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Abstract—We present a distributed algorithm for computing
a combined solution to three problems in sensor networks:
localization, clustering, and sensor suspension. Assuming that
initially only a rough approximation of the sensor positions is
known, we show how one can use sensor measurements to refine
the set of possible sensor locations, to group the sensors into
clusters with linearly correlated measurements, and to decide
which sensors may suspend transmission without jeopardizing
the consistency of the collected data. Our algorithm applies the
“Occam’s razor principle” by computing a “simplest” explanation
for the data gathered from the network. We also present
centralized algorithms, as well as efficient heuristics.

I. INTRODUCTION

Consider the following scenario. A set S of n sensors is
deployed in a physical environment. Exact locations of the
sensors are unknown due to the randomness in the deployment
process. Rather, for each sensor s = 1, . . . , n, some region
Rs ⊆ R2, containing s, is known. We call Rs the feasibility
region of s. For simplicity, assume that each Rs is an axis-
aligned rectangle. One might consider sensors deployed rapidly,
for example dropped from an airplane, so that the approximate
location of the airplane at each instance indicates feasible
region where the sensor might lie.

The sensors measure (sense) some environmental character-
istic, z. The measurements are taken at D distinct instances of
time (D “days”); we let zds denote the measurement of sensor
s on day d. The measurements are subject to errors: the true
value of z on day d at the location of sensor s lies in the
interval [zds −εs, zds +εs] where εs, for s = 1, . . . , n, are given
numbers known from the specification of the sensors.

In this paper, we suggest a novel technique for simultane-
ously estimating the locations of the sensors and clustering
them according to their measurements. Figure 1 demonstrates
our ideas on a simple one-dimensional problem instance. The
sensors are deployed on the x-axis; the feasibility regions
are the blue intervals. The sensor’s order along the line is
not specified. The measurement errors are indicated with
vertical bars. There are 6 sensors. Solid disks (within the
blue intervals) indicate one choice of possible sensor locations.
Note that for this localization, any piecewise-linear function
fitting the measurements requires at least 5 linear pieces (one
such function is shown dashed). At the same time, a slight

perturbation of the locations (swapping the pairs s1 and s2,
s3 and s4, and s5 and s6) allows one to fit a (single) linear
function, which provides a much simpler explanation of the
obtained measurements. Restricting the sensors to the positions
that make such a simple explanation possible shrinks the set
of feasible sensor locations, thereby improving the localization.
Figure 2 shows how the localization can be further improved
using measurements from two (or more) days. On each day, a
function can be fit to the measurements. The constraint that
sensor positions be consistent with a linear fit of the data on
each day yields an improved localization, narrowing further
the set of possible sensor locations.
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Fig. 1. A one-dimensional example: Sensors s1, . . . , s6 (with measurements
z1, . . . , z6) are known to lie within the blue intervals, Ri (si ∈ Ri). If the
sensors are positioned at solid disks, then any polyline fitting the data requires
at least 5 segments (dashed). However, a simpler, single line, fits the data if
the sensor positions are appropriately moved within their intervals (e.g., by
swapping the positions of s1 and s2, s3 and s4, and s5 and s6).

Our method is based on exploring the space of bivariate
functions that interpolate z over the days. Of course, there exist
many possible ways to choose such functions. However, some
functions are more likely to provide correct interpolations than
others. We employ a philosophical principle of Occam’s razor
as stated by medieval English philosopher and Franciscan friar
William of Ockham (ca. 1285-1349):

One should not increase, beyond what is necessary,
the number of entities required to explain anything.

In other words, “given several explanations for the same
phenomena, the simplest one is likely to be the correct one.”
This principle suggests that a collection of functions is “correct”
if it is in some sense “simple”. We measure the simplicity of a
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Fig. 2. Data from three sensors s1, s2, s3 is plotted for two time slots (“days”),
1 and 2, rendered in red and blue colors, resp. Sensor si is confined to lie in
interval Ri. The measurement of sensor si at time d lies in (zdi −εi, z

d
i +εi).

If at each day there is a linear correlation of the sensor measurements, then
the line `d is a possible interpolation for time-slot d; this requires that s2 lies
in the interval Xd

2 that is the projection on the x-axis of the intersection of
`d and the box R2 × [zd2 − ε2, zd2 + ε2], for d = 1, 2. Hence s2 must lie in
X1

2 ∩X2
2 . Note that `d could be perturbed a bit in this example.

collection of functions by the number of linear pieces needed
to “assemble” the functions in the collection; we formalize the
measure in the next section.

