defineE to be the set of all inclusion maximal ellipses fulfilling the fitting property.
One way to avoid misinterpretation of streaks is to exclude ellipses of an ”extreme” shape, i.e., to
requirea=b 2 [1=�; �] for a suitable constant� � 1. This also reduces the complexity ofE. The
selection ofE � E can then be easily done in a greedy fashion. We implemented this approach,
however both runtime and the quality of the solution did not meet our expectations, see e.g. Figure 5.
In Subsection 2.3 we study from a theoretical point of view how to improve on both, making use of
advanced geometric data structures and techniques. In Subsection 2.2 we present an alternative LP-
based approach, which avoids the explicit construction of a large basic setE, and instead combines
construction and selection of ellipses. Experimental results show that both quality and runtime of the
LP-approach are superior to the simple brute force solution.

2.2 Using an LP Approach to Generate Ellipses

In the implementation we assumed that the regionR is simply connected and rectilinear. However,
it is straightforward how to extend the algorithms to arbitrary polygonal regions. Aiming at better
runtimes,C andF are samples of those points inside and outside ofR which are close (one pixel
distance) to the boundary ofR. The basic rule of the sampling heuristic we apply is to choose a
denser sample forC (resp.F ) in convex (resp. concave) boundary parts with high curvature.

Observe that each element inF forms an outer constraint for each ellipse in the cover because of
the fitting condition. On the other hand, we want at least a few points (say, at least three) fromC to be
included in an ellipse of the covering. Therefore, we start from a randomly chosen triplet of mutually
visible points fromC and ask whether there is an axis–parallel ellipse containing these points so that
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Figure 6: Three covering proposals for a complex region generated by the LP–approach

it does not violate an outer constraint. Once having the information that for a given triplet there is a
feasible solution one can efficiently extend the covered sample subset by an LP–based approach.

We start from the observation that the parameters of an ellipseE can be transformed into variables
of an LP in such a way that each of the three points which have to be covered byE adds a linear
constraint to the outer constraints. The constraints are derived by plugging a pointp = (px; py) into

the ellipse formula(px�c)2

a2
+

(py�d)2

b2
�1 which has to be zero (negative, positive) for points on (inside,

outside)E. Since this is not a linear constraint we start with one of the form

pxx1 � p2yx2 + pyx3 � x4 = p2x (resp. <;>) (2)

By elementary calculation, settingt = x2
1

4 +
x2
3

4x2
� x4, we derive as ellipse parameters

a =
p
t b =

r
t

x2
c =

x1

2
d =

x3

2x2
: (3)

Given the existence of a feasible solution (not an explicit ellipse yet!) one wants to extend the point
set that can be covered. Clearly, it makes sense to add and check first the neighbors of the already
covered sample points. This is also done in a random way. However, it is clear that one can easily get
stuck when there is a very restrictive partial solution, in the sense that we have still a feasible system
but the actual solution set of ellipses is very small and does not allow to add a new sample point.
To implement the necessary backtracking step, we have adapted a simplified version of the so–called
Metropolis methodology, see for example [19], where it has been used for the generation of large
cliques in graphs, a situation similar to ours.

This random Markov-chain like process is organized in rounds. With probabilityq > 1=2 we have
a round “extend”, that is we choose and try to add a random neighbor; with probability1� q we have
a round “backtrack” in which we delete a randomly chosen point from the already covered point set.
After a fixed number of rounds we actually compute an explicit candidate ellipse to be included next
into the partial covering. Remark that the shape of such an ellipse is almost completely determined by
the covered points and by the outer constraints. To arrive at a unique solution, the LP-solver chooses
that one with halfaxes ratio closest to 1. This is repeated a constant number of times and we select the
candidate that covers the maximum number of points; ties are broken randomly.

There remains to explain the incorporation of the intersection condition into the LP–approach. We
delete already covered points fromC. For each selected ellipseE we add new “outer” constraints to
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F by sampling the interior ofE. These new points prevent later chosen ellipses from having large
intersections withE. Again, this scheme is run until the covering condition is met. In the example
depicted in Figure 6 the black pixels representC. The dots outside the region describe the initial outer
constraints, within the chosen ellipses the additional outer constraints are also indicated. Together
they form the final setF . Remark that, willing to spend more runtime, the quality of the covering
can be improved by choosing a denser sample. Observe that, apart from the differences in the three
coverings depicted in Figure 6, they in fact represent very similar point patterns when considering the
centers of the ellipses only.

