
Pattern Matching for Sets of Segments ∗

Alon Efrat† Piotr Indyk‡ Suresh Venkatasubramanian§

Abstract

In this paper we present algorithms for a number of problems in geometric pattern matching where
the input consist of a collections of segments in the plane. Our work consists of two main parts. In the
first, we address problems and measures that relate to collections of orthogonal line segments in the
plane. Such collections arise naturally from problems in mapping buildings and robot exploration.

We propose a new measure of segment similarity called acoverage measure, and present efficient
algorithms for maximising this measure between sets of axis-parallel segments under translations. Our
algorithms run in timeO(n3polylogn) in the general case, and run in timeO(n2polylogn) for the
case when all segments are horizontal. In addition, we show that when restricted to translations that are
only vertical, anε-approximation to Hausdorff distance between two sets of horizontal segments can
be computed in time roughlyO(n3=2polylogn). These algorithms are significant improvements over
the general algorithm of Chew et al. that required timeO(n4 log2 n).

In the second part of this paper we address the problem of matching polygonal chains. We study
the well known Fréchet distance, and present the first algorithm for computing the Fréchet distance
under general translations. Our methods also yield algorithms for computing a generalization of the
Fréchet distance, and we present a simple approximation algorithm for the Fréchet distance and its
generalization that runs in timeO(n2polylogn).

1 Introduction

Traditionally, geometric pattern matching employs as a measure of similarity the (directed) Hausdorff
distanceh(A, B) defined ash(A, B) = max

p∈A min
q∈B d(p, q) for two point setsA andB. However,

when the patterns to be matched are line segments or curves (instead of points), this measure is less than
satisfactory. It has been observed that measures like the Hausdorff measure that are defined on point sets
are ill-suited as measures of curve similarity, because they ignore the directionality inherent in continuous
curves.

This paper addresses problems in geometric pattern matching where the inputs are sets of line segments.
Our work consists of two main parts; in the first part we consider the problem of matching (under trans-
lation) segments that are axis-parallel (i.e either horizontal or vertical), and in the second we consider the
problem of matching polygonal chains under translation. Westudy two different measures in this context;
the first is a novel measure called thecoverage measure, which captures the similarity between axis-align
segments that may partially overlap with one another. The other is the well known Fréchet distance (first
proposed by Maurice Fréchet in 1906 as a measure of distancebetween distributions) which has often
been referred to as a natural measure of curve similarity [3,9, 28]. We discuss each measure in detail
below.

∗A perliminary version of this paper appeared in [16]
†Computer Science Department, The University of ArizonaEmail: alon@cs.arizona.edu. Work supported in part by a

Rothschild Fellowship and by DARPA contract DAAE07-98-C-L027
‡Computer Science Department, MIT.Email: indyk@cs.stanford.edu.
§AT&T Labs – Research.Email: suresh@research.att.com.

2

1.1 Mapping and orthogonality

The motivation for considering instances of pattern matching where the input line segments are orthogonal
comes from the domain ofmapping, in which a robot is required to map the underlying structureof a
building by moving inside the building, and “sensing” or “studying” its environment.

(a) (b) (c)

Figure 1: Left: The robot, and the laser range finder installed on it. Middle: Typical “picture” obtained by
the robot of a corridor (after segmentation). Right: The corridor itself

In one such mapping project at the Stanford Robotics Laboratory1 the robot ALON SAYS: name of ←−

robot and scanner is equipped with a laser range finder which supplies the distance from the robot to its
nearest neighbor in a dense set of directions in a horizontalplane. We call the resulting distances map a
picture. Figure 1.1(a) shows the robot used at Stanford for this purpose.

During the mapping process, the robot must merge into a single map the series of pictures that it captures
from different locations in the building. Since the dead reckoning of the robot is not very accurate, it cannot
rely solely on its motion to decide how the pictures are placed together. Thus, we need a matching process
that can align (by using overlapping regions) the differentpictures taken from different points of the same
environment. In addition, we need to determine whether the robot has returned to a point already visited.
We make the reasonable assumption that walls of buildings are almost always either orthogonal or parallel
to each other, and that these walls are frequently by far the most dominant objects in the pictured. This is
especially significant in the case that the robot is inside a corridor, where there is a lack of detail needed
for good registration. In some cases most of the picture consists merely of two walls with a small number
of other segments. See Figure 1.1(b),(c) for a typical picture and the real region that the laser range finder
senses.

This application suggests the study of matching sets of horizontal and vertical segments. Observe
that we may restrict ourself to alignments undertranslation, as it is easy to find the correct rotation for
matching sets of orthogonal segments. Formally, letA = {a

1

. . . a
n

} andB = {b
1

, . . . b
n

} be two sets
of axis-aligned line segments in the plane, and letε > 0 be a given parameter. A pointp of a horizontal
(resp. vertical) segmentb ∈ B is coveredif there is a point of a horizontal (resp. vertical) segmenta ∈ A

whose distance fromp is at mostε, where the distance is measured using theℓ
1

norm. A point on a
horizontal (resp. vertical) segment can be covered only by apoint of another horizontal (resp. vertical)
segment. Letw(A, B) denote the ALON SAYS: Do we use this notation somewhere else? collection ←−

of sub-segments ofB consisting of covered points. LetCov
"

(A, B) be the total length of the segments of
w(A, B). Themaximum coverage problemis to find a translationt∗ in the translation plane that maximizes
Cov

"

(t) = Cov
"

(A, t + B). Hereε is a parameter specified by the user based on the physical model. To
the best of our knowledge, this similarity measure is novel.ALON SAYS: Check if the web address stile ←−

1 The interested reader can find more information at the URLhttp://underdog.stanford.edu

http://underdog.stanford.edu

3

alive The coverage measure is especially relevant in the case of long segments e.g. inside a corridor, when
we might be interested in partially matching portions of long segments to portions of other segments.

Our Results In Section 2 we present an algorithm that solves the Coverageproblem between sets of
axis-parallel segments in timeO(n3 log2 n) and the Coverage problem between horizontal segments in
time O(n2 logn). Note that the known algorithms for matching arbitrary setsof line segments are much
slower. For example, the best known algorithm for finding a translation that minimizes the Hausdorff
Distance between two sets ofn segments in the plane runs in timeO(n4 log2 n) [2, 14]. We also show
that the combinatorial complexity of the Hausdorff matching between segments isΩ(n4), even if all
segments arehorizontal. This strengthens the bounds shown by Rucklidge [26], and demonstrates that
our algorithms, much like the algorithms of [12, 13], are able to avoid having to examine each cell of
combinatorially different translations.

In Section 4 we consider the related problem of matching horizontal segments under vertical trans-
lations (under the Hausdorff measure). It has been observedthat if horizontal translations are allowed,
then this problem is 3SUM-hard [7], ALON SAYS: And if it is vertical indicating that finding a sub-←−

quadratic algorithm may be hard. However, we present anε-approximation algorithm running in time
O(n3=2 max{log M, log n, 1/ε))}, for some fixed constantc, which is sub-quadratic in most cases.
Here,M denotes the ratio of the diameter to the closest pair of points in the sets of segments (where
pairs of points lie on different segments).

1.2 The Fr échet distance

In the second part of the paper, we consider measures for matching polygonal chains under the Fréchet
distance. Let us define a curve as a continuous mappingP : [0, 1] → R2. The Fréchet distance between
two curvesP andQ, d

F

(P, Q) is defined as:

d
F

(P, Q) = inf
�;�

max
t∈[0;1℄

‖P(α(t)) − Q(β(t))‖

whereα, β range over continuous increasing functions from[0, 1]→ [0, 1].
Alt and Godau proposed the first algorithm for computing the Fréchet distance between two polygonal

chains (with no transformations). Their method is elegant and simple, and runs in timeO(pq logpq),
wherep andq are the number of segments in the two polygonal chains. In hisPh.D thesis [18], Michael
Godau presents an extensive study of the complexity of computing the Fréchet distance. He shows that
computing the Fréchet distance between two simplicial objects of intrinsic dimensiond ≥ 2 is NP-hard.

Although the Fréchet distance is a natural measure for curve similarity, its applicability has been lim-
ited by the fact that no algorithms exists to minimise the Fr´echet distance between curves under various
transformation groups. Prior to our work, the only result oncomputing the Fréchet distance under trans-
formations was presented by Venkatasubramanian [27]. He computes min

t∈TP
x

d
F

(P, Q + t) ≤ ε, where
TP

x

is the set of translations along a fixed direction, in timeO(n5polylogn) (wheren = p + q). In fact,
our methods can be viewed as a generalization of his methods and can be used to solve his problem in the
same time bound.

