
Guarding Galleries and Terrains∗

Alon Efrat† Sariel Har-Peled‡

July 8, 2006

Abstract

Let P be a polygon with n vertices. We say that two points of P see
each other if the line segment connecting them lies inside (the closure
of) P . In this paper we present efficient approximation algorithms for
finding the smallest set G of points of P so that each point of P is
seen by at least one point of G, and the points of G are constrained to
be belong to the set of vertices of an arbitrarily dense grid. We also
present similar algorithms for terrains and polygons with holes.

1 Introduction

The art gallery problem [O’R87] is stated as follows: Given a polygon P (the gallery),
find a smallest set G of points (guards) inside P , such that each point in P is seen by at
least one of the guards. This problem has been studied extensively in recent years, see,
e.g., [O’R83, Agg84, Gho87, Hof90, HKK91, JL93, BS93, BG95], and the survey paper by
Urrutia [Urr00].

The art gallery problem is known to be NP-hard even when P is simple [OS83], and
even finding a (1 + ε)-approximation (that is, finding a set of guards whose cardinality
is at most 1 + ε times the optimum) is NP-hard [Eid00]. Ghosh [Gho87] presented a
(multiplicative) O(log n)-approximation algorithm that runs in O(n5 log n) time, for the
case in which guards located on vertices (as well as of other types of visibility). Gonzalez-
Banos and Latombe [GBL01] presented an algorithm for a rather restricted version of the
art galley problem, and with a much larger set of guards.

∗A preliminary version of this paper appeared in [EH02].
†Department of Computer Science, University of Arizona alon@cs.arizona.edu

WWW: http://www.cs.arizona.edu/people/alon
‡Department of Computer Science, University of Illinois Address: 2111 DCL, 1304

West Springfield Avenue, Urbana, IL 61801. Email: sariel@cs.uiuc.edu. WWW:
http://www.cs.uiuc.edu/contacts/faculty/harpeled.html.

1

Our contribution We present an algorithm for finding in time O(nc2
opt log4 n) a set of

vertices that sees P , and its cardinality is within a factor of O(log copt) from the optimum,
where copt is the cardinality of the optimum.

If one allows guards to be placed arbitrarily (not only on vertices), the problem seems
to be considerably harder. We present in Section 4 an exact algorithm for this problem
that runs in O((ncopt)

3(2copt+1)) time. To the best of our knowledge, this is the first
exact solution to the problem. The proof follows from recent results in algorithmic real
algebraic geometry. Thus if the optimum number of guards is a constant then we obtain
a polynomial algorithm.

In Section 5 we present an efficient implementation of our approximating algorithm
for the case in which the guards are restricted to lie on an arbitrary dense grid. For
this case, we get an O(log copt)-approximation in O(nc2

opt log n log(ncopt) log2 ∆) expected
time, where ∆ is the ratio between the diameter of the polygon and the grid size, and copt

is the cardinality of the smallest set of grid points that sees P . Note that the running
time depends on ∆ only logarithmically, which implies that we can choose a rather fine
grid without paying any penalty in the size of the solution and only a small penalty in the
running time. So the resulting set of grid points is likely to cover all of P , and the guarding
set found by our algorithm is like to have the same cardinality as in the un-constrained
problem, where guards can be located everywhere.

The new algorithms can be extended to handle polygons with h holes, as their VC-
dimension is O(log h) [Val98], yielding an approximation factor of O(log h log(copt log h)).
We also show how to solve related problems on terrains: Given a terrain T , find a small set
of vertices that see every point of T . This problem has many applications in Geographic
Information Science (GIS). Our approximation algorithm can be modified for this setting,
yields an O(log n log(copt log n)) = O(log n log log n) approximation factor. Analogous to
the case of a simple polygon, these extensions can be modified to find a set of guards that
see the whole polygon or terrain, respectively, where the guards are taken from the set of
vertices of an arbitrarily dense grid. These extensions are described in Section 6.

Our efficient algorithms are the result of obtaining data structures for carefully count-
ing and maintaining the weights of sets of grid points, as described below.