For a justification of the application of the principle in
a physical setting, imagine that the sensors are deployed in
“rooms” in a building or in several “climate zones”, and assume,
e.g., that z is temperature. Then, one can expect that within
the same region the measurements of the sensors are spatially
correlated, so that a simple (e.g., linear) function can be fit to
the measurements within each room. Segmenting the sensor
field into a small number of regions is more likely to reveal
such simple relationships.

We propose a combined solution to 3 fundamental problems
defined on the sensor field:

Localization. Determine the set of possible locations for
the sensors.

Clustering. Group the sensors whose measurements are
correlated.

Sensor suspension. Suspend transmission for some sen-
sors, while continuing to receive consistent measurements.

The output of our algorithms consists of (i) a subdivision
of the plane into (few) regions such that within each region
the measurements are spatially and temporarily correlated, (ii)
functions (per region) describing this spatio-temporal correla-
tion, and (iii) a geometric description of feasible placements
for each sensor, consistent with the measurement data. We
consider mainly the case in which the functions are linear or
piecewise-linear. We note, however, that our results (e.g., the
algorithm of Section V) extend to computing consistency with
respect to more general functions. In particular, it suffices that
the problem can be formulated as an abstract LP-type problem
[22]. For example, we can solve the case in which functions
are given by paraboloids or by piecewise-parabolic functions.

II. PRELIMINARIES

The input to our problem is specified by the feasibility
regions of the sensors (assumed here to be axis-aligned
rectangles), the sensors’ measurements, and the measurements’

error bounds. Specifically, the input is a triple (R,Z, E), where
R = {Rs}ns=1 is a set of rectangles, Z = {zds}n,Ds=1,d=1 are the
measurements1, and E = {εs}ns=1 are the errors. Viewed in
the xyz-space, the input is a collection of sets of boxes — one
set of boxes per day, one box per sensor in a set.

A localization P = (p1, . . . , pn) is an assignment of each
sensor s to a point ps ∈ Rs. In what follows, we consider
bivariate functions mapping a point in the xy-plane to a value
z. We will identify functions with their graphs (terrains in
xyz-space).

A. The Linear Consistency Problem

Let H = (h1, . . . , hD) be a collection of linear functions,
hd(x, y) (planes in xyz), where hd is associated with day d.

Definition 1. The localization P = (p1, . . . , pn) and the
collection H are linearly consistent if

∣∣zds − hd(ps)
∣∣ ≤ εs

for all s = 1, . . . , n, d = 1, . . . , D.

We define the linear consistency problem (LCP) as follows:
Given (R,Z, E), find a localization P and a collection of
linear functions H such that P and H are linearly consistent.

Suppose that we found a solution to the LCP. This implies
that if the sensors are located appropriately, then the spatial
correlation of measurements on any day can be explained by
a linear function, within the given errors bounds. Of course,
the function may be different for each day.

While LCP is a very basic problem, our solution to it is
used as an oracle in our algorithms for the Piecewise LCP
(PLCP) problem, which is more general and is described
below. Note that LCP asks for just one location for each
sensor consistent with one collection of functions. At the same
time, it is of interest to describe the set of “all possible”
locations for the sensors that allow for linear consistency.
Specifically, we are interested in computing the localization
region of sensor s, denoted Fs, defined as the set of all
locations ps ∈ Rs for which there exists a localization
(p1, . . . , ps−1, ps+1, . . . , pn) of the remaining sensors and a
collection H of D linear functions such that the localization
P = (p1, . . . , ps−1, ps, ps+1, . . . , pn) is consistent with H . For-
mally Fs = {ps ∈ Rs : ∃p1 ∈ R1, . . . , ps−1 ∈ Rs−1, ps+1 ∈
Rs+1, . . . , pn ∈ Rn, h1, . . . , hD : ∀s, d,

∣∣zds − hd(ps)
∣∣ ≤ εs}.

