
www.elsevier.com/locate/datak

Data & Knowledge Engineering 59 (2006) 86–106
Bulk insertion for R-trees by seeded clustering

Taewon Lee a,*, Bongki Moon b, Sukho Lee a

a Seoul National University, School of Computer Science and Engineering, Kwanakgu, Shillimdong,

Seoul ENG4190, Republic of Korea
b Department of Computer Science, University of Arizona, Tucson, AZ 85721, United States

Received 20 May 2005; received in revised form 20 May 2005; accepted 27 July 2005
Available online 2 September 2005
Abstract

We propose a scalable technique called Seeded Clustering that allows us to maintain R-tree indices by
bulk insertion while keeping pace with high data arrival rates. Our approach uses a seed tree, which is cop-
ied from the top k levels of a target R-tree, to classify input data objects into clusters. We then build an R-
tree for each of the clusters and insert the input R-trees into the target R-tree in bulk one at a time. We
present detailed algorithms for the seeded clustering and bulk insertion. The experimental results show that
the bulk insertion by seeded clustering outperforms the previously known methods.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In many data-intensive applications, there has been an upsurge of interest in dealing with the
problem of bulk insertions of new data into an existing database. It is important to add newly col-
lected data into an existing database quickly, because data are continuously generated and added
to databases. It is not likely to scale well if we insert every new data into an existing database one
at a time.
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In this paper, we present a bulk insertion technique using Seeded Clustering for an R-tree based
index structure [1] and show that the resulting R-tree using our bulk insertion method outper-
forms the R-tree generated by the previous bulk insertion methods in terms of insertion cost
and query processing cost.

Most of the previous work followed a common approach. They first group input data items into
clusters and then insert each cluster one at a time in bulk [2–4]. Under the approach, input data items
that are spatially close are grouped into clusters. Although each cluster of data will cover a small
extent of area, it is unlikely to guarantee not to overlap with existing R-tree nodes. This is because
input data items are clustered by themselves without considering the structure of a target R-tree. The
query performance of the resulting target R-tree is likely to be degraded because of the increased
overlap area between the existing R-tree nodes and the newly inserted nodes.

Our Seeded Clustering utilizes the structure of a target R-tree in clustering input data items. We
use the top k levels of a target R-tree as a guide to classify the input data items into clusters in a
linear time. Then we build an input R-tree from each of the clusters and insert them into the target
R-tree one at a time in bulk. However, the insertion of an input R-tree into the target R-tree is not
such a simple process. The target R-tree should remain as a legitimate R-tree even after the inser-
tion is done. This property is not guaranteed by some of the previous work.

There are two important aspects of bulk insertions. First, the bulk insertion itself should be as
fast as possible and faster than individual insertions. Second, the query performance should not
be compromised by bulk insertion. Since our approach attempts to reduce the overlap between the
existing nodes and the newly inserted nodes during the bulk insertion, the quality of the target tree
is preserved or even better restructured so that the query performance can be improved over that
of the target R-tree before the bulk insertion.

For the performance evaluation, extensive experiments were conducted both with a real data set
and two synthetic data sets. We used a TIGER/Line data set which is a popular data set for geo-
graphic information systems. We used uniform distributed and skewed data set as synthetic data
sets.

The paper is organized as follows. In Section 2, we briefly overview the related work on bulk inser-
tion. In Section 3, the problem we are going to solve is described and the algorithm is presented
roughly. In Section 4, the structure of a seed tree is described. Classifying the input data items using
a seed tree is also given. In Sections 5 and 6, the detailed algorithm of the bulk insertion is provided.
In Section 7, we describe some issues that must be handled during the bulk insertion. In Section 8, we
show the results of performance evaluation and Section 9 concludes this paper.
2. Previous work

In this section, we provide a brief overview of previous work on bulk insertion for R-tree
environment.

In an early attempt on bulk insertion for an R-tree, the data items to be inserted are first sorted
by their spatial proximity (e.g., the Hilbert value of the center) and then packed into blocks of B
rectangles [4]. These blocks are then inserted one at a time using standard insertion algorithm.
Intuitively, the algorithm should give an insertion speed-up of B (as a block of B data items is
inserted at a time), but it is likely to increase overlap and thus produces a worse index in terms
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of query performance. This can be explained as follows. Although the block may contain data
items that are spatially close, in the target tree�s point of view, this block is constructed indepen-
dently of the tree nodes. Therefore a block and the nodes in the target tree are not guaranteed to
be non-overlapping which might increase overlap between them. The empirical results confirms
that randomly created block results in the degraded query performance because of the increased
overlap between nodes [4].