2 Preliminaries

For a point q ∈ P , the visibility polygon of q in P , denoted by Vis(q), is the region of all
the points of P that q sees. The following observation appeared in [GMMN90].

Observation 2.1. Let q be any point in P , and let s ⊆ P be a segment. If P is a simple
polygon, then the intersection between s and Vis(q) is a (possibly empty) segment.

Let G = {g1 . . . gk} be a set of k points in P , and let Vis(gi) denote the visibility
polygon of gi, for i = 1, . . . , k. Let Vis(G) = ∪gi∈GVis(gi).

Lemma 2.2. The complexity of the arrangement A = A(G) formed by ∂Vis(g1), . . . , ∂Vis(gk)
is O(nk2).

2

We define the zone of ∂Vis(gi) in A as the collection of all vertices of edges of A that
belong to cells of A that intersect ∂Visi.

Lemma 2.3. For every point q ∈ P the complexity of the zone of ∂Vis(q) in A is
O(nkα(k)), for i = 1, . . . , k. Here α(n) is the inverse Ackermann function, and is an
extremely slowly growing function.

Theorem 1 ([GMMN90]). Vis(G) is bounded by O(nk + k2) edges, and this bound is
tight in the worst case.

Efficient construction of Vis(G) The bound of Theorem 1 yields the following simple
but efficient divide-and-conquer algorithm for constructing Vis(G).

If k = 1, one can construct Vis(G), the visibility polygon from a single point, in O(n)
time [EA81]. Otherwise, divide G into two subsets G1, G2 of roughly k/2 guards each.
Compute recursively the visibility polygons Vis(G1) and Vis(G2), and merge them, using
a standard line-sweeping procedure [dBvKOS00] to obtain Vis(G). It is easy to see that
the running time of this procedure is O((nk + k2) log k log n).

3 Finding a Small Set of Vertices that Sees P

Let V be the set of n vertices of P . For a point q ∈ P , let Vq = V ∩Vis(q) denote the set
of vertices of P that q sees. Let X = (V,V) be the range space defined by the visibility

inside P , where V =
{

Vq

∣

∣

∣
q ∈ P

}

. Valtr [Val98] showed that 23 is a upper bound on the

VC-dimension of the more general space Y =
(

P,
{

Vis(q)
∣

∣

∣
q ∈ P

})

.

Finding a set of guards on the vertices of P that sees all of P , is equivalent to finding
a subset U of the vertices of P that hit all the ranges of V. That is ∀X ∈ V,X ∩ U 6= ∅.
However, since the VC-dimension of X is bounded, we can use the property that this space
has a small ε-net to get an efficient approximation algorithm (see [Cla93, BG95]). We
describe next an efficient implementation of this general method for the case of computing
a guarding set, i.e. a set of points that sees P . Assume that we have a guess k of the value of
copt. We initialize the value of k to one. We now call the procedure ComputeGuards(P, k),
depicted in Figure 1, repeatedly. The procedure ComputeGuards(P, k) tries to compute
a guarding set of P with O(k log k) guards. If such a call fails, we know that with high
probability, our guess of the number of guards needed to guard P (i.e., k) is too small.
Thus, we double its value and iterate. Overall, we would perform O(log copt) calls to
ComputeGuards. The correctness of this algorithm, and the values of the constants in
the big-O notations follow from the analysis of Clarkson [Cla93] (see also [BG95], and a
slightly different presentation in [EHKKRW02]).

We implement ComputeGuards using the algorithm of Section 2 to compute the union,
and to pick a point outside it, in O(nk log n log k) time. Computing Vis(q) can be done in
O(n) time, using the algorithm of [EA81].

3

Procedure ComputeGuards(P - simple polygon, k - number of guards)

1. Assign weight 1 to each vertex of V , the set of vertices of P .

2. For i := 1 to O(k log(n/k)) do:

(a) Pick randomly a set S of O(k log k) vertices, by choosing each guard
randomly and independently from V , according to the weights of the
vertices.

(b) Check if the points of S see all of P ; if so, terminate and return S as the
set of guards.

(c) Else, find a point q ∈ P that is not visible from S, and compute Vis(q).