2.3 Related Theoretical Issues

We want to discuss the ellipse covering problem from a more theoretical point of view. As in Subsec-
tion 2.1 let a connected pixel patternR be given. We identify a pixel with its center, and assume that
pixel centers lie on an�-grid. LetF be the set of grid points not inR that have distance� to R. Let
n = jF j, which yieldsjRj = O(n2). In this subsection we consider the case that the setC of points
to be covered consists of all pixel centers inR, thusR = C.

The ellipse covering problemis to find a collectionE = fE1; : : : ; Ekg of minimal cardinality
of axis-parallel open ellipses such that the unionU =

S
Ei coversR, and respectsF . An ellipse

respectsF if it contains no point ofF in its interior, however possibly on its boundary.
This covering problem is a simplified version of our original covering problem. It shares the fitting

condition, and a special case (� = 0) of the covering condition. Note that this restriction can easily
be relaxed by including� into the stopping condition of the algorithm described below. Nevertheless
it is still a challenge to incorporate an additional requirement like the intersection condition into the
approximate set covering framework.

The problem of (approximately) covering a shape with ellipses is strictly related to the problem
of exact covering of a shape with rectangles, which was shown to be NP-complete [12]. It is also
related to the problem of covering a shape with strips [1], and to the range covering problem in a
hypergraph [8]. Thus, in the general setting there is not much hope for finding a polynomial time
algorithm. However it is possible to employ the Br¨onnimann & Goodrich paradigm [8] in order to
obtain a polynomial time algorithm that computes a covering with ellipses defined by grid points,
such that the cardinality of the cover iskopt log kopt, wherekopt is the cardinality of the optimal-size
solution. The runtime of a straightforward implementation of the paradigm isO(n5kopt log n). In
the sequel we present a faster implementation which runs in~O(n3), where ~O denotes a variant of the
O-notation which subsumes polylogarithmic factors.

First observe that we can restrict our search tomaximal ellipses. An ellipseE is y-maximalif
(1) its center is in a grid point ofR, it (2) does not intersectF in its interior, (3) among all ellipses
with the same center and widthE has the largest height.x-maximal ellipses are defined analogously.
An ellipse ismaximalif it is either x-maximal ory-maximal. Note that each maximal ellipse has a
point ofF on its boundary. A point ofF on the boundary of an ellipseE is called adominatorof E.
Clearly, we can assume that the optimal cover consists of maximal ellipses.

Let E be the set of all possible maximal ellipses with centers inR, and width or height defined
by grid points. There are areO(n2) pointsp in R, and eachp gives raise toO(n) maximal ellipses
centered atp, since there areO(n) different possible widths and heights. ThusjEj = O(n3). The rest
of this section is dedicated to explain how to find a collectionE = fE1 : : : Ekg � E of cardinality
k = O(kopt log kopt) whose union respectsF and coversR. Note thatkopt = O(n) since one can
choose a thin ellipse covering all points in a row or column ofR between two points inF .
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The Brönnimann & Goodrich approach assumes thatkopt is known, thus we assume in the se-
quel thatkopt is given. It can be determined afterwards by applying unbounded binary search. The
overview of the Br¨onnimann & Goodrich algorithm is as follows: It gives a weightw(E) to each
ellipseE 2 E, initially all set to be 1. The algorithm consists ofrounds. In each round a random
sampleE of sizeckopt log kopt of the ellipses ofE is picked, where the probability of an ellipse to be
picked is proportional to its weight, andc is a constant. Next the algorithm checks ifE coversR. If
this is not the case, we find a pointq 2 R which is not covered (arbitrarily chosen if there are more
than one), and double the weight of eachE 2 Eq, whereEq � E is the set of ellipses containingq.
Then the algorithm continues with the next round and stops when a cover is found. Since the Vapnik-
Chervonenkis dimension of the problem is clearly finite, it follows from [8] that the expected number
of rounds isO(kopt log n).

In a somehow similar fashion to [1], we construct a data structure that enables us to (implicitely)
modify the weight of all ellipses inEq. We describe the process fory-maximal ellipses.x-maximal
ellipses can be handled in an analogous manner.