There is another work on the bulk insertion which uses a STLT (small-tree-large-tree) approach
[2]. The STLT constructs an R-tree (small tree) from the data set and inserts it into the target R-
tree (large tree). To insert a small tree into a large tree, it chooses an appropriate location to main-
tain the balance of the resulting large tree. However, this approach has the following shortcoming:
if a small tree covers a large area, the node of a large tree into which a small tree is inserted needs
to be enlarged to enclose it. This means the STLT only works well for highly skewed data sets [3].

A variant of STLT is the GBI (Generalized Bulk Insertion) technique [3]. In this work, the input
data set is partitioned into a number of clusters by grouping spatially close data items into the same
cluster. After clustering, from each of these clusters, R-trees are built. Finally, these R-trees are in-
serted into the target tree one at a time. Data items not included in any cluster are classified as out-
liers and inserted one by one using normal R-tree insertion. This work alleviated the limitation of the
STLT which is highly dependent on the data distribution. However, this has also the same problem
that the R-trees being inserted may increase the overall overlap of the target R-tree for the same rea-
son mentioned in the first paragraph of this subsection. In addition to this, GBI and STLT have a
serious problem that the resulting tree may not be a legitimate R-tree by definition. From the prop-
erties of an R-tree, the root node of a small tree can have less than m entries (m is the minimum num-
ber of entries a node can have). However, after a small tree is inserted, the root of the small tree
becomes an internal node of the large tree. The root node of the small tree having less than m entries
breaks the property of an R-tree. This is not an easy issue to deal with but must be addressed prop-
erly. In Section 7, we present how this problem is solved by our bulk insertion method.

Another class of bulk operations rely on a buffer strategy for dynamic R-trees [5]. This ap-
proach adopts the lazy buffering technique of the buffer tree [6]. Basic idea of their work is to at-
tach buffers to the internal nodes of an R-tree in precalculated levels and keep the total size of the
buffers to fit in the memory. Then, when an object is inserted, it is stored in the buffer until it gets
full. When the buffer is full, data objects in the buffer are pushed down to the buffer at the lower
level. Since data objects are only inserted into the leaf level, it is only when the data objects arrive
at the leaf level that disk accesses occur. By using buffers, they insert the data object as soon as it
arrives without having to gather to perform bulk operation and are possible to reduce disk acces-
ses by delaying insertions using the buffers. Although their bulk insertion strategy shows improved
results over the normal insertion algorithm in terms of the insertion cost, it is conceptually iden-
tical to the repeated insertion algorithm that the query performance of the resulting tree is no bet-
ter than that of repeated insertion.
3. Overview of our approach

In this section, we provide a brief overview of the seeded clustering algorithm we propose. Then
we will give a detailed look on the algorithm from Section 4 through Section 6. To clearly define
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the problem we are going to solve, we suppose there is a target R-tree indexing a large number of
data objects. A number of newly generated data items arrive and these items need to be inserted
into the target R-tree. There is no pre-built index structure for these input data items. This should
be done fast and the quality of the resulting target R-tree in terms of query performance should be
good enough.

We use two-dimensional data in this paper. Although we do not provide experiments with
higher dimensional data, our approach can be extended to handle multidimensional data
higher than 2. Because R-trees suffer from dimensionality curse problem on approximately
eight-dimensional data, our approach will not work effectively also in that high dimension.

Our proposed work for bulk insertion algorithm is performed in two stages: seeded clustering
and insertion. In the seeded clustering step, we first build a seed tree by taking a few top levels
of nodes from a target R-tree. A seed tree guides the way the input data items are clustered. In
the insertion step, we propose two different methods. In one method, we take each data item from
a cluster and insert it into a target R-tree one at a time using the standard R-tree insertion
method. Although it inserts data items one by one, it reduces the construction cost dramatically
because of localized insertions.