Our Results In Section 5 we present the first algorithm for finding a translation of a polygonal chain,
so that its Fréchet distance to another polygonal chain is≤ ε, for a given parameterε, or determine that

4

no such translation exists. The algorithm is based on a reduction to a dynamic graph reachability problem;
its running time isO(n10polylogn).

If we drop the restriction that the functionsα, β must be increasing, we obtain a measure that we call the
weakFréchet distance, denoted byd

F̃

. Our methods can be used to decide whether min
t∈TPd

F̃

(P, Q+t) ≤
ε; in this case, the underlying graph is undirected, yieldingan algorithm that runs in timeO(n4polylogn).

With the exact algorithms being rather expensive, it is natural to ask whether approximations can be
obtained efficiently. A simple observation shows that we canobtain an(ε, β)-approximation to the Fréchet
distance under translations in timeO(n2poly(logn, 1/β)).

2 Algorithms for maximum coverage

Let A = {a
1

. . . a
n

} andB = {b
1

, . . . b
n

} be two sets of axis-parallel line segments in the plane, and let
ε > 0 be a given parameter. We first consider the case that the setsA andB consists of both horizontal
and vertical segments.

ALON SAYS: Say that we use some ideas from kinetic data structures ... ←−

2.1 Coverage with axis-parallel segments

The main result of this subsection is the following theorem:

Theorem 2.1.We can find a translationt that maximizesCov
"

(A, t + B) in timeO(n3 log2 n).

For the proof of this theorem, we need several lemmas and definitions. For a geometric objectR let
X(R), thex-spanof R, denote the interval of thex-axis between the leftmost and the rightmost point ofR ′,
whereR ′ is the orthogonal projection ofR on thex-axis.

Let Ah ⊆ A (resp.Bh ⊆ B) be the set of horizontal segments ofA (resp.B) and letAv ⊆ A (resp.Bv ⊆
B) be the set of vertical segments ofB. Note thatCov

"

(A, t+B) = Cov
"

(Ah, t+Bh)+Cov
"

(Av, t+Bv).
Let s be a non-vertical segment. We define the functions(x) : R → R as follows: For everyx /∈ X(s),
s(x) = 0, and forx ′ ∈ X(s), s(x ′) is the value of they-coordinate of the intersection point ofs and the
vertical linex = x ′. To emphasize thats defines a function, we refer tos as agraph-segmentor gsegment
for short. Informally speaking, our interset in gsegments results from the fact the the maximal obtained
along all tranlsations which lie on a horizontal line in the translation plane can be described as a sum of a
set of gsegment, as we desctibe below.

Lemma 2.1. Let P = {(x
1

, y
1

), . . . (x
m

, y
m

)} be a point set. We can construct in timeO(m log2 m) a
data structure forP such that for a query gsegments, the point(x

k

, y
k

) ∈ P maximizing the set{s(x
i

)+y
i

| x
i

∈ X(s) and1 ≤ i ≤ m} can be found in timeO(log2 m).

Proof. If X(P) ⊆ X(s), then(x
k

, y
k

) is clearly a vertex of the convex hull ofP, and once the convex
hull is computed, we can find(x

k

, y
k

) in timeO(logn), as it is a standard linear programming query in a
convex polygon. To answer the query in the case thatX(P) * X(s), we construct a balanced binary search
treeΨ(P) on the set{x

1

. . . x
m

}. For each nodeµ ∈ Ψ(P) let P
�

denote the points in the subtree ofµ, and
let X

�

denote thex-span ofP
�

. We constructC
�

, the convex hull ofP
�

, for each nodeµ of Ψ(P). Once a
query gsegments is given, we find a set ofO(log |P|) nodesµ of Ψ(P) with the property thatX

�

⊆ X(s),
andX

parent(�)

* X(s). We perform the desired maximization query onC
�

. The time required is clearly
as claimed.

5

For a setS = {s
1

. . . s
m

} of non-vertical gsegments inR2, letsumS(x) = Σm

i=1

s
i

(x), and letmax sum(S) =

max
x∈R sumS(x).

Lemma 2.2. Let S(τ) = {(a
1

(τ), b
1

(τ)), (a
2

(τ), b
2

(τ)), . . . , (a
m

(τ), b
m

(τ))} be a set of gsegments
whose location is a function of a parameterτ, where

a
i

(τ) = (a0

i

.x, a0

i

.y + α
i

τ) and b
i

(τ) = (b0

i

.x, b0

i

.y + β
i

τ) ,

wherea0

i

.x, a0

i

.y, b0

i

.x, b0

i

.y, α
i

, β
i

are given constants. Thinking aboutτ as a time parameter, the end-
points of the segments move vertically at constant velocities. Then we can construct a data structure
Q(S(·)), so that given a timeτ

i

and a query pointq on thex-axis, we can find{sum
S(�

i

)

(q) | x ∈ X(e
i

)}

timeO(log2 m).

Proof. We construct a segment treeT ′ on thex-projections of the segments ofS(τ) (note that their
projections do not change in time). With each nodeµ of T ′ we maintain the intervalI

�

on thex-axis
assosiated withµ, and the seubsetS(τ) ⊆ S(τ) stored withµ. Let ℓ

L

andℓ
R

be the left and right verticall
llines passing through the endpointsx

L

andx
R

of I
�

. We can express they-coordination of the intersection
point of theith segmente of S

�

with ℓ
L

andℓ
R

(resp.) byaL

�;i

τ+bL

�;i

andaR

�;i

τ+bR

�;i

(for i = 1, . . . |S
�

|),
whenaL

�;i

, bL

�;i

, aR

�;i

bR

�;i

are appropriate constants. Letx be a point onI
�

, and letα = (x − x
L

)/(x
R

− x
L

).
Hence at timeτ,

e(x) = α
(

aL

�;i

τ + bL

�;i

)

+ (1 − α)
(

aR

�;i

τ + bR

�;i

)

Defining
AL

�

= Σ
jS

�

(�)j

1

aL

�;i

, BL

�

= Σ
jS

�

(�)j

1

bL

�;i

, AR

�

= Σ
jS

�

(�)j

1

aR

�;i

, AR

�

= Σ
jS

�

(�)j

1

aR

�;i

,

We have that

(2.1) max
S

�

(�)

(x) = α
(

τAL

�

+ BL

�

)

+ (1 − α)
(

τAR

�

+ BR

�

)

We storeAL

�

, BL

�

, AR

�

, AR

�

with each nodeµ. Once a pointx and a timeτ are given, we find theO(logm)

nodesµ of T ′ for whichx ∈ I
�

(the is at most one such node at each level ofT ′). For each, we evaluate
the expression 2.1, and sum the results. Clealy this can be done inO(logm), and the construction ofT ′

can be done inO(m logm).

Lemma 2.3. LetS(τ) = {(a
1

(τ), b
1

(τ)), (a
2

(τ), b
2

(τ)), . . . , (a
m

(τ), b
m

(τ))} as in Lemma 2.2. We can
construct a data structureD(S(·)), so that given a query timeτ and a query gsegmentse(x), we can find
max{e(x)+sum

S(�)

(x) | x ∈ X(e)}, so that the total time needed to answerk queries isO((m+k) log2 m),
provided that the timeτ of each query is no larger than the time of the previous query.ALON SAYS: can ←−

we construct it with time moving upward

Proof. We first explain how to construct the data strucure for a fixed timeτ
1

. Before each query is posed
to the data structure, we modify the data structure according to the timeτ

i

of that query.
Using a simple divde-and-conqure technique we construct intimeO(m logm) the graph of the function

sum
S(�

1

)

(x). This is a piecewise linear graph. LetV(S(τ
1

)) denote the set of vertices of this graph. Note
that every such vertex has the samex-coordinate as an endpoint of one of the gsegments ofS(τ

1

), thus
|V(S(τ

1

))| = O(m).
Clearly for every gsegmente the maximum of the set{e(x)+sum

S(�

1

)

(x) | x ∈ X(e)} at thex-projection
of either a vertex ofV(S(τ

1

)), or an endpoint ofe(x). We use the data structure of Lemma 2.2 to find
the value at the endpoint ofe(x). In order to handle the former case, we construct the data structure
Ψ(V(S(τ

1

))) of Lemma 2.1. This enables answering a query (for timeτ
1

) in timeO(log2 m).