B. The Piecewise-Linear Consistency Problem

Without loss of generality we may assume that all sensors
live in a large bounding triangle, which we will call the sensor
field. Let g be a bivariate function (e.g. temperature) whose
domain is the sensor field. Let T be a triangulation of the sensor
field, i.e., a subdivision of the field into triangles (the triangles’
vertices may be arbitrary, they do not have to coincide with
sensors). For a triangle ∆ from T , denote by g|∆ the restriction
of g to ∆. We say that g is a piecewise-linear function with
subdomains in T if for any triangle ∆ from T , g|∆ is linear.
Note that we do not require a piecewise-linear function to be
continuous.

1Note that in this paper, unless otherwise specified, superscripts are used to
denote the time (day) of measurements, and are not used as exponents.



Let G = (g1, . . . , gD) be a collection of piecewise-linear
functions with subdomains in T . Consider a triangle ∆ from
T . Let G|∆ = (g1|∆, . . . , gD|∆) be the restrictions of the
functions to ∆. Let S∆ = {s|Rs ⊂ ∆} be the sensors whose
feasibility regions lie fully within ∆. Let P∆ be the localization
P restricted to the sensors in S∆. We say that localization
P and the collection G are piecewise-linearly consistent if
for any triangle ∆ from T , P∆ is linearly consistent with
G|∆. That is, P and G are piecewise-linearly consistent if∣∣zds − gd(ps)

∣∣ ≤ εs for every ∆ ∈ T and s ∈ S∆. We also
say that the sensors in S∆ are linearly consistent; with this,
the (decision version of) LCP becomes checking whether S is
linearly consistent.

Given an arbitrary localization P , it is easy to build, in a
redundant way, a collection of functions consistent with P :
A trivial solution can be obtained for example if each sensor
is encapsulated in its own triangle. However, the Occam’s
razor principle (and the common sense) would suggest that (in
the absence of other information), a localization that allows
one to find a triangulation with fewer triangles is probably
a better choice. Hence in this paper, we study the piecewise-
linear consistency-problem (PLCP) defined as follows: Given
(R,Z, E), find a triangulation T with the minimum number
of triangles, a collection G of piecewise-linear functions with
subdomains in T , and a localization P such that P and G
are piecewise-linearly consistent. The LCP is a special case of
the PLCP, asking for a triangulation T with just one triangle.

C. Clustering and Suspension

We emphasize that the triangulation T is common to all
functions in G, i.e., the triangulation does not change over
the days. This way, T provides a natural clustering of the
sensors: for any triangle ∆ from T , the sensors in S∆ can
be grouped together since their measurements are linearly
correlated on any of the D days. Clustering also allows one to
do sensor ”suspension”: some of the sensors within a cluster
can be turned off since their measurements can be inferred from
the measurements of the others. Interestingly, our distributed
algorithm from Section V has a “built-in” method for deciding
which sensors transmit their data and which do not.

III. CONTRIBUTIONS AND ROADMAP

Our main contribution is a distributed algorithm for PLCP
presented in Section VI. It finds a subdivision of the sensor
field into a small number of cells such that inside each cell
there is a localization of the sensors that linearly correlates
the measurements on each day; the localization and the
corresponding linear functions are also output by the algorithm.
In other words, the algorithm finds large cells, so that the
sensors inside each cell are linearly consistent.

For the main subroutine in our algorithm we developed
oracles called EXACT-LCP and APPROX-LCP that determine
(exactly and approximately, resp.) whether a set of sensors
is linearly consistent, as well as find the corresponding
localization and the linear functions. EXACT-LCP is centralized
and runs in DO(1)n3D+1 time. APPROX-LCP is a distributed

algorithm that requires each node to send O(log2 n) constant-
size messages.

We also provide combinatorial upper and lower bounds on
the complexity — the number of connected components, edges
and vertices — of the localization regions. These bounds shed
light on the complexity of the LCP and are the basis for our
efficient approximate solutions.