In the other method, we build an R-tree from each of the clusters and insert them into the target
R-tree one at a time in bulk. We call these R-trees as input R-trees. For the target R-tree to be a
legitimate R-tree after the insertion of an input R-tree, the node underflow and height balance
issues need to be addressed properly. We describe how to insert an R-tree into another R-tree
in Sections 6 and 7 in detail.
4. Seeded clustering

In the previous approaches, input data items are partitioned into groups using various cluster-
ing methods. Each group forms an R-tree or a block(a node). Then they are inserted into the tar-
get tree one at a time. This is the common way to perform bulk insertion [2–4].

Suppose that the input data items are located as in Fig. 1(a) and the structure of the target R-
tree is given as Fig. 1(b). Most of the previous clustering methods will classify the data items as in
Fig. 1(c). After building input R-trees from clusters and inserting them into the target R-tree as in
Fig. 1(d), it is likely to enlarge the MBR of the nodes in the target R-tree since input R-trees are
built independently of the target R-tree.

On the other hand, with the structural information of the target R-tree, four leftmost and two
rightmost rectangles would be grouped together, rather than the upper three and lower three. As a
result, it is possible to maintain the MBRs of the target tree as was shown in Fig. 1(e). We call this
approach Seeded Clustering since it uses the structural information of the target R-tree as a seed.
We introduce a seed tree which helps the seeded clustering of the input data set.

4.1. Structure of a seed tree

The idea of the seed tree was partially adopted from the ‘‘seeded R-tree’’ which is used for join-
ing two spatial data sets one of which has an R-tree for it and the other of which does not [7]. The
seeded tree has seed levels and growth levels. Seed levels are built by copying the structural



Fig. 1. Motivation of seeded clustering: (a) input data items, (b) structure of target R-tree, (c) clusters, (d) placement of
the input data items by standard insertions and (e) placement of the input data items by a seed tree.
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information from the seeding tree (that corresponds to the target tree of ours) such as MBRs or
the center points of the MBRs. The seeded tree aids in reducing the spatial join cost by joining
only the related part of a data set with others. This is achieved by the growth levels. From this
part, the ‘‘seeded tree’’ is totally different from the seed tree.

Before describing how to create a seed tree, let�s first look into the way this seed tree helps clus-
tering. As described above, we utilize the structural information of the target R-tree in clustering
the input data items. We use only a part of the target tree to reduce clustering overhead and speed
up clustering. By using a seed tree, we attempt to group input data items that might be placed in
the same node of the target R-tree if they were inserted using normal insertion method. For each
of the input data items, we perform a process similar to an insertion operation as follows.

From the root node of a seed tree, an entry whose MBR fully encloses a data item is chosen.
For simplicity, let�s say we choose the first entry encountered. Then, we proceed to the child node
pointed to by this entry and repeat the same steps until we reach the leaf level of a seed tree. If we
can reach a leaf node of the seed tree, it means that this data item is spatially enclosed in this leaf
node. If it fails to find an entry that satisfies the criteria in some non-leaf node of a seed tree, we
stop clustering for the data item and classify it as an outlier.

To create a seed tree, we first need to decide the number of levels k to copy from the target R-tree.
We choose k such that the insertions of data items in one cluster do not cost any additional I/Os. We
can calculate the height of an R-tree that fits in the memory as follows. We estimate the height of the
tree by assuming that each node is full. This is because when we build an input R-tree, we use the bulk
loading method. Since bulk loading methods always try to fill the node by full capacity, we can
roughly estimate the height of the R-tree before really building it from the number of items.

Suppose the maximum fanout of the input R-tree is M and the height of the target R-tree is ht.
If there are N items in the input data set, we can decide the value k as follows. There are nc clusters
which we can get from the number of nodes in the level ht � k of the target R-tree. This is because
the number of clusters is same as the number of leaf nodes of the seed tree in most cases.
hi ¼ dlogMðN=ncÞe ð1Þ
k ¼ ht � hi þ 1 ð2Þ
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Fig. 2. Clusters and outliers.
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Of course, in the worst case, every input items are clustered into one cluster. In that case,
hi = dlogMNe.

During the classification of input data items, there can be more than one entry that fully include
an input data item. We can make a naı̈ve selection by choosing the first entry that fully encloses an
input data item. This is the easiest and fastest way. However, there can be alternative ways to
select an entry which might lead to a better index structure. One of the possible ways is to choose
an entry whose area is the smallest among them. Clusters generated in this way are likely to cover
smaller area than the clusters obtained by selecting in the naı̈ve way. Alternatively, we can choose
an entry whose center is the closest to that of an input data item. This concentrates on the rela-
tionship between a data item and an entry. However, our preliminary results showed no signifi-
cant differences, so we used the first entry to simplify the seeded clustering step.