6

Once the next query is submitted (with a smaller timeτ
2

< τ
1

), we need to efficiently modifyΨ(V(S(τ)))

to createΨ(V(S(τ
2

))). We decreaseτ graduatly, while keeping track of the changes the data structure goes
through. Note that asτ decreses fromτ

1

to τ
2

, the vertices of the graph max
S(�)

(x) move vertically down-
ward at a constnt speed, as the speed of each of them is the sum of ≤ m values which changes linearly.
We keep track of the changes that each convex hullC

�

stored at a node of the tree ofΨ(V(S(τ))), goes
through.

It is well known that the convex hull of such a set ofk points moving vertically at constant speeds can
go throughO(k) combinatorial changes. These changes can be tracked in a total of O(k logk) time by
a simple divide-and-conqure algorithm, by splitting the vertices into two equal-cardinality subsets to the
left and right of a vertical line, maintain recursively the convex hull of each subsets, and show that the
common tangents to these hulls can goes throughO(k) combinatorial changes which are trivial to tackle.

Thus this is the time needed to be spent on maintaingC
�

, as we decreaseτ from τ
1

toτ
m

. Since the total
sizes of convex hulls inΨ(V(S(τ))) is O(m log2 m), we needO(m log2 m) time to maintainΨ(V(S(τ)))

asτ decreases from the first to the last query.

Lemma 2.4. Let S(τ) be as in Lemma 2.3. Then we can maintainmax sum(S(τ)) under gsegment
insertions or deletions in amortized timeO(

√
m

′ log2 m ′) per operation. In addition, we can maintain
max sumunder atime-decreasestep (τ ← τ − ∆) in O(

√
m

′ logm ′) time per update. Herem ′ is the
maximum betweemm and the total number of operations done on the set.

Proof. A deletion of a gsegmente is resolved by adding the negation ofe, som ′ = |S(τ)|, and we direct
our attention to the insertion of gsegments. We partitionS(τ) intoS

1

(τ) andS
2

(τ). The setS
1

(τ) contains
at most

√
m ′ of the gsegments ofS(τ). We defineS

2

(τ) = S(τ)\S
1

(τ). Each time a gsegment is inserted
into S(τ), it is inserted intoS

1

(τ). Once the cardinality ofS
1

(τ) exceeds
√

m ′, we setS
2

(τ) to beS(τ),
emptyS

1

(τ), and construct the data structureD(S
2

(τ)) of Lemma 2.3 for the vertices of the graph of
sumS

2

(�)

(·).
In order to maintainmax sumS(�)(·), we do the following. Once a gsegment is inserted intoS

1

, we
explicitly compute the graph ofsumS

1

(�)

(·) which is piecewise linear of complexityO(
√

m ′). With each
gsegmente of this graph (not to be confused with the segments ofS(τ)) we perform a query inD(S

1

(τ)).
The maximum obtained ismax sumS(�). This operation is doable ALON SAYS: give ref to the lemma ←−

in timeO(
√

m ′ log2 m ′). Decreasingτ is obtained as in Lemma 2.3. Hence the lemma holds.

ALON SAYS: find ref to the number of changes in a convex hull ←−

We next turn our attention to conclude the proof of of the firsttheorem of this section.

Proof. (of Theorem 2.1) The algorithm consists of sweeping the translation plane from top to bottom,
using a horizontal sweeping lineℓ(y). We maintain a setS(y) of gsegments, initially empty, and maintain
its maximummax sum(S(y)) using the data structureD(S(y)) of Lemma 2.3. As shown later, the
maximum value obtained is equal to max

t

Cov
"

(A, t + B).
Let D

"

be a square of edge-length2ε and consider the Minkovski sum

D
"

⊕ Ah = {d + a | d ∈ D
"

anda is a point of a segment ofAh }.

Note thatD
"

⊕ Ah can be expressed as the union ofn rectangles, all of height2ε, so the boundaries of
each two intersect in at most two points, and by [22] the complexity of their union isO(n). We impose a
horizontal decomposition onD

"

⊕ Ah to obtain a set ofO(n) rectanglesRh = {γ
1

, γ
2

. . . } and a vertical
decomposition onD

"

⊕ Av to obtain a set ofO(n) rectanglesRv = {ρ
1

, ρ
2

. . . }. There are two types
of events that we handle in the line sweep process, calledhorizontal segment eventandvertical segment

7

event. Upon encountering each such event, say forℓ(y
0

), we modify the data structures (described below)
and compute max

t∈`(y
0

)

Cov
"

(A, t + B). The events are computed in the preprocessing stage, and stored
in the line-sweep queue. The events are described as follows:

ALON SAYS: Do we need to take special care of the union of A had no inner boundaries in the ←−

H decomposition

Horizontal segment events. For everyb
i

∈ Bh and rectangleγ
j

∈ Rh we create a set of events, as
follows: Assume

γ
j

= ((c, d), (c + ∆
x

, d), (c, d + ∆
y

), (c + ∆
x

, d + ∆
y

)) ,

and the segmentb
i

= ((a, b), (a+δ, b)) ∈ B. Assume thatδ ≤ ∆
x

. The case thatδ > ∆
x

is treated
analogously.

The first event at which the coupleb
i

, γ
j

are involved happens wheny = d + ∆
y

− b (i.e. when the
(x, y)+b

i

is aligned with the upper edge ofγ
j

). Upon this event, we insert the following gsegments
into S(y).

• r
1

(y) = ((c−a−δ, 0), (c−a, δ)). Thex-span of this gsegment corresponds to all translations
on ℓ(y) for which (x, y) + b

i

intersectsγ
j

, but the left endpoint ofb
i

is outsideγ
j

.

• r
2

(y) = ((c − a, δ), (c + ∆
x

− a − δ, δ)). Thex-span of this gsegment corresponds to all
translations onℓ(y) for which (x, y) + b

i

is fully contained inγ
j

.

• r
3

(y) = ((c+∆
x

−a−δ, δ), (c+∆
x

−a, δ)). Thex-span of this gsegment corresponds to all
translations onℓ(y) for which (x, y) + b

i

intersectsγ
j

, but the right endpoint ofb
i

is outside
γ
j

.

The second event at which the coupleb
i

, γ
j

are involved happens wheny = d − b (i.e. when
(x, y)+b

i

is aligned with the lower edge ofγ
j

.) Upon this event, we deleter
1

(y), r
2

(y), r
3

(y) from
S(y). Note that for everyy ∈ [d + ∆

y

− b, d − b] the functionsum
fr

1

(y);r

2

(y);r

3

(y)g

(x) equals the
length of the portion of(x, y) + b

i

insideγ
j

.

Vertical segment events.For everyb
i

∈ Bv and rectangleρ
j

∈ Rv we create a set of events, as follows:
Assume that

ρ
j

= ((c, d), (c + ∆
x

, d), (c, d + ∆
y

), (c + ∆
x

, d + ∆
y

)) ,

andb
i

= ((a, b), (a, b+δ)). Again assume that0 < δ ≤ ∆
y

(the other case is treated analogously).
The pairb

i

, ρ
j

is involved in a few events.

• Oncey = d + ∆
y

− b (i.e. the lower endpoint of(x, y) + b
j

is aligned with the upper edge of
ρ
j

we insert the gsegments
1

(y) = (c − a, y ′ − y), (c + ∆
x

− a, y ′ − y)) intoS(y), wherey ′

is the current value ofy. Note thats(y) is a moving horizontal gsegment.

• Oncey = d + ∆
y

− δ − b (i.e. the upper point of(x, y) + b
i

is aligned with the upper edge
of ρ

j

) we deletes
1

(y) from S(y) and inserts
2

(y ′) = ((c − a, δ), (c + ∆
x

− a, δ)). This is a
static horizontal gsegment.

• Oncey = d − b − δ (i.e. the lower point of(x, y) + b
i

is aligned with the lower edge ofρ
j

)
we deletes

2

(y) from S(y), and insert the gsegments
3

(y) = ((c − a, δ + d − b + y), (c +

∆
x

− a, δ + d − b + y)).

8

• Oncey = d − b − δ (i.e. the upper point of(x, y) + b
i

is aligned with the lower edge ofρ
j

)
we deletes

3

(y) from S(y).