IV. RELATED WORK

Locating sensors after they have been deployed is important
in interpreting and understanding data reported by the sensor.
Location conveys information where a particular event occurred,
allowing an appropriate action to be taken either in explaining
anomalies in sensed data, sending rescue teams for certain
military applications or understanding movement in wildlife
monitoring. While sensor localization may seem like an easy
task by including high-end GPS hardware [26], it may not
be applicable for many reasons, such as cost effectiveness,
energy efficiency or environmental constraints. As a result,
many techniques that trade off accuracy, energy consumption,
and cost optimizations have been proposed and evaluated. See
for example the survey by Patwari et al. [29]. Localization
schemes can be grouped into three categories: range-based
[4], [8], [11], [16], [21], [24], [27], [28], [30], [31] – which
depend on the ranging hardware localization in each sensor;
range-free [6], [9], [15], [23], [25], [32] – which listen for
radio signals to estimate neighbor locations; and data-based
approaches – which use sensed data to locate the sensors.
Detailed summary and taxonomy of localization techniques
are presented by Amundson et all. [3]. Because our algorithm
falls into the latter class, we elaborate on the details of the
previous work in the area.

The data-based localization approach, which does not require
additional hardware or network communication, relies on cor-
relating data/events to sensor locations [5], [13]. Simultaneous
localization and tracking (SLAT) [13], [33] uses the images
from the camera to correlate adjacent cameras to the observed
object transitions. This technique provides information about
the location of each sensor with respect to others and also the
direction of the camera on the sensor. The intuition here is that
if the sensors observe the same data they are most likely in
close proximity. A more generalized approach, similar to the
one presented in this paper, was proposed by Baryshnikov and
Tan [5]. They first analyze the data, fitting it into some contour
that can explain measured data, and the sensor locations are
obtained from contour maps where each measured data value
lies within some region that best fits the global contours.

Besides addressing sensor localization, our paper expands
existing work on Terrain Simplification problem [1], [2], [12],
[14], [19]. Typically, the input to the problem is a terrain
(a graph of a bivariate function) and an error bound; the
problem is to find a “simpler” terrain staying within ε from
the given one. Agarwal and Suri [1] showed NP-hardness of
the problem, and gave an approximation algorithm; a faster
approximation algorithm (but with a weaker approximation
guarantee) was presented by Agarwal and Desikan [2]. Terrain



simplification has numerous applications in computer graphics,
GIS, shape analysis and other fields. Practical heuristics are
commonly based either on “edge contraction” – starting from
a complex terrain repeatedly reduce the number of patches), or
on “triangulation refinement” which proceeds in the opposite
way [20], [34]. The problem studied in this paper can be seen
as a generalization of terrain simplification: we assume that
not only the vertical coordinates of the terrain vertices are
not precise, but also that the vertices’ xy-coordinates are not
known precisely in advance.

Finally, we mention that our optimization problem has
similarities to the dictionary design/learning in signal pro-
cessing/machine learning [18].

V. SOLVING LCP

A. Bounds and exact algorithm for LCP

It is significant (and somewhat surprising) that the local-
ization region Fs of a sensor s may have multiple connected
components (and, consequently, is not convex):

Lemma V.1. The localization region Fs of sensor s can have
D − 1 connected components.

Proof: An hourglass H in this context is a set of lines
for which there exist two convex chains of points U(H) and
L(H) such that H consists of the set of lines that are above
the points in L(H) and below the points of U(H). See Fig. 3.

For a sensor s, let Bds = Rs × [zds − εs, zds − εs] be the box
of s on day d; let Bd = {Bd1 , . . . , Bdn}. We first argue that for
any collection of hourglasses H = (H1, . . . ,HD), there exists
an instance of our problem such that for the boxes Bd (the
boxes of day d) from the instance, we have HBd = Hd, where
HBd is the set of all lines determined as the intersection of the
xy-plane with all linear functions that are linearly consistent
with the constrains of day d (i.e., intersect the boxes of day
d). To see this, take an hourglass Hd from H. Place a dummy
vertex on the first and a dummy vertex on the last edge of
L(Hd). Now for each vertex v of L(Hd) (including the dummy
vertices) we will have one sensor. The measurement zds of the
sensor will be 0. The measurement error of the sensor will be
0. The feasibility region will be the infinite rectangle with one
corner at v and the opposite corner at (−∞,+∞). Similarly,
we will have one sensor per every vertex v of U(Hd); the
measurement of the sensor will be 0, the error will be 0, and
the feasibility region will have one vertex at v and the opposite
vertex at (+∞,−∞). Refer to Fig. 3.