(d) Compute Ω, the sum of weights of vertices in V ∩ Vis(q). If 2kΩ ≤ the
sum of weights of all vertices of P , double the weight of every vertex of
V ∩ Vis(q).

3. Failure — no solution found.

Figure 1: ComputeGuards(P, k) computes with high probability a guarding set of P of
O(k log k) guards, if k ≥ copt

In each call to ComputeGuards, the algorithm performs O(k log (n/k)) iterations. Over-
all, the expected running time of the algorithm is thus

O





log copt
∑

i=1

n(2i)2 log n log
n

2i
log2 2i



 = O

(

nc2
opt log n log

n

copt

log2 copt

)

.

We conclude:

Theorem 2. Given a simple polygon P with n vertices, one can compute, in
O(nc2

opt log n log (n/copt) log2 copt) expected time, a set S of O(copt log copt) vertices of V
that seems P , where copt is the cardinality of the minimal set. The quality of approximation
is correct with high probability.

4 Exact Algorithm for Fixed Number of Guards

Theorem 3. A smallest set of guards that can see a given simple polygon P with n edges
can be computed in time O((nk)3(2k+1)), where k is the size of such an optimal set.

Proof. This is an easy consequence of known techniques in algorithmic real algebraic
geometry. Suppose first that we wish to determine whether there exists a set of k guards
that can see the whole of P . This is equivalent to deciding the truth of the following
predicate in the first-order theory of the reals:

∃x1, y1, x2, y2, . . . , xk, yk∀u, v |

4

[

InP(u, v) =⇒ (Visib(x1, y1;u, v) ∨ Visib(x2, y2;u, v) ∨ · · · ∨ Visib(xk, yk;u, v))

]

,

where InP(u, v) is a predicate that is true iff (u, v) ∈ P , and Visib(x, y;u, v) is a predicate
that is true iff (x, y) and (u, v) are visible to each other within P . Clearly, InP is a Boolean
combination of O(n) linear inequalities, whereas Visib(x, y;u, v) is a Boolean combination
of O(n) quadratic inequalities. Hence the whole predicate involves O(nk) polynomials of
maximum degree 2, and has only one alternation of quantifiers. Applying the result of
[BPR96], deciding the truth of this predicate can be done in time O((nk)3(2k+1)). Finding
the optimal value of k can then be done by a straightforward unbounded linear search,
within asymptotically the same complexity bound.

5 Unconstrained Locations of Guards

We consider in this section the art gallery problem in which the location of the guards
inside the polygon is not restricted to vertices. Instead, their location is restricted to lie
on a dense grid inside the polygon. Intuitively, if the polygon P is “well-behaved”, such a
minimum set of guards may be a good approximation (in its cardinality) to the optimal
guarding set.

The main idea of our algorithm is that, instead of maintaining the weight of the
relevant grid points explicitly, as done in the algorithm for the case of vertices, we exploit
the special properties of the grid, and of the weight function defined over the grid points,
to maintain those weights implicitly.

Suppose that we are given a simple n-gon P with diameter ≤ 1, a parameter ε > 0,
and Γ a grid of square-length ε inside P ; that is Γ = P ∩{(iε, jε) | i, j ∈ ZZ}. We present an
algorithm that finds a set G ⊆ Γ of guards that see all the points of Γ, and its cardinality
is O(copt log copt) where copt is the cardinality of a smallest set of vertices of Γ that sees
P .

We apply the algorithm of the previous section, with a different scheme for main-
taining the weights over the points of Γ, and picking a set of guards in each stage of
ComputeGuards.

The range space for this problem is defined as follows: Let Ṽ denote the set of vertices
of P and the set of vertices of Γ. Let L be the set of lines passing through pairs of
vertices of Ṽ . Let X be the set of all intersection points of lines of L. Let the range space
Σ = (Ṽ , {Ṽ ∩ Vis(p)|p ∈ Γ}) . We do not construct Σ explicitly, as it is not necessary. It
is not hard to see that S ⊆ Γ sees P if and only if S sees X . Assume that S ⊆ Γ does not
see P . Let K be a connected component of P \ Vis(S). Observe that since P is a close
set, the edges of the closure of Vis(S) which are not edges of P , are not edges of Vis(S).
Thus each vertex of K (which is also a vertex of X) is not seen by any guard of S.