For p 2 R let ew(p) denote they-maximal ellipse of widthw whose center is inp. Let r be a
row of grid points ofR, and letw be a fixed width. Using the property that the boundaries ofew(p1)

andew(p2), p1; p2 2 r, intersect at most once abover, it is straightforward to show (c.f. [13]) that
for a givens 2 F the regionfp 2 rjs is a dominator forew(p)g forms a connected interval onr.
Similarly it follows that forq 2 R the setIw;r(q) := fp 2 rjq 2 ew(p)g is also an interval onr. Now
consider a partition ofr into maximal connected intervals, such that in each interval the dominator
that determinesew(p) is the same. It follows that the complexity of this partition isO(n). Using
standard divide and conquer we can compute this partition inO(n logn) time. In the first stage of
the algorithm we compute and store these partitions for all rows and all widths. This requiresO(n3)

space andO(n3 logn) preprocessing time. For a givenq 2 R and widthw we can now compute the
interval Iw;r(q) using binary search alongr in O(log n) time as follows: For ap 2 r we locatep in
the partition ofr, and computeew(p) in constant time. Ifq =2 ew(p) we can deduce if (i) for each
p0 2 r to the right ofp, q =2 ew(p

0), or (ii) for eachp0 2 r to the left ofp, q =2 ew(p
0).

After picking a random sampleE � E of ellipses, we need to see ifE coversR. For this, we
compute[E explicitly, (using for example a line sweep technique). Since the size ofE is O(k) the
complexity of this union isO(k2), and it can be computed in timeO(k2 log k). Using point location
we can find the first pointp 2 R n [E in O(n2 log k) time.

In order to maintain the weight of the ellipses efficiently, we do not construct the weight of each
ellipse inE explicitly. Instead, for each rowr and each possible fixed widthw we construct a binary
balanced search treeTr;w on the grid points ofr, sorted by theirx-coordinate. Each leafv 2 Tr;w
is associated with the maximal ellipse of widthw whose center is (at the point)v. Each inner node
� 2 Tr;w maintains a factor!�, and the sum of the weights of all leaves in its subtree (up to common
factors on the path to the root). The weight of a leaf is the product of all factors on the path to the
root. For a node� let I� � r be the set of all points corresponding to leaves in the subtree at�. In
order to double the weights of all maximal ellipses of widthw whose center lie onIw;r(q), we double
the factor!� for each node� for which I� � Iw;r(q), but Ifather(�) is not contained inIw;r(q).
Analogous to standard segment trees, we see that we need to update onlyO(logn) factors and sums
of weights, and that computing the weight of a specific maximal ellipse is doable inO(logn). Picking
the random subset is done as follows. We pick a tree at random, according to the sum of weights of
leaves of the tree which is stored in the root. Next we compute a random path in the tree from the
root to a leaf, where at an inner node the probability of branching to the left or the right child depends
on the stored sum of weights of the leaves in the subtrees. The ellipse we pick is the maximal ellipse
associated with the leaf that ends the path. Thus picking one random ellipse needsO(logn) time.
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Altogether we needO(n3 log n) preprocessing time to construct the trees and the partitions. In
each round, of which there areO(kopt logn) many, we pick a random sample inO(kopt log kopt logn)

time, compute the union and find an uncovered pointq which needsO((k2 + n2) log k) time, and
compute for allw andr the intervalIw;r(q), and update the weights of the points inIw;r(q), which
can be done inO(n2 logn) time. This yields a total runtime of~O(n3), where ~O denotes a variant of
theO-notation which subsumes polylogarithmic factors. Thus we obtained the following theorem:

Theorem 1 LetR, F andE be as above, and letn = jF j. Then in expected time~O(n3) one can find
a setE � E of ellipses whose union coversR and avoidsF . The cardinality ofE isO(kopt log kopt),
wherekopt is the cardinality of an optimal solution.

Note that the total runtime is dominated by the~O(n3) term for the preprocessing. We are opti-
mistic that, using 2-dimensional planar subdivisions into regions with the same dominator, and con-
structing only those parts being accessed in the trees, we can obtain a runtime of~O(n2kopt). This is
the subject of our ongoing research.