4.2. Outliers

An outlier is an input data item that is enclosed in some internal node but in no leaf node of a
seed tree. In Fig. 2, data items that reside inside the leaf node 1 are placed in cluster 1. Another
group of items that are inside of leaf node 2 form another cluster 2. Remaining data items are
classified as outliers. We insert outliers into the target R-tree using the standard insertion method
individually.

One thing to notice here is that outliers exist only in the part where leaf nodes of a seed tree do
not cover. In most cases the ratio of the outliers to non-outliers is so small that the overhead of
inserting outliers one by one is negligible.
5. Naı̈ve approach

In this and next sections, we describe two different algorithms for insertion. We first propose a
naı̈ve algorithm called Seeded Clustering Individual insertion (SCI).
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Fig. 3. Localized node access in Seeded Clustering Individual insertion (SCI).
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This is basically same as the standard insertion method of an R-tree except that we insert items
after seeded clustering step in such a way that the next item to insert is spatially close to the one
inserted in the previous insertion operation. Seeded clustering has the effect of grouping together
spatially close data items. If we insert input items in random order, we have to access some disk
pages more than once because of the limited size of a buffer pool. However, if we process input
items in the order of clusters, we can localize the disk access and take advantage of higher hit rate
in the buffer. In Fig. 3, to insert all the input items in a cluster under node C1, we only need to
access nodes NC1

. We can make the subtree that is rooted at node C1 fit in the memory by choos-
ing the height of the seed tree calculated using the memory size and the subtree size. We can pro-
cess a cluster by loading related nodes into memory and perform insertions in memory and then
write back each node to the disk. This means that the number of disk I/Os will be bounded by at
most two times the number of nodes of the resulting R-tree. We will show you the experimental
results in Section 8 that SCI dramatically improves the insertion cost. However, since it is funda-
mentally identical to the standard insertion method of an R-tree, it does not improve query per-
formance. This is also given in Section 8.
6. Bulk insertion (SCB)

Although SCI improves the insertion cost dramatically, it does not help to improve query per-
formance. In this section, we propose an algorithm that can improve both insertion and query
cost. Before we begin, let�s define the leaf level of the R-tree as level 0. And the level of the parent
is greater than the level of the child by 1. Therefore, the height of an R-tree is 1 + the level of the
root node.

As described in Section 4, we get a number of clusters and outliers after clustering using a seed
tree. To perform bulk insertion, we first create a packed input R-tree from each of the clusters. We
use a bulk loading method (e.g., [8–12]) to build an input R-tree from each cluster.

After creating an input R-tree, we insert input data items in a cluster in bulk into the target R-
tree by inserting the input R-tree at once. During the insertion, there are a few things to consider
for the resulting R-tree to be a legitimate R-tree. In addition to this, we need some post processing
to improve the query performance. We discuss the post-processing in Section 7.



Fig. 4. Inserting an input R-tree into the target R-tree: (a) the target R-tree and an input R-tree. The input R-tree is
going to be inserted into the node Nt and (b) the target R-tree after insertion.
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To insert an input R-tree into the target R-tree, we treat the root node Ni of the input R-tree as
a data object. We insert Ni using the standard insertion method. The only difference from a real
data object is that this object should not be inserted into the leaf level of the target R-tree.

In an R-tree, all the leaf nodes should be in the same level of the tree. For the target R-tree to be
a legal R-tree after inserting an input R-tree, we have to find a suitable level of a node to insert Ni

that represents an input R-tree. Let the height of the input R-tree be hi. Then we have to insert Ni

into the level hi + 1 of the target R-tree in order to ensure that the resultant target tree remains
balanced. This is depicted in Fig. 4.

An input R-tree is built from one of the clusters, and this cluster is composed of the input data
items that are fully included in a leaf node of the seed tree, say Ns. Therefore, we can say that the
corresponding node, say Nt, of the target tree is the target node into which an input R-tree should
be inserted according to the definition of a seed tree. However, depending on the data distribution
of the input data set, the number of input data items in a cluster can vary and the height of an
input R-tree created from this cluster may also vary. Therefore, simply inserting an input R-tree
into the target node will not always work. However, the target node can be a good start point of
finding a proper place to insert an input R-tree.