The weights of the points of Γ are maintained by a subdivision Ai of P , so that the
weight w(f) assigned to all the points of Γ inside a face f of Ai is the same, where i is
the current iteration of ComputeGuards. We associate with a face f of Ai the quantities
n(f) = Γ ∩ f , namely, the number of grid points of Γ inside f , w(f), which is the weight
assigned to each point of Γ∩ f , and W (f) = w(f) · n(f), which is the overall weight of f .
Initially A0 consists of a single cell, namely all of P . In the i-th iteration of ComputeGuards,

5

we pick at random as set Si of vertices of Γ, according to their weights. This is done by
first picking the face f of Ai−1 from which a point g ∈ Si is to be picked, and then picking
g uniformly from f ∩ Γ. Next we compute the polygon Vis(Si) and check as in Section 4
if it covers P . If P 6= Vis(Si) we find a vertex qi of P \ Vis(Si). As mentioned above,
qi ∈ Ṽ . We compute the visibility polygon Vis(qi), computes the total weight Ω of points
of Γ ∩ Vis(qi) (details described below) and if 2kΩ ≤ W (Γ), we insert ∂Vis(qi) into Ai−1,
splitting some faces of Ai−1 and forming a new arrangement Ai. We double (in an implicit
fashion) the weight of Γ ∩ Vis(qi). In Section 5.1 we explain how to find the number of
grid-point of Γ inside a face f , how to split f and and how to pick a grid point at random
from Γ ∩ f uniformly (note that all grid-points of Γ ∩ f have the same weight). We next
explain how to insert Vis(qi) and maintain the weights of the faces of Ai.

We assume for simplicity of exposition that each face f is a triangle (if not, when we
compute f we also compute a triangulation of it, and pick a triangle from this triangulation.
This does not effect the overall complexity of the algorithm, and we omit the tedious but
straightforward details).

To explain how to efficiently maintain the weights, we need the following lemma, whose
proof is postponeded to the end of this section.

Lemma 5.1. Let S = {xi}
m
1 be a set of m points on a line, with each point xi having an

associated weight wi. There is an augmented search tree T that supports the following
operations in time O(log m) each:

insert(xi, wi) — insert a new point xi into S, with an associated weight wi.

modify(xi, wi) — change the weight of xi to wi.

pick — pick a point xi at random from S, with probability wi/
∑n

j=1 wj .

interval sum(x, y) — report the sum of weights of the points in S ∩ [x, y].

interval double(x, y) — double the weight of each point of S ∩ [x, y].

Let the weight of a cell of Ai−1 be the sum of the weights of grid points inside this
cell. By Theorem 1 the arrangement A consists of O(nk2 + k2) edges. We call these edges
arrangement-edges. These edges lie on one of the O(nk) edges of the original polygons
Vis(qj), (1 ≤ j < i) which we call long edges. We replace long edge e by two copies of
e, so that each copy bounds faces of Ai−1 only on one of its sides (analogously to half-
edges in the description of the DCEL data structure [dBvKOS00]). We denote these edges
polygon-edges. We construct the tree Ti of Lemma 5.1 for each polygon-edge ei, where
the keys stored in that tree are the vertices of Ai−1 along ei. Each vertex v of A appears
on four polygon-edges adjacent to v. In each of them, v is stored twice (with the same
coordinate), corresponding to two of the four cells of Ai−1 adjacent to v. The weight of
the copy of v corresponding to a cell c is ωc/(2mc), where ωc is the total weight of c, and
mc is the number of vertices of c. As is easily checked, the sum of weights of vertices
corresponding to c, summed over all data structure Ti for all edges ei in Ai−1, is ωc. Let
the total weight of a polygon-edge ei denote the sum of weights of vertices on ei. To pick
a face of Ai−1 at random, we first pick a polygon-edge bounding the face.