We repeat the above construction for each hourglass from
H. If a sensor s appears during the construction for hourglass
Hd, the measurement error of s on any day d′ 6= d is infinitely
large; this way the box of s on day d′ is surely intersected by
any plane from Hd. That is, the measurement errors of s are
different on different days: the error on day d is 0, the error
on the other days is infinite. This completes the construction
of the instance.

We now introduce a sensor s0 whose allowable region is
the whole xy-plane and whose measurement error is infinite.
This way Fs0 =

⋂
dH

d.

L

U

Rs

Rs′

s

s′

Fig. 3. An hourglass. Lower and upper chains are vertices of allowable
regions.

What remains to show is that there exists a set of D hour-
glasses whose intersection has D − 1 connected components.
To prove this we use geometric duality and the following
fact [17]: there exists a collection of disjoint convex polygons
C = (C1, . . . , CD) and a set of lines L = {`1, . . . , `D−1}
such that the order in which different lines from L meet the
polygons from C is different. Let C∗ = (C1∗, . . . , CD

∗
) be

the hourglasses – duals of the sets in C; let F =
⋂
d C

d∗.
Let L∗ = (`∗1, . . . , `

∗
D−1) be the points dual to the lines in L.

Since every line in L intersects all sets in C, every point in
L∗ belongs to every hourglass in C∗, and hence – to F . Since
a line cannot meet disjoint polygons in two different orders,
it is impossible to continuously move from a line `i to a line
`j , j 6= i while always intersecting all sets in C; translated to
the dual this means that `∗i and `∗j are in different connected
components of F .

Lemma V.2. The total complexity of the localization regions
(summed over all sensors) is DO(1)n3D. The localization
regions can be computed in time DO(1)n3D+1.

Proof: Associate a point H∗ =
(a1, b1, c1, . . . , aD, bD, cD) ∈ R3D with the set of planes
H = {h1, . . . , hD}, where hd = {(x, y, z)|z = adx+bdy−cd}.
(We ignore planes orthogonal to the (x, y)-plane.) Define the
set H∗s as the union of all points H∗ for which there is a
placement ps ∈ Rs for sensor s with |hd(ps)− zds | ≤ εs for
every 1 ≤ d ≤ D. Our first step is to compute

⋂
sH
∗
s .

Let ∂H∗s denote the boundary of H∗s . Every family of 3D
boundaries meet at DO(1) vertices; hence, the total number
of vertices in the arrangement of the boundaries is DO(1)n3D.
This bounds the complexity of

⋂
sH
∗
s . For each vertex of⋂

sH
∗
s , we also have a corresponding set H = {h1, . . . , hD}

of D linear functions. For a fixed H , the sensor placements
do not depend on each other, so each sensor is checked for
possible placement, giving a running time of DO(1)n3D+1.

B. Approximation and LP formalization of LCP

Since the exact solution to LCP is both centralized and com-
putationally expensive, we present another algorithm, APPROX-
LCP, overcoming both of these difficulties, at the expense
of providing only approximate solutions. Assume each linear



function is parametrized as h = {(x, y, z)|z = ax + by − c}.
Then, solving the LCP is equivalent to finding a set of locations
{(xs, ys)}ns=1 and a collection of coefficients {(ad, bd, cd)}Dd=1

of the linear functions in H such that (xs, ys) ∈ Rs, and
|zds − (adxs + bdys − cd)| ≤ εs. Unfortunately, the left-hand
side of the latter inequality is not linear, since ad, bd, xs and
ys are all variables. Moreover, Lemma V.1 above indicates that
Fs may have multiple connected components, suggesting that
convex optimization techniques are probably not useful here.
To overcome this difficulty, and to enable a practical algorithm,
we need to discretize the space of solutions. A naive approach
would allow the values ads , b

d
s to be selected from a discrete set

Ψ of values, and check feasibility for each assignment of values.
This would mean that |Ψ|2D subproblems have to be solved.
Instead, we show that a more careful parametrization leads to
a solution at which only |Ψ|D subproblems need to be solved.
Each subproblem can be expressed as a linear program (LP),
hence leading to an efficient distributed algorithm. Moreover,
our experiments (Section VII) indicate that Ψ could be quite
small — |Ψ| = 16 seems to be sufficient. One should also note
that, although the running time is exponential in the number
of days D, the experiments also indicate that after very few
days the localization errors tend to stabilize, and the benefit
from using data from more days is marginal.