3 Computing Global via Local Matchings

3.1 Modeling the Matching Problem

Assume that a source imageS and a target imageT are given by their spot lists. Recall that after
the spot detection a “spot” is simply a vector(x(s); y(s); i(s)) consisting of its nonnegative point
coordinates(x(s); y(s)) in the Euclidean plane and a positive real numberi(s) describing its intensity.

By this simplification of spots we can treat the geometric matching task as an approximate point
pattern matching problem, see [2] for a survey on this field. There, the general setting for our bottle-
neck matching type problem is as follows. For a real number" � 0, a group of admissible transfor-
mationsA (e.g. translations, rigid motions and/or scalings) and a metricd, one seeks a bijectionf
between as large as possible subsetsS0 � S andT 0 � T , so that there exists a transformationg 2 A
for which d(g(s); f(s)) � " for everys 2 S0. Thus, the transformationg describes the geometric
resemblance betweenS0 andT 0. Additionally, we want that the intensityi(s) for s 2 S0 resembles
the intensity off(s). However, this is only the general framework for our solution. There are several
major difficulties stemming from the inherent noise in the electrophoresis process:

1. 2–DE images, even of the same probe, can differ significantly and the offset vectors for match-
ing spots are only locally almost equal.

2. The spot resolution of the images can be different. Moreover, given a correct matching the
intensity orderings of matched spots in both images are similar but not identical.

3. It often happens that one has to compute a matching of images that only partially “overlap”.
Previous algorithmic solutions assume that both images show the same frames, or at least there
are preset landmark pairs that allow to initialize the matching procedure. We neither want to
choose the matching frames nor landmarks by hand.

To cope with these problems we choose the following 2–stage approach, which we call the global-
via-local matching paradigm. See Figure 7 for a flow chart.

1. In a first step we compute a rather dense set of landmarks. This is realized via local matchings.
A local matching is the registration of a small local source pattern (consisting of locally most
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Input:  Source Image  S,  Target Image  T

Subdivide  Source Image  S into  5x5  Subimages

Global Matching   −  first stage

−−>   S  ,  S  , ........ , S

Select Subpattern(S  ) Select Subpattern(S   )
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1

1

Local_Matching(P   ,T)25

−−>  M      ,.......,M

−−> M     , M      , ........., M      1,i1
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2,i2

M
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25,i25
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M

1

Global Matching  −  second stage :  Extension Loop

Figure 7: Flow chart of the matching algorithm.
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intensive spots) in the target. For a single pattern the result is typically not unique, yielding dif-
ferent matching proposals. But for a set of grid–like located local source patterns we can choose
a consistent common registration (i.e., matching) by comparing the underlying transformations,
which should be similar for neighboring patterns.

2. A second step implements the extension of the landmark matching to neighboring spots. This
is done by a variant of the standard neighborhood graph comparison. Moreover, in this step we
take advantage of the extra information concerning ambiguous regions that was gathered in the
spot detection preprocessing.

Next we formalize the geometric matching criterion for the registration of a local patternP � S in
the targetT .

We call two line segmentsss0 andtt0 (�; �)–similar if the absolute difference of their angles with
thex–axis is smaller than� and for their lengths we have:

1� � � jss0j=jtt0j � 1 + � (4)

Two point patternsP � S andQ � T (�; �)–match if there is a bijectionf between the point sets so
thatss0 andf(s)f(s0) are(�; �)–similar for alls; s0 2 P . In sum, from the geometric point of view
we want to find(�; �)–matchingsf between as large as possible subpatternsP 0 � P and local target
patternsQ, compare also [21].

As described in [17], we cannot model intensity resemblance by directly comparingi(s) and
i(f(s)), instead we rank, in both source and target, the spot intensities into 10 groups and require that
the matching respects those ranks within a tolerance of 1.