6

Picking a polygon-edge e. This is accomplished by maintaining a tree T̃ storing a
representative point xi for each polygon-edge ei, where the weight of xi is the total-weight
of ei. As in the data structure of Lemma 5.1, T̃ stores for each node µ the variable Wµ

maintaining the sum of total-weights of the polygon-edges stored at the subtree rooted
by µ. Maintaining Wµ upon changing the total weight of one of the polygon-edges in µ’s
subset is done in a routine bottom-up fashion. Picking a polygon-edge ei is done similar
to Lemma 5.1. Both operation are doable in time O(log n).

Inserting a new polygon Vis(qi). We find a cell c of Ai−1 containing a point of
∂Vis(qi) that is also a vertex of P . This is easy to accomplish by maintaining which cell
of Ai−1 contains every vertex of P , so all is left to do is finding a vertex of P that sees the
point corresponding to (the “center” of) Vis(qi). Lemma 2.3 states that the complexity of
the zone of ∂Vis(qi) in Ai−1 is only O(n(i−1)α(n)). We follow ∂Vis(qi) through these cells
that it intersects, splitting each cell we pass through. We compute, using the operations
on the discrete hull described in Lemma 5.2 the number of points in the new cells, and
update the weights accordingly, and the number of vertices along the boundaries of these
cells.

Next we apply, for each tree Ti associated with ei, the operation interval sum(x1, x2)
in order to compute the value of Ω defined above. If 2coptΩ ≤ the sum of weights of all
points of Γ we double the weight of all the vertices of cells encapsulated in Vis(qi), but
applying interval double(x1, x2) operations described above to each of the trees associated
with polygon edges. After a triangle is split, we need to compute the number of grid points
inside each of the new triangles. This is required for calculating the weights of the new
triangles. This is accomplished by the data structure of Lemma 5.2, and add a factor of
O(log2 ∆), where ∆ is the ratio between the diameter of the polygon and the grid size.
Thus the time needed for the ith iteration is O(niα(n) log n(log i + log2 ∆)).

We perform exponential search for the value of copt by performing O(log copt) calls to
ComputeGuards(P, k), where k is always O(copt), we conclude

Theorem 4. Given a simple polygon P with n vertices, one can spread a grid Γ inside
P , and compute an O(log copt)-approximation to the smallest subset of Γ that sees P . The
expected running time of the algorithm is O

(

nc2
opt log copt log (ncopt) log2 ∆

)

, where ∆ is
the ratio between the diameter of the polygon and the grid size.

5.1 Range Searching on a Grid

Lemma 5.2. Let T be a triangle in the plane, and let Γ be a grid inside T . The boundary
of DiscreteHull(T) = CH(Γ∩ T) and the number of points of Γ inside T can be computed
in O(log ∆) time, where ∆ is the ratio between the diameter of the T and the grid size.

Proof. The boundary of the discrete hull CT = CH(T ∩ Γ) can be computed in
O(log ∆) time [KS96, HP98]. One can compute (in the same time complexity), the number
MT of points of Γ on the boundary of CT , and Area(CT). Now, using Pick’s Theorem
[Var85], one can now derive a precise closed formula on the number of grid points in Γ∩T .
Thus, the number of points of Γ inside T can be computed in O(log ∆) time.

7

Lemma 5.3. Let T,Γ and ∆ be as in Lemma 5.2. One can pick randomly and uniformly
a point from T ∩ Γ in O(log2 ∆) time.

Proof. Let B0 be a bounding box of T . In the i-th stage, we split Bi−1 vertically in the
middle by a line `i that does not pass through points of the grid Γ; let BR

i , BL
i be the

resulting two boxes to the right and left of `i, respectively. We can compute in O(log ∆)
time, by Lemma 5.2, the number of grid points in wR

i = BR
i ∩T ∩Γ and in wL

i = BL
i ∩T ∩Γ.

We now select Bi to be either BR
i or BL

i randomly according to their weights wL
i , wR

i . We
can stop as soon as a single vertical grid line crosses our box Bi, as we can uniformly pick
a grid point along this vertical grid line that lies inside T . Overall, this process clearly
takes O(log2 ∆) time.