Note thats
1

(y), s
2

(y), s
3

(y) represent, each in itsy-span, the function which is the length of the
portion ofb

j

insideρ
j

.

Observe that for any giveny, sumS(y)(x) represents the total length of the portion of the segments of
(x, y) + B which is insideD

"

+ A, i.e. Cov
"

(A, (x, y)+ B). Since the maximum value of these functions
must be obtained at one of the events listed above, and at eachsuch event we check thi maximum, the
correctness of the algorithm follows.
Time analysis: Overall, we add and delete four (moving) gsegments for each pair (b

i

, γ
j

) (for b
i

∈
Bh, γ

j

∈ Rh) or a pair (b
i

, ρ
i

) (for b
i

∈ Bv, γ
j

∈ Rv), thus a total ofO(n2) events. We compute
max sum(S(y)), each is doable in timeO(

√
n
2 log2 n), for each of these events, hence the overall run-

ning time of the algorithm isO(n3 log2 n). It is not hard to show that this bound also bounds the time
needed for constructing the data structures. ALON SAYS: running time of constructing the DS This ←−

conclude the proof of Theorem 2.1.

2.2 Maximum coverage for horizontal segments

We present a faster algorithm for the case that all segments are horizontal. This is a line-sweep algorithm
influenced somwhow ALON SAYS: english by the Chew-Kedem [12] and Chewet al. [13] algorithms ←−

for computing the Hausdorff distance under translation between point-sets in the plane, under theL
1

norm. This time, we sweep the plane from left to right, using avertical line sweep. LetD
"

⊕ Ah and
Rh = {γ

1

, γ
2

. . . } be as in Section 2.1. For every horizontal segmentb
i

∈ B andγ
j

∈ Rh let β
ij

be the
rectangles (in the translation plane) of all translations in whichb

i

intersectsγ
j

. Let E denote the set of the
vertical edges of all rectanglesβ

ij

.
Let T be a segment tree constructed on the projections of the segments ofE on they-axis. During the

algorithm we sweep the translation planeTP using a vertical sweep lineℓ. Onceℓ meets an edgee ∈ E ,
we inserte into T . No edge is deleted.

Let µ be a node ofT . Let I
�

be they-span corresponds toµ, and letS
�

⊆ E denote the edges ofE
corresponding toµ, i.e. the edges ofE whosey-span containsI

�

but notI
parent(�)

. Let T
�

denote the
subtree rooted atµ. Forx ∈ R, setS

�

(x) ⊆ S
�

denote the segment ofS
�

whosex-span is≤ x, and let

L
�

(x) = {(b
i

, γ
j

) | b
i

∈ B, y ∈ I
�

, and an edge ofβ
ij

is stored atS
�

′(x), µ ′ ∈ T
�

}

In other wordsL
�

(x) contains all pairs(b
i

, γ
j

) such that(x ′, y)+b
i

intersectγ
j

for somex ′ ≤ x, y ∈ I
�

.
We define themaximal coverage associated with a nodeµ at x

0

, denoted byCov
�

(x
0

) as the maximal
total length of segments

{(x
0

, y) + b
i

∩ γ
j

|(b
i

, γ
j

) ∈ L
�

(x
0

)}

where the maximum is taken over all translations(x
0

, y), y ∈ I
�

. Let π∗
�

(x) denote that path inT
from µ to the leaf that contains the thasnations that maximize maximum coverage assosiated withµ at
x. Thus for example, thenπ∗

root(T)

(x) is the path fromroot(T) to the leafµ ′ such thaty∗ ∈ I
�

′ , where
Cov

"

(A, (x, y∗) + B) = max
y

{Cov
"

(A, (x, y) + B)}.
We maintain the following fields with each nodeµ of T . All of these are set to zero at the beginning of

the algorithm.

9

• Pos
�

: the number of edges ofE currently inS
�

(x) resulting from the right (resp. left) endpoint of
a segmentb ∈ Bh meeting a left (resp. right) vertical edge of some rectangleγ

j

. We call such an
event aPositive event.

• Neg
�

: the number of edges ofE currently inS
�

(x) resulting from the left (resp. right) endpoint of
a segmentb∈B meeting a left (resp. right) vertical edge of some rectangleγ

j

. We call such an event
aNegative event. Observe thatPos

�

− Neg
�

|{(b
i

, γ
j

) ∈ L
�

(x) | γ
j

contains the right endpoint ofb
i

, but not the left endpoint}| −

|{(b
i

, γ
j

) ∈ L
�

(x) | γ
j

contains the left endpoint ofb
i

, but not the right endpoint}|

• x last
�

— the lastx at which we inserted an edge into the subtree ofµ.

• Max Tot at event
�

. We will show in Lemma 2.5 that this parameter storesCov
�

(x last
�

).

• MaxMul
�

— a multiplicative factor specifying the rate of increase ofthe coverage as the horizontal
distance increases. That is, ifx

1

andx
2

are two close points inR, then the difference in the coverage
Cov

�

(x
2

) − Cov
�

(x
1

) = (x
2

− x
1

) ∗ MaxMul
�

. In other words

MaxMul
�

= sum
�

′∈�∗

�

(Pos
�

′ − Neg
�

′)

Handling an event.
During the algorithm we encounter two types of events. Anedge eventhappens when the line sweep

hits a vertical edge ofE . A dominance eventhappens at timex and nodeµ if

MaxMul
left(�)

∗ (x − x last
left(�)

) + Max Tot at event
left(�)

=

MaxMul
right(�)

∗ (x − x last
right(�)

) + Max Tot at event
right(�)

This event occurs atx ′ if the translation(x, y) that maximizes{Cov(A, (x, y) − B)|y ∈ I
�

} is in I
left(�)

for x slightly smaller thanx ′, and occurs atI
right(�)

for x slightly larger, or vice versa.
Thex-coordinate of this event is computed and inserted into the queue of the line sweep, once the values

of the fields ofleft(µ) or right(µ), or the fields of any of their descendants are modified. We explain
next how we handle each such event.

We will show in Lemma 2.5 that the following claim is an invariant of the algorithm: For everyx ∈
R, µ ∈ T , Cov

�

(x) = Max Tot at event
�

+(x−x last) ∗MaxMul
�

. We use the following function
to maintain this invariant:

FunctionUpdateNode(µ)
Max Tot at event

�

= Max Tot at event
�

+ (x − x last
�

) ∗ Max Tot at event
�

x last
�

= x

Let δ > 0 be an infinitely small constant
If Max Tot at event

left(�)

+ MaxMul
left(�)

∗ (x + δ − x last
left(�)

) >

Max Tot at event
right(�)

+ MaxMul
right(�)

∗ (x + δ − x last
right(�)

)

Then
MaxMul

�

= Pos
�

− Neg
�

+ MaxMul
left(�)

Else
MaxMul

�

= Pos
�

− Neg
�

+ MaxMul
right(�)

If µ is not the root ofT
ThenUpdateNode(parent(µ)).

10

Handling edge events at nodeµ. Let x be the currentx-value of the line sweep. Onceℓ hits a new edge
s ∈ E , we first find all nodesµ for which s ∈ S

�

as in a standard segment tree. Next, for each such node
µ, we increase eitherPos

�

or Neg
�

by one, according to the type ofs, and performUpdateNode(µ).
Handling dominance events at nodeµ Once an dominate event occur at a nodeµ, we callUpdateNode(µ).

Lemma 2.5. The invariant

Cov
�

(x) = Max Tot at event
�

+ (x − x last
�

) ∗ MaxMul
�

for every x ∈ R, µ ∈ T

holds at any stage of the algorithm.

Proof. The proof is by a double induction on the height of a nodeµ and the sequence of events in whichµ

was updated. Assume first thatµ is a leaf. Assume thatx
1

is an event at which the fields ofµ are updated,
and that no event happened betweenx

1

andx
2

> x
1

. x
2

is not necessarily an event. Also assume that in
x
1

the invariant holds.
Let y

0

be a point inI
�

(sinceµ is a leaf, the choice ofy
0

is not relevant). Let(b
i

γ
j

) ∈ L
�

(x
2

). Then
|(x

2

, y
0

) + b
i

∩ γ
j

| − |(x
1

, y
0

) + b
i

∩ γ
j

| is x
2

− x
1

, x
1

− x
2

or 0, according to whetherγ
j

contains only
the right endpoint of(x

2

, y
0

) + b
i

, only its left endpoint ofb
i

, or neither or both endpoints. In the first
case,(b

i

, γ
j

) contributes1 to Pos
�

. In the second case,(b
i

, γ
j

) contributes1 to Pos
�

and2 to Neg
�

,
and in the last case,(b

i

, γ
j

) contributes the same amount toPos
�

andNeg
�

. Summing over all pairs
(b

i

, γ
j

) ∈ L
�

(x
2

), we obtain thatCov
�

(x
2

) − Max Tot at event(x
1

) equals(Pos
�

− Neg
�

)(x
2

− x
1

),
from which the claim follows.