3.2 How to Compute Local Matchings

In this subsection we present an efficient algorithm which computes partial approximate matchings of
a patternP in a target point setT . The algorithm has to find maximal subsetsP 0 � P (at least 50
%), corresponding subsetsQ � T and transformationst approximating the matching betweenP 0 and
Q. Firstly, we discuss the transformation class of translations, but, we always keep in mind possible
generalizations to homothetic transformations (translations plus scalings). In the runtime analysisk

andn will denote the number of points inP and inT , respectively.
The algorithm is basically a twofold refinement of the naive alignment approach which computes

a geometric matching by aligning a pattern edgee 2 P with a similar edgee0 in T . If one wants
to find full matchings ofP , it is sufficient to fixe and search for all similar target edges. However,
looking also for partial matchings, one has to check all pattern edges against all edges inT . Each
edge similarity induces a translationte;e0 which maps the midpoint ofe onto the midpoint ofe0. Then
candidate points for a matching can be found by nearest neighbor queries for thek points of the trans-
formed patternte;e0(P ). Hence, the runtime is bounded byO(k3n2 log n) which combines thek2n2

edge comparisons with theO(k log n) time to compute a matching. However, the algorithm is much
faster in practice because most of the edges similarity tests are answered negatively.

Remark 1: It is not hard to construct examples where the nearest neighborq 2 T of a transformed
pattern point does not satify the requirements of a geometric matching whereas another neighborq0

does. Therefore all neighbors within a certain distance have to be checked.

Remark 2: Looking only for matchings approximated by translations it would be sufficient to check
all transformations defined by point pairs(p; q) 2 P � T . However, such an approach is not very
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suitable in practice because it is not extendable to homothetic transformations and, moreover, the re-
sultingO(k2n log n) time bound is tight.

Remark 3: In [18] a randomized version of the alignment method has been studied. One of the
results is aO(kn2 log n) Monte Carlo algorithm computing all partial matchings which match at
least a constant fraction ofP .

Instead of randomization we make use of the intensity resemblance which should hold for a majority
of spots. To this end we order our point sets according to decreasing intensity. A triangulation of
a point setX in the plane is calledDelaunay triangulationif for each triangle in the triangulation
its circumcircle contains only the three triangle points. One can construct such a triangulation in an
incremental way by inserting points one by one in the given order, compare [15]. The insertion of a
point can destroy some of the previous edges and add some new edges. Thehistory Hist(X) of the
incremental triangulationis the set of all Delaunay edges which occur at some time in this process.
There are two results from Computational Geometry which together make up a fast and very robust
heuristic.

Theorem 2 (see [3])LetX be a point set with an intensity ordering. Assume that a patternQ � X

consists of the most intensive points in a rectangleR. Consider a triangle� occuring during the
incremental Delaunay triangulation ofQ. If the circumcircle of� is contained inR, then each edge
of� belongs to Hist(X).

This implies that under ideal assumptions (of nearly identical images) it suffices to consider all
similarities between edges from Hist(P ) and Hist(T ). In practice however one cannot start from these
assumptions: the matching is only approximate (local distortions), sometimes partial (missing spots),
and moreover the intensity orders can vary (spots of regulated proteins). Nevertheless the Delaunay
Triangulation approach is still suitable for the following three reasons:

1. The algorithm below is designed in such a way that it is not necessary to have for all edges of
Hist(P ) similar counterparts in Hist(T ).

2. Augmenting Hist(T ) with all flip edges which occur in the incremental triangulation we obtain
the so called extended history Hist�(T ). This increases the chance to find similar edges; see
[17] for some experimental results.

3. Even if the intensities of some spots inP differ heavily from their corresponding spots inT ,
there is a high chance to find the partial matching of the remaining pattern points. Based on this
partial matching, geometrically corresponding spots with different intensities can be found in
the extension stage, see Subsection 3.4.

The following fact implies an estimate on the expected size of Hist(T ).

Theorem 3 (see [24])LetX be a random permutation ofn points. Then the incremental Delaunay
triangulation ofX can be computed inO(n logn) expected time. The expected number of edges in
Hist(X) isO(n).

Therefore the expected size of Hist�(X) is also linear. Summing up, the restriction of the align-
ment approach to the comparison of edges from Hist�(P ) and Hist�(T ) implies a matching algorithm
with expected time complexityO(k2n log n).
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In fact, although this first improvement reduces the computation time remarkably, there is still
a lot of wasted work because for any edge similaritye � e0 the algorithm attempts to construct a
matching approximated by translationte;e0 in O(k logn) time. However, most of these attempts are
bound to fail. We call a transformationte;e0 goodif it approximates a matching of at least half of the
points inP andbadotherwise.