5.2 Proof of Lemma 5.1

Proof. We maintain a sorted balanced tree T , whose leaves are associate with the values
xi. Let π(ν, µ) denote the path connecting node ν to node µ, where ν is an ancestor of
µ. Each internal node µ maintains its multiplicative factor Mµ, initially 1. We abuse
notation, so that the leaf containing the key xi is also denoted xi.

We maintained the values Mµ so that

wi =
∏

ξ∈π(root(T),xi)

Mξ .(1)

We assign to each internal node µ the variable σµ, which equals

σµ =
∑

xi descendent leaf of µ

∏

ξ∈π(µ,xi)

Mξ .

As easily observed, the sum of weights of the leaves in the subtree rooted at a node µ equals
σµ ·

∏

ξ∈π(root(T),µ) Mξ. We next explain how to perform a “pick” operation: Assume that
we already decided that the point xi to be picked belongs to the subtree Tµ of a node µ,
and we next decide whether or not xi belongs to the left subtree of Tleft(µ), where left(µ)

is the left child of µ. Observe that the probability of picking a point from the left subtree
of µ equals

∑

weights of leaves in Tleft(µ)
∑

weights of leaves in Tµ

=
σleft(µ)

∏

ξ∈π(root(T),left(µ))
Mξ

σµ

∏

ξ∈π(root(T),µ) Mξ

=
σleft(µ)

Mleft(µ)

σµ

.

This suggests the following approach to find a leaf xi. We branch from the root to
one of its children µ with the probabilities given above. Thus, overall, we perform a pick
operation in time O(log n).

To support Interval double(x1, x2), and Interval sum(x1, x2) we first locate the set X
of canonical nodes µ with the property that all descendent leaves of µ lie in the range
[x1, x2], but the parent of µ does not have this property. It is well known (see e.g.
[dBvKOS00]) that we can visit all nodes in X in time O(log n). In the case of Inter-

val double(x1, x2) we just double Mµ for each µ ∈ X.

8

In the case of Interval sum(x1, x2) we use the equation above for computing the sum
of weights of the points of each subtree µ for µ ∈ X. Since we can visit all of them in
O(log n) time, this is also the time required for this operation.

To support insert(xi, wi) we first add xi as a leaf, and balance the tree. Let µ be the
node containing xi (after balancing T). We set

Mµ = wi





∏

ξ∈π(root(T),parent(µ))

Mξ





−1

so (1) is maintained. Finally we update the fields σµ′ for µ′ ∈ π(root(T), µ) in a bottom-up
fashion. Clearly this is doable in O(log n) time.

6 Polygons with Holes and Terrains

The algorithms introduced in the previous sections can easily be modified to solve vis-
ibility problems in more complicated “galleries” and models of visibility. For example,
they can accommodate guards which have physical constrains on their range of visibility,
with distance constraints, and angular constraints on visibility, where a guard can see only
points whose distance are below some threshold, and can see only points that lie in some
angular sector. The modifications needed are only in the bounds on the complexities of
the arrangements of visibility regions, in the way they are computed, and in the approxi-
mation factor obtained. Details are straightforward and are not discussed here. Below we
described the main modifications needed to accommodate the problem of finding a guard-
ing set in polygons with holes or on terrains. We assume a standard model of visibility
here.

Visibility in a Polygon with Holes. Let P be a polygon with n vertices and h holes.
Let {q1 . . . qk} be a set of points inside P , and let Vis(qi) denote the visibility polygon of qi.
We claim that the complexity of the arrangement forms by the boundaries of the visibility
polygons {Vis(q1) . . . Vis(qk)} is O(nk2h). This follows from the following argument. The
boundary of Vis(qi) consists of n + h edges that are not on ∂P . Every such edge can
intersect ∂Vis(qj) in at most 2h points. Thus, the total number of intersection points on
∂Visi is at most nhk, and summing this bounds for all i yields the asserted bound.