Next assume thatµ is an internal node. Consider the pairs(b
i

, γ
j

) ∈ L
�

(x
2

) for which the vertical
edges ofβ

ij

are stored inS
�

. The contribution of these pairs toCov
�

(x
2

) is counted as in the case of a leaf
nodeµ. Moreover, one can show that theMaxMul atx

2

equals thesum
�

′Pos
�

′ − Neg
�

′ where the sum
is taken over all nodesµ ′ on the path leaving fromµ to the leaf containing the translations that maximizes
Cov

�

(x
2

). This is because of the dominance events mechanism that guarantees thatMaxMul
�

would
take into account the contribution from the childµ ′ of µ from whichCov

�

′ is larger.

Theorem 2.2. Let A and B be two sets of horizontal segments. Then we can find inO(n2 log2 n) a
translationt at whichCov

"

(A, t + B) is maximal.

Proof. The number of edge events is clearlyO(n2). Each edge event occurring at a nodeµ ∈ T can cause
O(logn) dominance events, one at each of the ancestor nodes ofµ, thus there areO(n2 logn) dominance
events. Each event is handled atO(logn) time. Thus the bound of the running time follows.

To find the optimal translation, we monitor the maximal valueof Max Tot at event
root(T)

. Clearly
the maximal coverage must be obtained at an edge event, and Lemma 2.5 guarantees that the maximum
coverage must be equal toMax Tot at event

root(T)

at this event.

3 A lower bound

Rucklidge [26] showed that given a parameterε, and two familiesA andB of segments in the plane,
the combinatorial complexity of the regions in the translation plane (TP) of all translationst for which
h(A, t + B) ≤ ε is in the worst caseΩ(n4), whereh(A, B) is the one way Hausdorff distance fromA
to B. This bound is tight, since the number of intersection points created byn2 rectangles in the plane is
O(n4). We next show that theΩ(n4)—bound holds also in the case that the segments are horizontal. That

11

is, we show a construction of setsA andB of n horizontal segments each, such that the combinatorial
complexity of the regions of all translationst for whichh(A, t + B) ≤ ε is Ω(n4).

Assume for the construction thatε = 1/2. The first component in the construction (see Figure 2) is the
setB ′

1

consisting of2n points, which are

{(i, 1/2 + i/n2) and (i, −1/2 + i/n2 − δ), for i =, 1 . . . n}

whereδ is a small enough parameter. Thus the pair(i, 1/2− i/n)+ and (i, −1/2− i/n−δ)+ forms two
very close vertically aligned squares, where the gap between them is of unit height and widthδ, and located
at distancei/n below they-axis. We add the segmentB ′′

1

, which is the long horizontal segment between
the points(−n, 0) and(0, 0) and the segmentB ′′′

1

between(n, 0) and(2n, 0). Let B
1

= B ′
1

∪ B ′′
1

∪ B ′′′
1

.

��
��
��
��
��
��
��
��

��
��
��
��

A1 consists of a set ofn segment
of length2n. The vertical distance
between consecutive segments is1/n2 .

y-axis

B4 consists ofn points (not shown), which
are the centers ofn unit squares.

B ′′

1
is a segment of lengthn B ′′′

1
is a segment of lengthn

B ′

1
consists ofn pairs of points

A2 is a set ofn point,
whose distance is1/n from each other

x-axis

Figure 2: The lower bound construction forn = 3. The setB is not shown explicitly — onlyB+ is shown.

The setA
1

consists of an horizontal segments of length2n, whose vertical distance is1
2n

. The left
endpoint of all of them is on they-axis, and the middle one is on thex-axis. By shifting them vertically,
each segment in turn is not completely covered at some time, when it passes between the gaps between
one of the pairs ofB

1

. In all other cases, all the segments are completely covered. The region in TP
corresponds to all translationst for whichh(A

1

, t + B
1

) ≤ 1 consists ofΩ(n2) horizontal strips, each of
lengthn.

The setB
2

consists of then points (−(1 + 1/n2)i, −5) (for i = 1 . . .n). ThusB+

2

createsn unit
squares along the liney = −5, with a gap of1/n2 between them. The setA

1

consist ofn points along
the horizontal line(−1/2n, −5) (for i = 1 . . .n). Observe thatA

1

fits completely into each of the squares
of B+

2

. However, by slidingA
1

horizontally, alongy = −5 or anywhere at distance≤ 1 from h, each of
the points ofA

1

“falls” at some stage into each of the gaps between each of thesquares ofB+

2

, The region
S
2

= {t | h(A
2

, t+B
2

) ≤ 1} consists ofΩ(n2) vertical strips in TP, each of height2. LettingA = A
1

∪A
2

andB = B
1

∪ B
2

, the regionS = {t | h(A, t + B) ≤ 1} is merely the intersection ofS
1

andS
2

, which is
clearly of complexityΩ(n4), thus proving our claim.

12

4 Matching Horizontal Segments Under Vertical Translation

In this section we describe a sub-quadratic algorithm for the Hausdorff matching between setsA andB

of horizontal segment, when translations are restricted tothe vertical direction.
Let ρ∗ = min

t

h(A, t + b) wheret varies over all vertical translations, andh(·, ·) is the one-way
Hausdorff distance. LetM denote the ratio of the diameter to the closest pair of segments in A ∪ B.
Further, let[M] denote the set of integers{1 . . .M}.

Theorem 4.1.LetA andB be two set of horizontal segments, and letε < 1 be a given parameter. Then we
can find a vertical translationt for whichh(A, t+B) ≤ (1+ε)ρ∗ in timeO(n3=2 max(poly(logM, logn, 1/ε))).

We first relate our problem to a problem in string matching:

Definition 4.1. (Interval matching):given two sequencest = t[1] . . . t[n] andp = p[1] . . . p[m], such
thatp[i] ∈ [M] andt[i] is a union of disjoint intervals{a1

i

. . . b1

i

} ∪ {a2

i

. . . b2

i

} . . . with endpoints in[M],
find all translationsj such thatp[j] ∈ t[i + j] for all i. Thesizeof the input to this problem is defined as
s = sum

i

|t[i]| + m.

We also define thesparseinterval matching problem, in which bothp[i] and t[i] are allowed to be
equal to a special empty set symbol∅, which matches any other symbol or set. The sizes in this case
is defined assum

i

|t[i]| plus the number of non-empty pattern symbols. Using standard discretization
techniques [10, 21], we can show that the problem of(1 + ε)-approximating the minimum Hausdorff
distance between two sets ofn horizontal intervals with coordinates from[M] under vertical motion can
be reduced to solving an instance of sparse interval matching with sizes = O(n).

Having thus reduced the problem of matching segments to an instance of sparse interval matching, we
show that:

• The (non-sparse) interval matching problem can be solved intimeO(s3=2polylogs).

• The same holds even if the pattern is allowed to consists of unions of intervals.

• The sparse interval matching problem of sizes can be reduced toO(logM) non-sparse interval
matching problems, each of sizes ′ = O(s polylogs).

These three observations yield the proof of Theorem 4.1. In the remainder of this section, we sketch
proofs of the above observations.
The interval matching problem. Our method follows the approach of [1, 25] and [6].

Firstly, we observe that the universe sizeM can be reduced toO(s), by sorting the coordinates of the
points/interval endpoints and replacing them by their rank, which clearly does not change the solution.
Then we reduce the universe further toM ′ = O(

√
s) by merging some coordinates, i.e. replacing several

coordinatesx
1

. . . x
k

by one symbol{x
1

. . . x
k

}, in the following way. Each coordinate (sayx) which
occurs more than

√
s times int or p is replaced by a singleton set{x} (clearly, there are at mostO(

√
s)

such coordinates). By removing those coordinates, the interval [M] is split into at mostO(
√

s) intervals.
We partition each interval into smaller intervals, such that the sum of all occurrences of all coordinates
in each interval isO(

√
s). Clearly, the total number of intervals obtained in this wayis

√
s. Finally, we

replace all coordinates in an interval by one (new) symbol from [M ′] whereM ′ = O(
√

s). By replacing
each coordinatex in p andt by the number of a set to whichx belongs, we obtain a “coarse representation’
of the input, which we denote byp ′ andt ′.