Re-paramtrization: We introduce the variables αd = ad/bd,
βd = 1/bd, and γd = cd/bd. Our algorithm iterates over a
discrete pre-defined set of possible values of αd, for 1 ≤ d ≤ D.
For fixed αd’s, we can write the constraints as an LP:

Find (xs, ys)
n
s=1, (βd, γd)

D

d=1 s.t
ys ≥ αdxs + γd − βd(zds + εs), ∀d, s
ys ≤ αdxs + γd − βd(zds − εs), ∀d, s
(xs, ys) ∈ Rs ∀s

(1)

Geometrically, fixing αd means fixing the orientation of the
line ` at which the plane h = {(xs, ys, zs)|z = adxs + bdys−
cd} meets the plane z = 0.

C. Solving the LP with low communication cost

We assume a multi-hops communication model. Of course, a
possible solution is for all sensors to send their measurements
to a basestation, and execute the algorithm of Section V-B;
however, this requires a large number of transmissions. For
example, if sensor s can communicate only with its neighboring
sensors, s−1 and s+1, then the total number of messages sent
for collecting the data from all sensors might be as large as
Ω(Dn). We improve this bound by presenting next an algorithm
that requires only O(D log2 n) messages per node. We assume
that an ad-hoc communication network between the sensors
is established already. Our bounds could be improved if the
diameter of the communication graph is significantly smaller
than n. This improvement is straightforward, and is omitted.

Recall that the set of all solutions to (1) is a polytope in
R2D+2n. Let Q̄s ⊆ R2D+2n denote the set of all points that are
solutions to the constraints corresponding to sensor s. Let Qs ⊆
R2D denote the set of all 2D-tuples ~Γ = (β1, γ1, . . . , βD, γD)

for which the inequality corresponding to s hold, for some
appropriately chosen (xs, ys). Note that Qs is an orthogonal
projection of Q̄s from R2D+2n onto R2D. Hence Qs is a
polytope as well, and hence can be expressed as intersection
of halfspaces in R2D.

Let Q =
⋂
sQs. Note that Q is non-empty if and only if

there is a solution to LCP with the orientations α1, . . . αD
fixed. The last observation implies that Q is also a convex
polytope in R2D, and each point on its boundary can be found
using the following LP with 2D variables:

max~c · ~Γ
s.t. M · ~Γ ≥ ~b, (2)

where ~Γ = (β1, γ1, . . . , βD, γD), M is a matrix representation
with a row for each constraint of Q, and ~c,~b are the appropriate
vectors. Each sensor s then can find possible placements (there
may be more than one) constrained to have the functions
determined by ~Γ. Based on the discussion above, this placement
is guaranteed to lie in Fs.

We next describe the details of the algorithm APPROX-LCP
for solving (2). Each sensor s is assigned a value, its weight
ws, initially set to 1. ~Γ is an arbitrary set of 2D values. We
assume that one sensor serves as the “basestation”. An initial
solution ~Γ is sent from the basestation to all sensors.

During the course of the algorithm, let W denote the total
weight of all sensors. We repeat the following procedure, called
a round, O(D log n) times.

1) A random subset S′ of the sensors send their sets Qs to
the basestation. The decision of which sensors should
send is done in a distributed fashion, with each sensor
making a random choice to send by “flipping a biased
coin”, and sending Qs with probability 9D2ws/W .

2) The basestation solves the linear programming (1), for
(only) the constraints Qs just received. Let ~Γ denote
the new partial solution. ~Γ is sent to all sensors. (This
requires O(D) fixed-size messages from each sensor.)

3) Each sensor s checks if there is a placement ps of s
satisfying all of the constraints posed by s and ~Γ. If the
answer is positive, the algorithm halts — a solution was
found. Otherwise, the sensors compute the total weight
W ′ of the sensors s for which there is no placement of s
that is consistent with ~Γ; we call such sensors violators.
The computation of W ′ takes 2 messages per sensor.

4) If W ′ ≤ (1/4D)W , we call this round a successful
round, and each violator doubles its weight. (Otherwise,
no weights are doubled.)