Ideally, every input R-tree fits in the target node if there are a proper number of data items in
the corresponding cluster. However, since a seed tree is designed to help clustering of input data
items but cannot control the number of data items classified into each of the clusters, an input R-
tree may or may not fit in the target node. This input R-tree placement can be divided into three
cases by the number of data items in a cluster. In the following sections, we will present a detailed
look into each of these three cases.

For description, let Ri denote an input R-tree constructed from the data items in a cluster cor-
responding to the target node Nt. Let Nt be a node in level lt and the height of Ri be hi.

6.1. Case 1: input R-tree fits in the target node

Suppose the number of data items clustered in Ns is in the range such that the height of an input
R-tree for the data items is equal to lt. Then we just insert an entry, which points to the root node
of Ri, into the node Nt. Although it may be a valid target R-tree without further processing (ex-
cept for the case where the root node of Ri is underflow), it is likely to have large overlap for node



Fig. 5. Input R-tree Ri and entries of the target node Nt are likely to have large overlap area.
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Ni and entries of Nt as shown in Fig. 5 since the input data items in a cluster are likely to spread all
over the area of the target node Nt. We need to perform post-processing called ‘‘repacking’’ to
improve the query performance. This process restructures the target R-tree to improve its query
performance. Repacking is described in Section 7.1 in detail.

6.2. Case 2: input R-tree is not shorter than the level of the target node

Suppose input data items are skewed so that a large number of data items are clustered into the
node Ns and the height of an input R-tree Ri built from this cluster becomes greater than lt. In this
case, Ri does not fit in Nt. Since Ri is spatially enclosed by MBR of the target node, as shown in
Fig. 6(b), its entries are fully included in MBR of Nt. Therefore we insert each subtree of the root
node of Ri into the target node Nt. For each insertion of the subtrees, repacking step is required.

6.3. Case 3: input R-tree is shorter than the level of the child level of the target node

If there are too few data items clustered in the node Ns, the input R-tree Ri built from this clus-
ter will be too shallow to be a direct child of Nt. An example is depicted in Fig. 7(a). For the result-
ing R-tree to be a valid R-tree, Ri should be inserted into one of the entries of the target node Nt.
However, data items clustered in Ns are likely to be spread over the area of Nt, as shown in
Fig. 7(b). If we insert Ri into one of the entries of Nt, MBR of that entry will become too large
and its query performance will be degraded. Therefore, an input R-tree Ri should not be inserted
as a whole as in the previous cases, but be processed in another way.

A naı̈ve solution is to reinsert all the data items stored in Ri into the subtree whose root node is Nt.
Although this increases the number of inserting operations, we can take advantage of the locality,
since we are inserting data items in a relatively small area into a small subtree which may fit in memory.



Fig. 6. (a) Data items are skewed that the root node Ni of an input R-tree and the target node Nt are on the same level
and (b) Nt fully encloses the input R-tree by definition of a seed tree.

Fig. 7. (a) Data items are sparse and thus the input R-tree is too shallow to be an entry of Nt and (b) Nt fully encloses
the input R-tree by definition of a seed tree.
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Nonetheless, we can solve this problem more intelligently during the seeded clustering step.
After clustering is done and right before creating input R-trees from these clusters, we can predict
the height of each input R-tree. This is because we build an input R-tree using a bulk loading
method. Since the bulk loading method attempts to fill every node, we can estimate the height
of the resulting input tree using the number of data items in a cluster without actually creating
an input R-tree.

From this, we can find out whether the input R-tree will fit the target node Nt or not. If the
height of an input R-tree is found out to be hi < lt, then we extend the seed tree by one level
for the path from root node to Ns and perform clustering again. Clustering is done for data items
clustered in Ns only. We do not have to restart clustering from the root node of a seed tree but
from the node Ns. The extended tree is shown in Fig. 8.