13

In the next phase, we solve the interval matching problem forp ′ andt ′ in timeO(nM ′polylogn) using
a Fast Fourier Transform-based algorithm (see the above references for details). Thus we exclude all
translationsj for which there isi such thatp[i] is not included in theapproximationof t[i + j]. However,
it could be still true thatp[i] /∈ t[i + j] while p ′[i] ∈ t ′[i + j]. Fortunately, the total number of such pairs
(i, j) is bounded by the number of new symbols (i.e.M ′) times the number of pairs of all occurrences of
any two (old) symbols corresponding to a given new symbol (i.e. O(

√
s
2

)). This gives a total ofO(s3=2)

pairs to check. Each check can be done inO(logn) time, since we can build a data structure over each set
of intervalst[i] which enables fast membership query. Therefore, the total time need for this phase of the
algorithm isÕ(s3=2), which is also a bound for the total running time.

The generalization to the case wherep[i] is a union of intervals follows in essentially the same way, so
we skip the description here.
The sparse-to-non-sparse reduction.The idea here is to map the input sequences to sequences of length
P, whereP is a random prime number from the range{c

1

s logM . . . c
2

s logM} for some constantsc
1

, c
2

.
The new sequencesp ′ andt ′ are defined asp ′[i] = ∪

i

′
:i

′
modP=i

p[i ′] andt ′[i] = ∪
i

′
:i

′
modP=i

t[i ′]. It can
be shown (using similar ideas as in [10]) that if a translation j does notresult in a match betweenp andt,
it will remain a mismatch betweenp ′ andt ′ with constant probability. Therefore, all possible mismatches
will be detected with high probability by performingO(logM) mappings modulo a random prime.

5 Computing The Fr échet Distance Under Translation

In this section, we present algorithms for computing the Fr´echet distance between two polygonal chains.
Recall that the Fréchet distance between two curvesP andQ, d

F

(P, Q) is defined as:

d
F

(P, Q) = inf
�;�

max
t∈[0;1℄

‖f(α(t)) − g(β(t))‖

whereα, β range over continuous increasing functions from[0, 1] → [a, a ′] and[0, 1] → [b, b ′] respec-
tively.

Dropping the restriction thatα, β are increasing functions yields a measure we call theweakFréchet
distance, denoted byd

F̃

. It can be easily seen thatd
F

is a metric andd
F̃

is a pseudo-metric, i.e., it fulfills
almost all properties of a metric, but two different curves can have a weak Fréchet distance0.

Let the curvesP andQ be length-parameterized byr, s. In other words,P = P(r), Q = Q(s), where
0 ≤ r, s ≤ 1. For any fixedε, let F

"

(P, Q), thefree space, be defined as

F
"

(P, Q) = {(r, s) | ‖P(r) − Q(s)‖ ≤ ε}

where‖ · ‖ is the underlying norm2. The free space captures the space of parameterizations that achieve
a Fréchet distance of at mostε. In the sequel we will denote the free space byF

"

when the parametersP
andQ are clear from the context.

Let a polygonal chainP : [0, n]→ R2 be a curve such that for eachi ∈ {0, . . . , n − 1}, P
j[i;i+1℄

is affine
i.e P(i + λ) = (1 − λ)P(i) + λP(i + 1), 0 ≤ λ ≤ 1. For such a chainP, denote|P| = n. Let P

i

denote
the segmentP

j[i;i+1℄

. For two polygonal chainsP, Q where|P| = p, |Q| = q, and a fixedε, the free space
F
"

⊆ [0, p]× [0, q] is given (as before) by:

F
"

(P, Q) = {(r, s) | ‖P(r) − Q(s)‖ ≤ ε}

2In this section, we will consider thel2 norm unless otherwise specified.

14

Let Fij
"

= F
"

∩ (P
i

×Q
j

). Observe thatFij
"

= F
"

(P
i

, Q
j

). It can be seen ([3]) thatFij
"

is the affine inverse
of a unit ball with respect to the underlying norm. Consequently, Fij

"

is convex.
Consider the points of intersection of a single cellC

ij

= Fij
"

with the line segment from(i, j) to (i, j+1).
SinceC

ij

is convex, there are at most two such points, which we denote as a
ij

, b
ij

, wherea
ij

is below
b
ij

. Similarly, let c
ij

and d
ij

be the points of intersection ofC
ij

with the line segment from(i, j) to
(i + 1, j), wherec

ij

is to the left ofd
ij

. We define an order on the points as follows: For any two points

(i,j) (i+1,j)

(i,j+1) (i+1,j+1)

a
ij

bij

cij d
ij

Figure 3: A single cell in the free space

p
1

= (x
1

, y
1

), p
2

= (x
2

, y
2

), p
1

≤ p
2

if x
1

≤ x
2

andy
1

≤ y
2

. Let an(x, y)-monotone path be a
path that is increasing in bothx andy coordinates. Alt and Godau [3] observed that the existence of a
(x, y)-monotone path inF

"

from (0, 0) to (p, q) is a necessary and sufficient condition ford
F

(P, Q) ≤ ε.
A similar property holds ford

F̃

; namely, the existence ofanynon-self-intersecting path inF
"

from (0, 0)

to (p, q) implies thatd
F̃

(P, Q) ≤ ε. Denote the property “(p, q) is reachable from(0, 0)” as propertyP
(similarly defineP̃).

We wish to solve the decision problem for the Fréchet distance betweenP and Q minimised over
translations i.e givenε, check whether min

t

d
F

(P, Q + t) ≤ ε.

The configuration space A critical eventis one that can change the truth value ofP. Each such
event is one of the following two types: (1) The intersectionpointsa

ij

, b
ij

, c
ij

, d
ij

appear (or disappear).
(2) For two cellsC

ij

andC
kj

, k > i, a
ij

anda
kj

(or b
kj

) change their relative vertical ordering. Anal-
ogously, for two cellsC

ij

andC
ik

, k > j the pointsc
ij

andc
ik

(or d
ik

) change their relative horizontal
ordering.

Type 2 events correspond to the creation or deletion oftunnels. For any pointr in the space[0, p] ×
[j, j + 1], let k be therightmostinterval such thatr projected onto the interval[a

kj

, b
kj

] lies between the
endpoints of the interval. We definert (r) = k. For any pointr ∈ [i, i + 1] × [0, q], let k be thetopmost
interval such thatr projected onto the interval[c

ik

, d
ik

] lies between the endpoints of the interval. We
define3 ut(r) = k.

As Q translates, each of thex
ij

, x ∈ {a, b, c, d} can be represented as a functionx
ij

(t) : R2

→ [0, 1].

Proposition 5.1.For a pointx
ij

, the functionx
ij

(t) is given by a second degree polynomialp(x
ij

, t
x

, t
y

) =

0, where(t
x

, t
y

) are the coordinates oft.

5.1 From Free Space To A Graph

Our algorithm for computingd
F

(P, Q) is based on a reduction of the problem to a directed graph reacha-
bility problem. Intuitively, we can think of a monotone pathin the free space as a path in a directed graph
(actually a DAG). The advantage of this approach is that we can exploit known methods for maintaining
graph properties dynamically in an efficient manner. Thus, as we traverse the space of translations, we
need not recompute the free space at each critical event. ALON SAYS: what is v ?? ←−

3The termrt denotes aright tunnel; ut denotes anupper tunnel.