It is shown in [Val98] that the VC-dimension of the problem is Θ(1 + log h). Hence,
applying [BG95], the approximation factor increases to O(log h log(copt log h)). Putting it
together, and modifying the results of Section Section 5, yields:

Theorem 5. Let P be a polygon with n vertices and h holes.

• We can find a set G of O(copt log n log(copt log n)) vertices of P that sees P ,
where copt is the cardinality of the optimal solution. The expected running time
is O(nh c3

optpolylog n).

• Let Γ be a grid inside P . Then we can find a set G of O(copt log h log(copt log n))
vertices of Γ that sees P . The expected running time is O(nhc3

optpolylog n log2 ∆)),
where ∆ is the ratio between the diameter of the polygon and the grid size.

9

Visibility in Terrains Let T be a (triangulated) terrain of n triangles. We can also
modify our algorithm in order to find a set S of vertices of T that sees T .

We can see that the VC-dimension, d, is O(log n), as follows. Let S be a set of d
points of T that are shatterable under visibility; i.e., for every S′ ⊆ S there is a point gS′

on T such that S′ = S ∩ Vis(gS′). It is well known that the visibility region Vis(gS′) can
be described as the union of Θ(n2) triangles in T , each fully contained inside a face of T ,
where the boundary of each such triangle ∆ is either the boundary of a triangle of T , or
of the intersection of T with the the plane hr passing through p and through an edge r of
T . Since there are O(n) edges r in T , and each plane hr intersects a triangle of T along a
straight segment, the Θ(n2) bound on the complexity of Vis(p) follows. The total number
of edges of Vis(q) for all q ∈ S is O(dn2), and overlaying the boundaries of Vis(p) for each
q ∈ S imposes a subdivision S of T into O(d2n4) regions, where if two points x1, x2 of T
lie in the same region of S, then they see the same subset of S. Since S is shattered under
visibility, the number of regions in S is at least 2d implying d = O(log n).

In [dB93] de Berg showed that the complexity of the arrangement A forms by the
visibility polygons of a set G of k guards is O(n2k2). Plugging the upper bound into
our algorithm, and skipping obvious details, we obtain an expected running time of
O(n2c3

optpolylog n log2 ∆) where ∆ is the ratio between the diameter of the terrain and
the grid size.

Note that if guards are allowed to be located only on vertices of the terrain, then the use
of the grid is not needed, and the expected running time is improved to O(n2c3

optpolylog n).
This improves the O(n8)-algorithm of Eidenbenz [Eid02], who obtained a slightly better
approximation factor of O(log n). To summarize

Theorem 6. • Given a terrain T of n triangles, we can find in time
O(n2c3

optpolylog n) a set S of vertices of T that see T , where |S| is within a factor
of O(log n log log n) of the minimum.

• Given a terrain T of n triangles, and a grid Γ placed on each triangle of T , we can
find in time O(n2c3

optpolylog n log2 ∆) a set S of vertices of Γ that see T , where |S|
is within a factor of O(log n log log n) of the minimum, and ∆ is the ratio between
the diameter of the terrain and the grid size.

Acknowledgments

We would like to thank Will Evans, Stephen Kobourov, Joseph S. B. Mitchell, T.M. Murali
and Micha Sharir for very helpful discussions. We also thank Micha Sharir for the result
of Section 4.

References

[Agg84] A. Aggarwal. The art gallery problem: Its variations, applications, and
algorithmic aspects. PhD thesis, Dept. of Comput. Sci., Johns Hopkins Uni-
versity, 1984.

10

[BG95] H. Brönnimann and M. T. Goodrich. Almost optimal set covers in finite
VC-dimension. Discrete Comput. Geom. 14 (1995), 263–279.

[BPR96] S. Basu, R. Pollack, and M.-F. Roy. On the combinatorial and algebraic
complexity of quantifier elimination. J. ACM, 43 (1996), 1002–1045.

[BS93] I. Bjorling-Sachs, Variations on the Art Gallery Theorem. PhD thesis,
Rutgers University, 1993.

[Cha91] B. Chazelle, Triangulating a simple polygon in linear time. Discrete Comput.
Geom. , 6 (1991) 485–524.