The standard approach of how to avoid testing bad transformations is geometric hashing. Orig-
inally hashing has been worked out for the exact matching problem. The idea is to collect first all
candidate transformations in a hash table. Note that in contrast to bad transformations the good ones
occur at least

�
k=2
2

�
times. In the end, the good transformations can be selected and, moreover, for

each of them the corresponding matching has to be computed only once.
Here we develop a special variant of geometric hashing. We replace the hash table by ascoring

schemewhich uses a regularly spacedm �m grid overT with m2 variables counting scores for all
grid nodes. We discuss later how to choosem. This structure is suitable to compute also approximate
matchings and it beats hash tables in both time and storage complexity. One has to pay for these
advantages by accepting a certain heuristic flavor in this method. LetcP denote the center of the
bounding box of the patternP . Again we start with all translationste;e0 defined by similar edges
e 2 Hist�(P ) ande0 2 Hist�(T ). We storete;e0 adding scores to the four nodes of the grid cell which
containste;e0(cP ). It is straightforward that good transformations yield clusters of points which in
turn are represented by high scores in the neighboring grid nodes. Altogether we get an expected
runtime ofO(n log n + kn + m2 + jTgoodj k log n), wherejTgoodj denotes the number of good
transformations, i.e., the number of computed partial matchings. The first and second term estimates
the triangulation construction and the edge comparisons. Since the last term is of smaller order the
number of grid nodes, i.e.m2, plays the key role in the algorithm’s analysis. Finer grids can display
the cluster positions more precisely than coarser grids (with less nodes).

There is one more trick that allows to have both rather coarse grids and a sufficient precision of
cluster positions. Each translation representativete;e0(cP ) subdivides its grid cell into four rectangles.
Instead of unit scores, each of the four grid nodes adds to its current score an amount proportional
to the area of the opposite rectangle. This way the precise position of a single pointte;e0(cP ) can be
recomputed from its scores. Let Score(i; j) be the total score accumulated in grid node(i; j) after
probing all edges from Hist�(P ). All local maxima in the grid that are greater than a threshold value
depending onjP j are considered to correspond to potential matching locations.
Eventually, we can approximate the actual center(ic; jc) of the vector cluster stemming from a local
maximum at node(i; j) by computing a weighted average of the scores at(i; j) and all scores at
neighboring grid nodes:

(ic; jc) =

Pi+1
k=i�1

Pj+1
l=j�1 Score(k; l) � (k; l)Pi+1

k=i�1

Pj+1
l=j�1 Score(k; l)

: (5)

The generalization from translations to homothetic transformations is straightforward.(�; �)–similarity
has to be replaced by�–similarity (the angle between the edges is at most�) and for each�–similar
pair (e; e0) the transformationte;e0 is defined by the scaling factorje0j=jej and the translation mapping
the midpoint of the scalede onto the midpoint ofe0. Consequently, the two–dimensional scoring
scheme has to be replaced by a three–dimensional structure with the third dimension representing the
scaling factors. In our implementation we used an exponential scale of the third axis where the factor
between two grid units is�.

Finally we have to compute the local matchings corresponding to good transformationst 2 Tgood.
To this end the whole patternP is transformed:t(P ) = ft(p) j p 2 Pg. Each transformed pointt(p)
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marks a position in the target image and we are seeking for matching candidatesp0 2 T close to
this position. As mentioned earlier the nearest neighbor to a given position is not always the correct
matching partner. We call an incorrect matching of a pointp with a pointp0 which is close to the
position t(p) a switch. To illustrate this problem suppose that there are two very close spotsp1; p2
in the pattern,p1 on top ofp2. Since the correct matching partnersp01; p

0

2 2 T are also very close it
can happen that the lower target pointp02 is closer to the positiont(p1) than the top pointp01. Here
the naive nearest neighbor strategy would decide for the switch(p1; p

0

2). Clearly, one can make the
correct decision and avoid the switch by comparing the neighborhoods: Both,p1 andp01 have a close
neighbor below, whereas,p02 has not. Consequently,p1 should be matched withp01 rather than with
p02, althoughp02 is closer to the expected positiont(p1).
To implement this idea we introduce small boxesB(p) centered at the positionst(p) and consider
all p0 2 T \ B(p) as potential matching candidates forp. The favourite selection depends on the
neighborhood similarity ofp andp0. Here the neighborhoods are defined by the Delaunay triangulation
histories which had been computed during the preprocessing of the source and target point sets. This
way there are no additional expenses for the neighborhood computation. It is essential to remark that
the reliability of neighborhood-based decision depends on the correctness of the spot detection. If the
protein spotsp01 andp02 in the above example are so strongly overlapping that they were detected as
one single spotp0, the neighborhood comparison cannot help. At this point the different proposals
computed in the spot detection come into play. Omitting all spots stemming from ambiguous regions
in the local matching procedure one can improve the reliability of the matching result. Consequently
it will be necessary to compute the matchings of spots from ambiguous regions in a postprocessing.