Fig. 8. Dynamically adjusted seed tree.
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In this figure, Ns is a leaf node of the initial seed tree. After the first seeded clustering step
is done, we find out whether the number of input items clustered in Ns is too small and the
path from the root to Ns should be adjusted. For such paths, we dynamically increase the height
of a seed tree and perform the clustering again with the data items clustered in Ns only. We can
predict which path should be adjusted after the first round of the seeded clustering step. This can
be done recursively and the recursion stops when the lt = 0, in which case an input R-tree always
fit in Nt.
7. Issues in inserting input R-trees

7.1. Repacking for local reduction in the overlapped area

Since there can be a large overlap between input R-tree(s) and the target node Nt, it is desirable
to reduce overlap between them to make the target R-tree efficient for query processing. There
was a work that performs post-optimization of existing R-trees by occasionally execute restructur-
ing process while inserting data objects [13]. It improved point query performance while incurring
a little increase in build cost. We also perform restructuring called repacking. As previously shown
in Fig. 5, it is likely for an input R-tree to overlap the MBRs of the entries of the target node Nt.
Since input data items in a cluster are apt to spread over the area of the target node Nt, many
entries may overlap the input R-tree. Therefore, we unpack all the entries that overlap the input
R-tree and the root node of the input R-tree itself and repack them to get new MBRs. By doing
this, we can locally reduce overlap between nodes.

Detailed algorithms are given in Algorithms 1 and 2.

Algorithm 1. Post-process: Local reduction in the overlapped area

Function PostProcess (Nt, Ri)
Ri: an input R-tree that was inserted
Nt: node into which an input R-tree is inserted
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begin
Ni the root node of Ri

EntriesToRepack Ni [ entries of Nt that overlap with Ni

RepackedNodes REPACK (EntriesToRepack)
replace EntriesToRepack with RepackedNodes

end

Algorithm 2. Repack entries

Function REPACK (EntriesToRepack)
begin

ent ;
foreach e 2 EntriesToRepack do

n node pointed to by e
ent ent [ entries of n

endfch
return create nodes that enclose the elements of ent using bulk loading method

end
7.2. Node underflow

There is another important property of an R-tree that must be satisfied. In an R-tree, every
node except the root node must have at least the minimum number of entries m [1]. Node under-
flow occurs when a node contains less than m entries [14]. Suppose the number of entries in the
root node Ni of an input R-tree is less than m. By definition, this is a legal R-tree because the root
can have less than m entries. However, the target R-tree after inserting this input R-tree breaks the
rule because the root of the input R-tree is now an internal node of the target R-tree which should
have no less than m entries.

We solve this problem during the repacking step. When the input R-tree fits in the target node as
described in Section 6.1, we unpack the root node of an input R-tree and entries of the target node
that overlap it. After unpacking, we repack the entries to create new MBRs. During this, we can
control the number of MBRs created using the number of nodes we unpacked. Suppose we un-
packed n + 1 (including the root node of an input R-tree) nodes. If the root node of an input R-
tree underflows, we can create n or n + 1 new nodes depending on the sum of entries to pack. Since
the original target node had at least n entries, creating n new nodes does not make the target node
underflow. On the contrary, if we created n + 1 MBRs because we cannot create n nodes out of the
unpacked entries, the target node can overflow. In this case, we just split the target node as usual.

For the case described in Section 6.2, there is no underflow. This is because we insert subtrees of
the root node of an input R-tree into the target node and each root node of subtrees is an internal
node of an R-tree (input R-tree). Thus it does not underflow. The case in Section 6.3 can be trans-
formed to one of the two cases described above.
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8. Experiments

In this section, we present the results of an extensive experimental study to show the validity
and the effectiveness of our approach.

8.1. Experimental setup

We have implemented a disk based R*-tree in C++ on windows 2003 server. We used the direct
I/O feature of windows to prevent OS from buffering the disk pages. In the implementation of an
R*-tree, we directly managed the LRU buffer. We restricted the buffer size so that only a limited
size of the main memory is used. A node corresponds to a 4KB disk block and can hold approx-
imately 100 two-dimensional entries per node. We compared our experimental results with the
standard insertion method of an R-tree and GBI [3]. We presented the insertion cost and the
query cost in average number of disk I/O. We also presented time spent for performing insertion.
Since OS buffering prevents evaluating the net time spent, we used windows to always read/write
disk pages from the disk. From now on, we will use SCI to represent Seeded Clustering Individual
insertion and SCB to represent bulk insertion by seeded clustering algorithm.