[Cla93] K.L. Clarkson. Algorithms for polytope covering and approximation. In
Proc. 3rd Workshop Algorithms Data Struct., LNCS 709, 1993, 246–252.

[dB93] M. de Berg. Generalized hidden surface removal. In Proc. 9th Annu. ACM
Sympos. Comput. Geom., 1993, 1–10.

[dBvKOS00] M. de Berg, M. van Kreveld, M. H. Overmars, and O. Schwarzkopf. Com-
putational Geometry: Algorithms and Applications. Springer-Verlag, 2nd
edition, 2000.

[EH02] A. Efrat and S. Har-Peled, Locating Guards in Art Galleries, 2nd IFIP
International Conference on Theoretical Computer Science 2002, 181–192.

[EHKKRW02] A. Efrat, F. Hoffmann, K. Kriegel, C. Knauer, G. Rote and C. Wenk, Cov-
ering Shapes by Ellipses ACM-SIAM Symposium on Discrete Algorithms,
2002, 453–454.

[EA81] H. ElGindy and D. Avis. A linear algorithm for computing the visibility
polygon from a point. J. Algorithms, 2:186–197, 1981.

[Eid00] S. Eidenbenz. (In-)Approximability of Visibility Problems on Polygons and
Terrains. Phd thesis, diss. ETH no. 13683, 2000.

[Eid02] S. Eidenbenz. Approximation algorithms for Terrain Guarding Information
Processing Letters (IPL) 82 (2002) 99-105.

[GBL01] H. Gonzalez-Banos and J. C. Latombe. A randomized art-gallery algorithm
for sensor placement. In Proc. 17th Annu. ACM Sympos. Comput. Geom.,
2001, 232–240.

[Gho87] S. K. Ghosh. Approximation algorithms for art gallery problems. In Proc.
Canadian Inform. Process. Soc. Congress, 1987.

[GMMN90] L. Gewali, A. Meng, Joseph S. B. Mitchell, and S. Ntafos. Path planning
in 0/1/∞ weighted regions with applications. ORSA J. Comput., 2 (1990)
253–272.

11

[HKK91] F. Hoffmann, M. Kaufmann, and K. Kriegel. The art gallery theorem for
polygons with holes. In Proc. 32nd Annu. IEEE Sympos. Found. Comput.
Sci., 1991 39–48.

[Hof90] F. Hoffmann. On the rectilinear art gallery problem. In Proc. 17th Internat.
Colloq. Automata Lang. Program., LBNCS 443, 1990, 717–728.

[HP98] S. Har-Peled. An output sensitive algorithm for discrete convex hulls. Com-
put. Geom. Theory Appl., 10 (1998), 125–138.

[JL93] G. F. Jennings and W. J. Lenhart. An art gallery theorem for line segments
in the plane. In G. T. Toussaint, editor, Pattern Recognition Letters Special
Issue on Computational Geometry, 1993.

[KS96] S. Kahan and J. Snoeyink. On the bit complexity of minimum link paths:
Superquadratic algorithms for problems solvable in linear time. In Proc.
12th Annu. ACM Sympos. Comput. Geom., 1996, 151–158.

[O’R83] J. O’Rourke. An alternative proof of the rectilinear art gallery theorem. J.
Geom., 21 (1983) 118–130.

[O’R87] J. O’Rourke. Art Gallery Theorems and Algorithms. The International Series
of Monographs on Computer Science. Oxford University Press, New York,
NY, 1987.

[OS83] J. O’Rourke and K. J. Supowit. Some NP-hard polygon decomposition
problems. IEEE Trans. Inform. Theory, IT-30 (1983) 181–190.

[Urr00] J. Urrutia. Art gallery and illumination problems. In Jörg-Rüdiger Sack
and Jorge Urrutia, editors, Handbook of Computational Geometry, 2000,
973–1027.

[Val98] P. Valtr. Guarding galleries where no point sees a small area. Israel J. Math,
104 (1998) 1–16.

[Var85] D.E. Varberg, Pick’s Theorem Revisited, The American. Math. Monthly 92
(1985), 584–587.

12

