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Abstract. We demonstrate the IPL B+-tree prototype, which has been
designed as a flash-aware index structure by adopting the in-page logging
(IPL) scheme. The IPL scheme has been proposed to improve the overall
write performance of flash memory database systems by avoiding costly
erase operations that would be caused by small random write requests
common in database workloads. The goal of this demonstration is to pro-
vide a proof-of-concept for IPL scheme as a viable and effective solution
to flash memory database systems.

1 Introduction

Since NAND flash memory was invented as a sector addressable non-volatile
storage medium about two decades ago, its density has increased approximately
twice annually and the trend is expected to continue until year 2012 [1]. Due
to its superiority such as low access latency and low energy consumption, flash-
based storage devices are now considered to have tremendous potential as an
alternative storage medium that can replace magnetic disk drives.

On the other hand, due to the erase-before-write limitation of flash memory,
updating even a single record in a page results in invalidating the current page
containing the record and writing a new version of the page into an already-
erased area in flash memory. This leads to frequent write and erase operations.
In order to avoid this, we have proposed the in-page logging (IPL) scheme that
allows the changes made to a page to be written (or logged) in the database,
instead of writing the page in its entirety [2]. Since flash memory comes with
no mechanical component, there is no compelling reason to write log records
sequentially as long as it does not cause extra erase operations. Therefore, under
the in-page logging approach, a data page and its log records are co-located in
the same physical location of flash memory, specifically, in the same erase unit.
Since we only need to access the previous data page and its log records stored in
the same erase unit, the current version of the page can be recreated efficiently
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under this approach. Consequently, the IPL approach can improve the overall
write performance considerably. The IPL scheme uses physiological log records
primarily for improving write performance, but the log records can also be used
to realize a lean recovery mechanism [2].

The goal of this work is to demonstrate that IPL is a viable and effective
solution to flash memory database systems that enables them to deliver high
performance promised by the desired properties of flash memory. We have de-
signed a new index structure called IPL B+-tree as a variant of B+-tree for
computing platforms equipped with flash memory as stable storage. We have
implemented the IPL B+-tree on a development circuit board running Linux
2.6.8.1 kernel.

In addition to providing the proof-of-concept implementation of the IPL
scheme, this demonstration will showcase (1) the design of IPL B+-tree for flash
memory database systems, (2) the IPL B+-tree engine that implements the in-
page logging mechanism for B+-tree indexes, (3) the development platform that
allows the IPL storage manager to be in full control of address mapping for flash
memory.

2 System Description

The traditional B+-tree is designed for disk-based storage systems, and yields
poor write performance with flash-based storage systems. This section presents
the design and implementation details of the IPL B+-tree.

2.1 Design of IPL B+-tree

In an IPL B+-tree, as is illustrated in Figure 1, the in-memory copy of a tree
node can be associated with a small in-memory log sector. When an insertion
or a deletion operation is performed on a tree node, the in-memory copy of the
tree node is updated just as done by traditional B+-tree indexes. In addition,
a physiological log record is added to the in-memory log sector associated with
the tree node. An in-memory log sector is allocated on demand when a tree node
becomes dirty, and is released when the log records are written to a log sector
in flash memory.

The log records in an in-memory log sector are written to flash memory when
the in-memory log sector becomes full or when the corresponding dirty tree
node is evicted from the buffer pool. When a dirty tree node is evicted, it is
not necessary to write the content of the dirty tree node back to flash memory,
because all of its updates are saved in the form of log records in flash memory.
Thus, the previous version of the tree node remains intact in flash memory, but
is augmented with the update log records.

When an in-memory log sector is to be flushed to flash memory, its content is
written to a flash log sector in the erase unit which its corresponding tree node
belongs to. To support this operation, each erase unit (or a physical block) of
flash memory is divided into two segments – one for tree nodes and the other
for log sectors, as shown at the bottom of Figure 1.
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Fig. 2. IPL B+-tree Engine

2.2 IPL B+-tree Engine

Figure 2 shows the IPL B+-tree engine that consists of three components: (1) B+-
tree operator module, (2) page operator module, and (3) IPL manager. The B+-
tree operator module processes traditional B+-tree operations such as insertion,
deletion and search. If a single operation involves more than a tree node, this is
divided into multiple single-node requests, each of which is processed by the page
operator module. For each single-node request, the page operator module adds its
physiological log record to the corresponding in-memory log sector.

The most important component of the IPL B+-tree engine is the IPL manager
that provides the in-page logging mechanism for B+-tree indexes. The IPL man-
ager consists of four internal components: (1) IPL buffer manager, (2) IPL storage
manager, (3) Log writer, and (4) Log applier. The IPL buffer manager maintains
in-memory tree nodes and their corresponding in-memory log sectors in an LRU
buffer pool. When an in-memory log sector becomes full and needs to be flushed to
flash memory, the IPL buffer manager determines whether the log area of the cor-
responding erase unit in flash memory can accommodate the in-memory log sector.
If it does, the in-memory log sector is written to flash memory. Otherwise, a merge
request is sent to the IPL storage manager. Then, the Log applier computes the
current version of tree nodes by applying the log records to the previous version
of tree nodes. Since the entire tree nodes in the merged erase unit are relocated
to a physically different region in flash memory, the logical-to-physical mapping is
updated by the IPL storage manager, when a merge is complete.

When a tree node is to be read from flash memory, the Log applier sends a
read request to the IPL storage manager, which returns an in-flash copy of the
tree node along with its log records. Then, the Log applier creates the current
version of the tree node by applying its log records to the tree node.
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3 Demonstration Scenario

The demonstration will be set up with a host system and a target system as
shown in Figure 3. The IPL B+-tree runs on the target system that consists
of an EDB9315A processor board and a flash daughter board [3].1 The requests
for B+-tree operations are submitted from the host system, and the progress
and performance of B+-tree operations executed on the target system can be
monitored on the host system.

In order to graphically illustrate the progress and performance of the B+-tree
operations to be demonstrated, we have implemented a performance monitor
with GUI that runs on the Labview environment, as is shown in Figure 4. For
more extensive performance comparison, a standard B+-tree running on a com-
parable computing platform with a magnetic disk will also be available in the
demonstration.

Fig. 3. Demonstration System Setup Fig. 4. Index Performance Monitor
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