We used two synthetic data sets having different characteristics as well as real data set.
TIGER/Line data: For the real data set, we used the standard benchmark data used in spatial

databases, namely rectangles obtained from the TIGER/Line data set [15]. We used 2,249,727
streets of California [16]. As we need a data set for a target R-tree and the input data set, we ran-
domly selected an input data set out of these data. Target data items and input data items are
exclusive (see Fig. 9).

Data with uniform distribution: We created a data set with 500,000 data items for the target R-
tree. In the uniformly distributed data set, the upper left corner of each square is uniformly dis-
tributed over the unit square. The area of the square is uniformly distributed between 0 and 2
times the average area. The value of the average area of a square is determined by the density
Fig. 9. TIGER/Line street data of California area.
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of the data set, where density equals the sum of the areas of all the rectangles in the data set [8].
The lower right corner is chosen to give the desired area unless it exceeds the bounds of the unit
square, in which case the coordinate(s) that exceeds 1.0 is set to 1.0. We used data density of 0.5.

Data with Zipfian distribution: We created a data set having non-uniform distribution, or the
Zipfian distribution. The data items are skewed to the upper left part of the unit square. As
the items are skewed to the side of the unit square, the input R-trees are likely to have different
height depending on their location. The size and the density of the data sets used are the same as
that used in the uniformly distributed data [17].

8.2. Insertion cost and query cost for the different data sets

In order to examine the effect of the seeded clustering, we first performed experiments where we
compared the performance of our two methods (SCI and SCB) with R*-tree and GBI. We per-
formed experiments with a buffer of 5% the size of the initial target R-tree. Initial target R-tree
had 500,000 data objects for the synthetic data set and 1,249,848 data objects for TIGER/Line.
We inserted from 10% to 80% of the number of data items stored in the initial target R-tree as
input data items. Usually the buffer size of the operating systems are about 10–20% of the total
memory size. It is reasonable for us to use 5% of the initial tree (not of the total memory) because
in disk-based index we can assume that the data size are usually much larger than the available
memory size.

Fig. 10 shows the insertion cost with uniformly distributed input data set. In Fig. 10(a), inser-
tion cost in number of disk I/O�s is given and in Fig. 10(b), R*-tree is omitted to zoom in the other
methods. Fig. 10(a) shows that both of our algorithms dramatically improve the insertion cost in
terms of the number of disk I/Os over normal R-tree. Depending on the size of input data set, our
algorithms reduce the number of I/Os by a factor of 8–40. This can be explained as follows: in
SCB and SCI, we process input data items in units of a cluster, so that the disk accesses are local-
ized which causes all the disk pages accessed to be kept in memory. For GBI, since it does nothing
after inserting small trees (corresponding to input R-trees), it shows the least disk accesses as we
can see in Fig. 10(b).
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Fig. 10. Insertion cost in disk I/Os for uniformly distributed input data: (a) for all four methods and (b) GBI, SCI and
SCB zoomed in.
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We also presented the total time spent to perform bulk insertion in Fig. 11. In most method,
elapsed time reflects the result of Fig. 10. However, we can find out that the overhead of clustering
in GBI showed longer time spent than SCI or SCB. Since GBI clusters input data set using general
clustering methodology, it requires more processing cost than SCI and SCB.

In Table 1, we presented the throughput (the number of insertions per second) of each method
for each data set. We can clearly find out how effective and scalable our SCB is. In each data set,
by using SCB, we can insert about 3–8 times more than GBI wt can insert about 40–80 times more
data in the same time using SCB than R-tree.

In Fig. 12, SCB shows an outperforming result against other methods as expected. This is be-
cause of the repacking during insertion. Without repacking, an input R-tree will unavoidably
show increased overlap with nodes in the target R-tree. In range queries given in Fig. 12(b), influ-
ence of reduced overlap decreases since it is likely for a query region to span overlapping nodes
even if the area of overlapping region was reduced. However, even in the range query result, SCB
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Fig. 11. Insertion cost in time for uniformly distributed input data: (a) for all four methods and (b) GBI, SCI and SCB
zoomed in.