3.3 Assembling a Global Matching from Local Matchings

The local point pattern matching described in the previous subsection is the central module of our
algorithm. We compute the global matching of two imagesS andT in several stages. First the
source image is segmented into equally sized, rectangular subimages. In our implementation we used
a regular5 � 5-grid for this subdivision. Then for each of the 25 subimages the pattern formed by
its 12 most intensive unambiguous spots is selected (25 and 12 are parameter values which proved
to be optimal in numerous tests). Applying the local matching to those local patterns we get a list
of matching proposals for each pattern. Now we apply a simple consistency test to those proposal
lists. Two local matchings (of different patterns) are consistent if the underlying transformations are
approximately the same. Finally a first global matching is established by searching for the largest
family of pairwise consistent local matchings. This first global matching is then used as a skeleton
M of landmarks for further extensions. Note that by the chosen parametersM has at most 300 spot
pairs.

Another advantage of our approach is the possibility to compute a ”global” matching for images
which only partially overlap, see Figure 8. In contrast to commercial programs we do not assume a
global alignment of the images. This feature is useful for reconstructing big gel images from several
partially overlapping subimages.

3.4 How to Extend a Global Matching

The purpose of the matching extension procedure is twofold. Firstly, we want to match unambiguous
spots which, according to their lower intensity, were not in the initial local patterns. Secondly, we
have to deal with spots from ambiguous regions. The first problem is solved by following a standard
approach: The pairs in the skeletonM form a set of landmarks which defines a piecewise affine
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Figure 8: A global matching of two images which have only a small horizontal strip in common

transformationtM . Again, the Delaunay triangulation proves to be a useful tool for computingtM .
We construct both the Delaunay triangulationDTsource of the previously matched source pointsSM
andDTtarget of the corresponding target pointsTM . In order to map a new source point p we find its
Delaunay triangle� = (s1; s2; s3) in DTsource by point location. Ifp is outside of the convex hull of
SM one can choose the Delaunay triangle� closest top. There is a unique affine transformationt�
mapping the triangle vertices onto their partners(t1; t2; t3). Thus, the expected position ofp’s partner
in the target image istM(p) := t�(p). Note that the expected time for a point location query is only
O(log jSM j). The matching candidates and the choice of a matching partner are then computed as
explained in Subsection 3.2.

The extension procedure is iterated several times. After the first extension we can assume that the
resulting skeleton is fine enough to attack ambiguous regions. To this end we introduce the following
terminology. As before we call a spotunambiguousif it was determined uniquely by the spot detec-
tion. Each ambiguous region is represented by a so calledsuperspotwhich stands for the possibility
to consider the whole region as one complicated unit. The coordinates of the superspot are defined
by the barycenter of the region. Spots contained in an ellipse covering proposal are calledsubspots
of the superspot. We make one more simplification focussing our attention for each complex region
only on the superspot and on the subspots of the best proposal computed by the spot detection. In fact,
this simplification is appropriate for twin and triple spots rather than for very complex regions. There
are two reasons for proceeding this way: The comparability of the edges of the incremental Delau-
nay triangulation is the basis of the local matching approach. However, inserting spots from different
proposals (describing the same region) would yield lists which do not adequately describe the local
geometric situation. Instead, inserting the subspots of the best proposal only maximizes the chances to
get similar histories of the source and the target image. Therefore these subspots are inserted into the
incremental Delaunay triangulation, although they are neither taken as local pattern spots in the source
nor as matching candidates in the target. Moreover, considering more than two proposals could cause
a combinatorial explosion in the search for candidates and the decision for a partner. The neighbor-
hood of a superspot (which itself is not inserted into the Delaunay triangulation) is formed by taking
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the set-theoretic union of all subspot neiborhoods without the subspots themselves.
Starting with the second extension step all superspots and their (best proposal) subspots in both

the source and the target image are taken into account. Thus, on the source side there are new spotsp

to be matched. On the target side there are new candidates.
We illustrate the advantage of our approach considering once more the elementary twin spot sit-

uation. In the source (resp. the target) image there are three possible results the spot detection can
return:

1. The overlapping is so strong that the common region is detected as one unambiguous spots

(resp.t).