15

Let
V =

⋃

i;j

{va
ij

, vb
ij

, v
ij

, vd
ij

}

and
T =

⋃

i;j;k

i<k≤p

{ta
ijk

, tb
ijk

} ∪
⋃

i;j;k

j<k≤q

{t
ijk

, td
ijk

}

where0 ≤ i ≤ p and0 ≤ j ≤ q. The vertices inV∪T are associated with points of the free space. More
precisely, vertexvx

ij

is associated with the pointx
ij

(wherex is one of{a, b, c, d}). Vertextx
ijk

is associated
with the projection of pointx

ij

onto the interval[a
kj

, b
kj

] (x ∈ {a, b}), and vertexty
ijk

is associated with
the projection of pointy

ij

onto the interval[c
ik

, d
ik

] (y ∈ {c, d}). We definef(v) = p, wherep is the point
associated with vertex v. Let

V1

ij

= {va
ij

, vb
ij

} ∪
⋃

l<i≤rt(a
lj

)

ta
lji

∪
⋃

l<i≤rt(b
lj

)

tb
lji

and
V2

ij

= {v
ij

, vd
ij

} ∪
⋃

l<j≤ut(
il

)

t
ilj

∪
⋃

l<j≤ut(d
lj

)

td
ilj

.

im V1

ij

denotes the set of vertices associated with points on the line segment from(i, j) to (i, j + 1).
Similarly,V2

ij

denotes the set of vertices associated with points on the line segment from(i, j) to (i+ 1, j).
In addition,V1

ij

andV2

ij

contain vertices associated with points whosetunnelscross the cellC
ij

.
We now describe the construction of the edge set for each(i, j). Firstly, setE1

ij

= {(v, vb
ij

) | v ∈ V1

ij

} and
setE2

ij

= {(v, vd
ij

) | v ∈ V2

ij

}. For eachv ∈ V1

ij

, let

n(v) = arg min
v

′∈V1

i+1;j

;f(v

′
)≥v

f(v ′) .

Similarly, for eachv ∈ V2

ij

, let n(v) denote the vertex inV2

i;j+1

having the same property. LetE3

ij

=

{(v, n(v)) | v ∈ V1

ij

∪V2

ij

}. Finally, setE4

ij

= {(vb
ij

, v
i;j+1

), (vd
ij

, va
i+1;j

)}. Now, we setE
ij

= E1

ij

∪E2

ij

∪E3

ij

∪E4

ij

.
Let E =

⋃

i;j

E
ij

. This yields the directed graphG = (V ∪ T, E). Note that|V ∪ T | = O(pq(p + q)) and
|E| = O(pq(p+q)). Also, it is easy to see that for any edge(u, v) ∈ E, the straight line fromf(u) to f(v)

is an(x, y)-monotone path. We first note that reachability in the graphG is equivalent to path construction
in F

"

.

Theorem 5.1.An (x, y)-monotone path from(0, 0) to (p, q) exists inF
"

iff vb
pq

is reachable fromva
00

and
f(va

00

) = (0, 0), f(vb
pq

) = (p, q).

For every edgee ∈ E, let γ(e) ⊆ R2 be the set of translationst such that in the graphG constructed
from the free spaceF

"

(P, Q + t), the edgee is present. LetΓ be the arrangement of all theγ(e). We first
establish a bound on the complexity ofΓ .

The following three propositions follow from Proposition 5.1. Roughly speaking, with each edgee we
can associate a boolean combination of predicatesP

1

, P
2

, . . . , P
k

, where each predicate compares some
constant degree polynomial to zero. (i.e the regions are semi-algebraic sets).
• For any regionγ(e), the boundaries consist of segments of curves described by constant degree polyno-
mials.
• For an edgee ∈ E

ij

− T × T , the regionγ(e) is a constant number of simple regions of constant
description complexity.

16

• For an edge of the form(tx
ijk

, tx
ijk+1

), x ∈ {a, b, c, d}, the regionγ(e) consists of a set of simple regions
of total description complexityk.

Lemma 5.1. |Γ | = O(p2q2(p + q)4).

Lemma 5.2. Let γ
k

= γ((tx
ijk

, tx
ij;k+1

)), wherex ∈ {a, b, c, d}. Then for alll such thati ≤ l < k,
γ
k

⊆ γ
l

.

Theorem 5.1 indicates that the graph property that we need tomaintain is the reachability ofvb
pq

from
va
00

. The algorithm is now as follows: Fix a traversal of the arrangement of regions. Check reachability at
the starting cell. Each time an edge is crossed in the traversal, it corresponds to the deletion (and insertion)
of edges in the graph, which we use to update the graph and check for reachability. Stop whenever the
above property holds, returning YES, else return NO.

Theorem 5.2. There exists a translationt such thatd
F

(P, Q + t) ≤ ε, if and only if the above algorithm
will terminate with a YES.

Proof. Consider a type 1 critical event, where the intervala
ij

, b
ij

is created. This interval corresponds to
the edge(va

ij

, vb
ij

). Hence, this event corresponds to entering the region associated with the above edge.
Similar arguments hold for other type 1 critical events.

Suppose we have a type 2 critical event, where the pointa
kj

rises abovea
ij

(in their relative vertical
ordering). Note that this event does not change the reachability of (p, q) in the free space unless rt(a

ij

) >

k. If this is the case, then the event results in setting rt(a
ij

) = k, implying that all edges of the form
(ta

ijl

, ta
ij;l+1

), l ≥ k are deleted, which corresponds to leaving the regions corresponding to this set of
edges4.

Conversely, it can be seen that any transition from one cell of the arrangement to another corresponds
to a critical event.

It now remains to analyse the complexity of the above algorithm. A transition between cells yields
O(1) updates, except in the case described in Theorem 5.2 above, where a transition occurs across the
boundary of regionr((ta

ij;l-1

, ta
ijl

)) into the regionr((ta
ij;k-1

, ta
ijk

)), causingΘ(l − k) updates. However,
note that in this event, it must be the case that all the regions r((ta

ij;m

, ta
ij;m+1

), k ≤ m < l − 1 intersect at
this transition point (from Lemma 5.2), and thus the cost of this transition can be distributed among these
cells. Hence, the total number of updates is given by Lemma 5.1.

To determine reachability, we must now traverse the arrangement. For ease of notation, we will assume
thatp = Θ(q) and setn = p + q. The arrangement consists ofO(n3) regions, each described byO(n)

curves of constant description complexity. Let us fixr (we will specify the value ofr later). It can be shown
(using the theory of cuttings [11, 8]) that we can compute a subsetR of the regions of sizeO(r logr) with
the property that if we compute the vertical decomposition of eachsuper-cellin the arrangement ofR,
each of the resultingprimitive super-cells(of constant complexity) is intersected byO(n3/r) regions.

Lemma 5.3. Given a graphG = (V, E), |V | = N, |E| = M, designated nodess, t ∈ V, and a set of
k edgesE ′ ⊂ E, s-t reachability inG can be maintained over edge insertions and deletions fromE ′ in
total timeO(min(N!, Mk) + k2U), whereU is the number of such updates (ω is the exponent for matrix
multiplication).

4Note that since the regions corresponding to this set of edges are nested (by Lemma 5.2), such a transition is indeed
possible. In fact, the existence of such a critical point implies that all of these regions intersect in at least one pointthat is also
contained inr((ta

ij,k−1, ta
ijk)). The critical event can be interpreted as the result of the translation across this point.

17

Proof. Let V ′ be the set of endpoints of edges inE ′. We compute the graphG ′ = (V ′′ = V ′ ∪ {s, t}, E ′′),
where(u, v) ∈ E ′′ if there is a directed path fromu to v in G. Note that|V ′′| ≤ 2k. The computation of
this graph can be done by performing a full transitive closure onG that takes timeO(n!). Alternatively,
we can performO(k) depth-first searches (one from each vertex inV ′′) to constructG ′.

Now, to process updates, we update the graph using a standarddynamic update procedure that takes
timeO(k2 logk) time (amortized) per update[24], yielding the result.

The algorithm now proceeds as follows: Each primitive super-cell has a set of edges associated with it
(one for each region that intersects it). We use the above lemma to perform an efficient dynamic reacha-
bility test for each cell of the original arrangement in thisprimitive super-cell. When we move to the next
primitive super-cell, we recompute the induced graph and repeat the process.

We now compute the value ofr. The total number of cells in the arrangement isO(n8) by Lemma 5.1.
There areO(r2n2 log2 r) primitive super-cells, each intersected byO(n3/r) regions. Consider a single
primitive super-celli. We apply Lemma 5.3 withN = M = O(n3), k = O(n3/r), andU = U

i

, whereU
i

is the number of cells ini. The current value ofω is approximately2.376 [15], and thus min(N!, Mk) =

Mk = n6/r for all r = Ω(1). The cost of processingi is thereforen6/r + n6U
i

/r2. Summing over all
primitive super-cells, and replacingΣU

i

by O(n8), we obtain the overall running time of the algorithm to
beO(n8r log2 r + n14/r2). Balancing, we obtain an overall running time ofO(n10polylogn).