Following the same argument as in [10], we can prove that
the algorithm terminates after O(D log n) rounds (and if after
O(D log n) iterations no solution is found, then with high
probability no linearly consistent localization exists). Indeed,
the total weight of constraints,

∑
sWs, increases by a factor

of at most (1 + 1/4D) after each successful round. Let ~Γ∗ be
the set of constraints that define the optimal partial solution. If
the set of violators is non-empty in a round, then it contains at
least one of the constraints of ~Γ∗. Hence, the weight of at least



one constraint in ~Γ is doubled after each successful iteration.
After kD successful iterations, the total weight is at most
n(1 + 1/4D)kd ≤ nek/4, and there is a constraint in ~Γ whose
weight is at least 2k. Since this quantity is bounded by the total
weight of the constraints, we can deduce that k = O(log n). In
each round, the expected weight of the sensors sending their
constraints is at most 9D2/W , so a standard random-sampling
argument [10] shows that the probability of a round being
successful is at least 1/2.

VI. SOLVING PLCP

Either of the algorithms for the EXACT-LCP or APPROX-
LCP can serve as oracles for a PCLP algorithm. While the
discussion in Section IV already shows that finding an exact
solution is NP-Hard, we first show a centralized algorithm that
provides approximation guarantees.

A. A quality-guaranteed approximation for PLCP

Agarwal and Suri [2] and Agarwal and Desikan [1] presented
O(logOPT )-approximation algorithms for terrain simplifi-
cation, where OPT is the complexity of an optimum (i.e.,
minimum-complexity) terrain. The main subroutine in the
algorithms is an oracle for checking whether there is a plane
that intersects a set of vertical line segments. Our algorithm
for exact or approximate solution to the LCP provides such
an oracle; when plugged into the algorithms from [1], [2], it
gives O(logOPT )-approximation algorithms for the PLCP.

B. Quadtree-subdivision in a distributed setting

We describe a quadtree-based distributed algorithm; The
algorithm is recursive. Consider a node of the quadtree
corresponding to square/quadrant Q. (Initially, Q corresponds
to the entire sensor field.)

1) Each sensor s knows its own feasibility region Rs.
2) A leader sensor s0 is elected, using any standard method

of leader election.
3) Sensor s0 executes APPROX-LCP to check linear consis-

tency within Q for sensors whose feasibility regions lie
fully inside Q. Only these sensors reply and/or forward
the message to other sensors. (We assume that the sensors
fully inside Q always form connected components.) As
argued in the previous section, this requires sending
O(D log2 n′) messages, where n′ is the number of
sensors in Q.

4) If APPROX-LCP fails to find linear consistency within
Q, then s0 announces it, and announces the splitting of
Q into its four quadrants. A new leader is chosen in each
subquadrant, and the process repeats.

VII. EXPERIMENTS

All experiments were performed on a 1.86 GHz Intel Core
2 Duo processor machine with 2 GB RAM, running Debian
linux. The code is written in C++, and GLPK (GNU Linear Pro-
gramming Kit) is used to solve the linear programs. Original
sensor locations (xs, ys) are generated randomly (uniformly)
with xs, ys ∈ (0, 1000). The initial deployment region for each

sensor is a random rectangle, centered at the original sensor
location, of width/height uniform in (locerr, 2 · locerr), for a
parameter locerr. The measured values zds for each day d are
generated randomly such that the true measurement at location
(xs, ys) is given by a linear function, zd = adxs + bdys − cd,
and satisfies 0 ≤ zd ≤ 1000. The error bound, ε, in the sensor
measurements is assumed to be given, and remains the same for
all days and all sensors. The LP (1), as described in Section V,
is implemented after discretizing αd, such that αd = cotan(θd),
and θd iterates over the values in the set of k0 + 1 orientations
Ψ = {0, 2π

k0
, 2 2π

k0
, . . . , 2π}, for k0 to be determined later.

The efficiency of our algorithm depends on the number k0

of orientations in Ψ. We show experimentally that k0 need not
be too large: We show that if at least one feasible solution
exists, then using k0 = 32 is enough to be able to find it, using
the k0 + 1 orientations of Ψ. Below, we first study APPROX-
LCP; then, in Section VII-B, we study the performance of our
Quadtree-based algorithm for PLCP.