2. The overlap has been detected, and thus the common region is ambiguous. The best proposal
consists of two spotss1; s2 (resp.t1; t2) which are subspots of a superspot�s (resp.�t).

3. The algorithm has detected two separated unambiguous spotss1; s2 (resp.t1; t2).

Depending on the combination of these events and provided that the outside neighborhoods are similar
we would get the following matchings:

source 1 1 1 2 2 2 3 3 3
target 1 2 3 1 2 3 1 2 3

s$ t s$ �t �s$ t �s$ �t

matching none s1 $ t1 s1 $ t1 none s1 $ t1 s1 $ t1
s2 $ t2 s2 $ t2 s2 $ t2 s2 $ t2

In the traditional approach without ambiguous regions only cases 1 and 3 can occur. Consequently
we would obtain a matching only, if the spot detection makes the same decision on both sides (column�
1
1

�
and

�
3
3

�
). Now in our approach a matching will additionally be discovered if at least on one side

the ambiguity (case 2) was recognized. This way the overall matching result can be used to resolve
ambiguities in the results of the initial spot detection. In our view this is a promising attempt to over-
come the separation between preprocessing and matching, and thus to simulate how an expert would
compare images by visual inspection, namely, by intertwining the spot detection with the matching
process.

4 Implementation Issues and Experimental Results

The 2–DE analysis software system CAROL ([9]) contains the described spot detection and matching
algorithms. In order to facilitate its usage over the Internet it consists of two main parts: The first
part, the combinatorial and geometrical kernel of the spot detection and matching algorithms, has
been implemented in C++. It makes essential use of the Standard Template Library (STL) and of
the Computational Geometry Algorithms Library (CGAL) [10]. The latter library provides several
geometric data structures and functions and especially an implementation of the incremental Delaunay
triangulation. For the LP approach of the spot detection, which we implemented for internal use only,
we use the commercial LP-solver CPLEX.

The second part of the CAROL system is the graphical user interface which has been implemented
in Java. It can be run as an applet started out of an internet browser or as an application. The commu-
nication with the algorithmic procedures is established via internet sockets, whereby the C++ program
works as a server which waits for matching or spot detection requests from the Java-client, performs
the computation, and eventually sends the results back to the client.
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Using CAROL it is possible to analyze gel images from databases all over the Internet. This
feature is strongly supported by the client-server architecture and the possibility to run the user in-
terface out of an internet browser. However, a direct Internet access is required that is not restricted
by a firewall. CAROL offers the possibility to open GIF images from any 2–DE database, to carry
out the spot detection, to perform local or global matchings between two gel images, and to set pa-
rameters like tolerance bounds, pattern size, etc. The current version of CAROL can be found at
http://gelmatching.inf.fu-berlin.de.

The local matching algorithm executed on a Sun Ultra Sparc 300MHz computes the best ten
matchings for a pattern of twelve spots in about 0.2s. The first stage of the global matching between
two gel images with 900 and 1000 spots takes about 7s and yields about 110 matching spot pairs.
After this step the user can optionally correct the proposed landmarks. A subsequent extension step
takes 2s. The computation of the spot detection for a full gel image (1200 x 1500 pixels, 4500 spots)
takes about half a minute without complex regions; in such large images we observed between 0 and
20 complex regions. The brute force greedy approach for the complex region in Figure 5 (subset of
a 76 x 80 array, with 59 inner sample points drawn in black) needs 24s to compute the 10 ellipse
covering indicated. The LP-based solution (with initially 76 points defining outer constraints) takes
13s to compute the indicated solution. However, we remark that usually a spot detection is only
computed once before storing the image in a database.

Tests of the CAROL system on several series of gel images as well as the positive feedback
from external test users have confirmed the advantages of our geometric approach. Further work will
concentrate on a more accurate mathematical modeling of the biochemical and physical phenomena
within the electrophoresis process.
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