Theorem 5.3. Given two polygonal chainsP, Q, |P| = p, |Q| = q, andε > 0, we can check whether
min

t∈TP d
F

(P, Q + t) ≤ ε in timeO(n10polylogn).

Remark: Recently, Alt, Knauer and Wenk [5] were able to obtain an algorithm that solves our problem
is O(n8polylogn), significantly improving our result.

The weak Fr échet distance As described earlier, the weak Fréchet distance (denoted by d
F̃

) relaxes
the constraint that the parametrizations employed must be monotone. Note that for any two curvesP, Q,
the following inequality is true:d

H

(P, Q) ≤ d
F̃

(P, Q) ≤ d
F

(P, Q) Also, by the result of Godau [18],
all three measures collapse to one if both curves are convex.The above inequality is significant because
it suggests that the weak Fréchet distance may serve as a relaxed curve matching measure with possibly
more tractable algorithms.

As it turns out, this is indeed the case. Our techniques from the previous algorithm apply here as well,
with two key differences. Firstly, since the paths need not be monotone, we no longer need the concept
of a tunnel, thus reducing the number of critical events thatneed to be examined toO(pq). Secondly, the
underlying graph is now undirected, and there are efficient procedures for maintaining connectivity in an
undirected graph [20].

Theorem 5.4.Given two polygonal chainsP, Q, |P| = p, |Q| = q, andε > 0, we can check ifmin
t

d
F

(P, Q+

t) ≤ ε in timeO(n4polylogn), wheren = O(p + q).

An approximation scheme An (ε, β)-approximation (defined by Heffernan and Schirra [19]) for
d
F

(P, Q) under translations can be obtained from the following observation:

Lemma 5.4. Given polygonal chainsP, Q, let t be the translation that maps the first point ofQ to the first
point ofP. Thend

F

(P, Q + t) ≤ 2d∗, whered∗ = mintranslationst dF

(P, Q + t).

Applying the standard discretization trick in a ball of radius d∗ around the first point ofP, we ob-
tain an(ε, β)-approximation for anyβ > 0. Note that this scheme is very efficient, running in time
O(n2poly(logn, 1/β)).

18

Acknowledgements

We would like to thank Helmut Alt, Julien Basch, Mikkel Thorup, Carola Wenk and Li Zhang for fruitful
discussion. We also thank Héctor H. González-Baños and Eric Mao for supplying some of the pictures in
this paper.

References

[1] K. Abrahamson, Generalized string matching,SIAM Journal on Computing, 16 (1987), 1039–51.

[2] P. K. Agarwal, M. Sharir and S. Toledo, Applications of parametric searching in geometric opti-
mization,J. Algorithms, 17 (1994), 292–318.

[3] H. Alt and M. Godau Computing the Fréchet distance between two polygonal curves,International
J. of Computational Geometry and Applications5 (1995), 75–91.

[4] H. Alt, J. Blömer, M. Godau, and H. Wagener. Approximation of convex polygons,Proc. 17th
International Colloquium on Automata, Languages and Programming, LNCS Vol. 443, 1990,
703–716.

[5] H. Alt, C. Knauer and C. Wenk, Matching polygonal curves with respect to the Frchet distance,
Proc. 18th Int. Symp. Theoretical Aspects of Computer Science (STACS)2001, 63–74.

[6] A. Amir, M. Farach, Efficient 2-dimensional approximatematching of half-rectangular figures,
Information and Computation, 118 (1995), 1–11.

[7] G. Barequet and S. Har-Peled, Some Variants of Polygon Containment and Minimum Hausdorff
Distance under Translation are 3sum-Hard,Proceedings thAnnual ACM-SIAM Symposium on
Discrete Algorithms1999.

[8] M. de Berg and O. Schwarzkopf. Cuttings and applications. Internat. J. Comput. Geom. Appl.,
5:343–355, 1995.

[9] P. Bogacki and S. Weinstein. Generalized fréchet distance between curves. In M. Daehlen, T. Ly-
che, and L. L. Schumaker, editors,Mathematical Methods for Curves and Surfaces II, 25–32.
Vanderbilt University Press, 1998.

[10] D. Cardoze, L. Schulman, Pattern Matching for Spatia l Point Sets,Proceedings 39thAnnual IEEE
Symposium on Foundations of Computer Science, 1998.

[11] B. Chazelle. Cutting hyperplanes for divide-and-conquer,Discrete and Computational Geometry9
(1993) 145–158.

[12] L.P. Chew and K. Kedem, Improvements on geometric pattern matching problems,Proceedings
3rd Scand. Workshop on Algorithms Theory, LNCS Vol. #621, 1992, 318–325.

[13] L.P. Chew, D. Dor, A. Efrat, and K. Kedem, Geometric Pattern Matching ind-Dimensional Space,
Proceedings of the 3rd European Symposium on Algorithms (ESA)LNCS Vol. #979, 1995, 264–
279. Also inDiscrete and Computational Geometry21, (1999) 257–274

19

[14] L.P. Chew, M.T. Goodrich, D.P. Huttenlocher, K. Kedem,J. M. Kleinberg, and D. Kravets, Geo-
metric pattern matching under Euclidean motion,Computational Geometry: Theory and Applica-
tions7 (1997), 113-124.

[15] D. Coppersmith and S. Winograd. Matrix multiplicationvia arithmetic progressions,Journal of
Symbolic Computation, 9 (1990) 1–6.

[16] A. Efrat, P. Indyk and S. Venkatasubramanian. Pattern Matching for Sets of Segments.Proceedings
12thAnnual ACM-SIAM Symposium on Discrete Algorithms, 2001, 295–304.

[17] M. Fréchet, Sur quelques points du calcul fonctionnel, Rendiconti del Circolo Mathematico di
Palermo22 (1906), 1–74.

[18] M. Godau, On the complexity of measuring the similaritybetween geometric objects in higher
dimensions, PhD thesis, Department Mathematik u. Informatik, Freie Universitt Berlin, December
1998.

[19] P. J. Heffernan and S. Schirra. Approximate decision algorithms for point set congruence.Com-
putational Geometry: Theory and Applications, 4 (1994) 137–156.

[20] J. Holm, K. Lichtenberg, and M. Thorup. Poly-logarithmic deterministic fully-dynamic algorithms
for connectivity, minimum spanning tree, 2-edge and biconnectivity, Proceedings 30thAnnual
ACM Symposium on Theory of Computing, 1998, 79–89.

[21] P. Indyk, R. Motwani, S. Venkatasubramanian, Geometric Matching Under Noise: Combinatorial
Bounds and Algorithms,Proceedings 10thAnnual ACM-SIAM Symposium on Discrete Algorithms,
1999.

[22] K. Kedem, R. Livne, J. Pach, M. Sharir, On the union of Jordan regions and collision-free trans-
lational motion amidst polygonal obstacles,Discrete and Computational Geometry, 1 (1986),
59–71.

[23] S. Khanna, R. Motwani, and R. Wilson. On certificates andlookahead in dynamic graph problems.
Algorithmica, 21 (1998), 377–394.

[24] V. King. Fully dynamic algorithms for maintaining all-pairs shortest paths and transitive closure in
digraphsProceedings 40thAnnual IEEE Symposium on Foundations of Computer Science, 1999.

[25] S. R. Kosaraju, Efficient string matching. manuscript,1987.

[26] W. Rucklidge, Lower Bounds for the Complexity of the Hausdorff Distance,Proceedings
5thCandian Conf. Computational Geometry1993, 145–150.

[27] S. Venkatasubramanian.Geometric Shape Matching and Drug Design. PhD thesis, Department
of Computer Science, Stanford University, August 1999.

[28] A. Winzen and H. Niemann. Matching and fusing 3D-polygonal approximations for model gen-
eration. InProc. IEEE International Conference on Image Processing(1994), Vol. 1 228–232.

	Introduction
	Mapping and orthogonality
	The Fréchet distance

	Algorithms for maximum coverage
	Coverage with axis-parallel segments
	Maximum coverage for horizontal segments

	A lower bound
	Matching Horizontal Segments Under Vertical Translation
	Computing The Fréchet Distance Under Translation
	From Free Space To A Graph