A. APPROX-LCP

Single day (D = 1): We fix k0 = 32, and let orient(feasible)
be the number of orientations in Ψ for which there exists a
feasible solution to the LP of a single day. In the experimental
results plotted in Figure 4 we show the average value of
orient(feasible) as a function of the number of sensors.
Here, the box sizes were fixed, using the choice of parameters
locerr = 50 and ε = 50. We see that with k0 = 32 there
were always enough orientations for multiple feasible solutions
and that increasing the number of sensors has little effect on
the number of feasible solutions, once there are at least 100
sensors. Then, in Figure 5, we show how the average value of
orient(feasible) varies with the box-size parameters locerr
and ε (with locerr = ε), for a fixed number, 50, of sensors.
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Fig. 4. orient(feasible) vs. the number of sensors. Here, locerr = ε = 50.

Multiple days (D > 1): Next, we study how localization
improves with the number, D, of days over which data is
collected. Figure 6 shows experimentally how the average area
of the localization regions varies with D. As expected, as D
increases, the areas of localization regions decrease. We note
that the decreases occur in steps.
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Fig. 5. orient(feasible) vs. box size parameters locerr = ε.
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Fig. 6. Average area of localization regions vs. number of days.

B. Multiple rooms: Quadtree approach

Here we study the behavior of the PLCP algorithm, used in
APPROX-LCP as an oracle. We generate random rectangular
rooms via a Binary Space Partition (BSP) of the 1000× 1000
sensor region. For each room, the sensed measurement field is
assumed to be linear for each day (independent and possibly
different from other rooms), and comes from a set of 16
discrete major orientations, for simplicity of formulating the
LP. After computing the quadtree solution, we post-process the
solution by combining pairs of quadtree cells. Only neighboring
cells that merge to form a rectangle are considered, and
merging takes place if and only if there exists a deployment
of each sensor lying within the rectangle that satisfies a linear
measurement field for each day. We experiment with different
numbers of rooms, while keeping the average number of sensors
the same (100) for each room. Figure 7 shows the variation
of the number of cells in the solution with the increasing
number of rooms. The number of cells considerably decreases
after post-processing. For this experiment, locerr = ε = 5 is
kept small, in order that we can analyze also the quality of
assignment of sensors to the cells.

We quantify the quality of sensor assignment (or classifica-
tion) using the following four metrics: the fraction of sensor
pairs that are (typeA) assigned to the same cell and also share
the same room, (typeB) assigned to the same cell but do not
share the same room, (typeC) assigned to different cells, which
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Fig. 7. No. of solution cells vs. no. of rooms.

shared the same room, (typeD) assigned to different cells, which
also did not share the same room.

For good assignment/classification, typeA and typeD should
be close to 1, while typeB and typeC should be close to 0.
Figure 8 shows the four metrics for the quadtree cell subdivision.
All four of the metrics look reasonable for up to 30 rooms.
The fraction of sensors that were not classified are also shown.
These are the ones whose initial deployment region overlapped
cell boundaries. The left plot shows the results for the quadtree
subdivision alone; the right plot shows the results after the
merging of neighboring cells done in the post-processing.
Figure 9 shows a 4-room example illustrating the result of the
quadtree subdivision/classification as well as the result after
the post-processing merging of quadtree cells, which yields a
reasonably good approximation to the original set of rooms.

Fig. 9. Examples of results. From left to right: Original 4 random (BSP) rooms;
resulting subdivision/classification; the post-processed subdivision/classification
after merging neighboring cells.

VIII. CONCLUSION

We have given a distributed data-driven solution to local-
ization, clustering, and sensor suspension problems. While
we have assumed here that the sensor measurements come
from a linear or piecewise-linear field (function), our methods
extend to the piecewise-algebraic case as well. Theoretically,
we obtained a logOPT -approximation centralized algorithm
for the Piecewise linear consistency problem (LCP), which is
NP-hard even for D = 1, matching the best bounds known for
the related terrain approximation problem [1], [2] (a special
case of our problem).

The basic procedure of our terrain simplification approach—
checking for linear consistency—can be plugged into any of
the existing practical means of performing terrain simplification
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Fig. 8. Classification error vs. no. of rooms. Top: Quadtree subdivision. Bottom: After merging neighboring cells.

(e.g., edge contraction, incremental insertion, etc). Here, we
used a quadtree-based approach for simplicity.

One direction for future research is to devise an incremental
version of our algorithms, so that updates to the localization
can be done as each new day’s measurements are obtained.
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