Table 1
The throughput (# of insertions per second) of each method for each data set

Data set Method 10% 20% 30% 40% 50% 60% 70% 80%

Uniform R-tree 206 203 198 192 191 169 183 190
GBI 1759 2226 2443 2673 2602 2610 2730 2746
SCI 1372 2171 2560 2807 2999 3091 3195 3237
SCB 1470 2850 3872 4970 5874 6669 7422 8128

Skew R-tree 185 180 192 191 170 186 135 149
GBI 1527 2133 2372 2358 2471 2429 2529 2379
SCI 1084 1816 2215 2466 2585 2601 2834 2938
SCB 1222 2358 3252 4267 5015 5760 6272 6982

TIGER/Line R-tree 3929 3508 3003 3006 3052 2752 2440 2137
GBI 1936 2252 2454 2448 2591 2610 2733 2642
SCI 4275 4461 4442 4360 4288 4262 4214 4274
SCB 6015 8901 11,189 12,470 14,178 15,440 16,422 16,820
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Fig. 12. Query cost in average disk I/Os for uniformly distributed data: (a) Point queries and (b) range queries of sizes
1% of the space.
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shows improvement over other methods. We also presented graphs for skewed data set and
TIGER/Line data set from Figs. 13–17.

We also include an experiment that the input data set and the existing data set had different
distribution. This is included because each of the experiments we present so far used the same dis-
tribution for the input data set and the existing data set. In this experiment, we used the existing
data set that had the upper left area (one fourth of the total area had no data points). As the input
data set, we used only the data items in the uncovered area at upper left corner. We used five sets
of input data items. Each covers 1%, 4%, 9%, 16% and 25% of the total area. The result is shown
in Fig. 18. SCB still shows better result against the R-tree and the GBI.

8.3. Insertion cost depending on the buffer size

In this section, we made an experiment on insertion cost depending on the buffer size to see the
buffering effect of our methods. Since SCI and SCB first cluster input data set using seeded clus-
tering, we can localize the insertion of the input data items by processing in unit of a cluster. A
cluster covers relatively small area that the nodes accessed during insertion are likely to fit in
0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

10% 20% 30% 40% 50% 60% 70% 80%

B
ui

ld
 c

os
t (

di
sk

 I/
O

s)

input set size

 R-tree
 SCI

 SCB
 GBI

 5000

 10000

 15000

 20000

 25000

 30000

10% 20% 30% 40% 50% 60% 70% 80%

B
ui

ld
 c

os
t (

di
sk

 I/
O

s)

input set size

 SCI
 SCB
 GBI

(a) (b)

Fig. 13. Insertion cost in disk I/Os for skewed input data: (a) for all four methods and (b) GBI, SCI and SCB zoomed
in.
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Fig. 15. Query cost in average disk I/Os for skewed input data: (a) point queries and (b) range queries of sizes 1% of the
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Fig. 14. Insertion cost in time for skewed input data: (a) for all four methods and (b) GBI, SCI and SCB zoomed in.
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Fig. 16. Insertion cost for TIGER/Line input data set: (a) insertion cost in disk I/Os and (b) execution time.
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buffer. By the experiment given in this section, only 3% of the total pages of the target R-tree are
sufficient for SCI and SCB to efficiently perform insertion. Fig. 19 shows insertion cost of R*-tree,
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GBI, SCI and SCB for uniformly distributed data set. Buffer size varies from 5% to 50% of the size
of the target R-tree.
9. Conclusion

In this paper, we have proposed an effective bulk insertion method in the environment where
data are continuously added to a spatial databases. We have proposed the Seeded Clustering tech-
nique which quickly and effectively clusters input data items by utilizing the structure of the target
R-tree. By clustering, input data objects are grouped according to their locality and we can local-
ize the access of nodes during the insertion of a cluster. We have proposed two bulk insertion
algorithms SCI (Seeded Clustering Individual insertion) and SCB (Bulk Insertion by Seeded Clus-
tering). SCI improves the insertion cost dramatically over the standard insertion method of an R*-
tree. However, its query performance gain was limited. SCB creates an R-tree from each of the
clusters and inserts them one at a time by bulk which highly improves both insertion cost and
query cost. SCB uses a repacking algorithm which reorganizes the structure of an R-tree after
insertion. This requires additional CPU cost but it is worth while since the gain is considerable.
Repacking also makes our algorithm scalable. As the data items are continuously added, our
SCB method yields a good quality tree so that it outperforms previous bulk insertion methods
in terms of query performance.
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