

Toward Mobile Cloud Computing: Data Analysis with Location-Based Social Network

Huan Liu

Joint Work with Huiji Gao and Jiliang Tang

Data Mining and Machine Learning Lab

Location-Based Social Networks (LBSNs)

A Location-Based Social Network Framework

Essential Data from LBSN

- Check-in history with time stamps
- Social networks derived from checkin locations
- User generated contents
- Interdependency of social networks and locations

Distinct Properties of LBSN Data

- Large-Scale Mobile Data
- Accurate Location Descriptions
- Explicit Social Friendships
- Significant Sparsity of Data

Research Opportunities

- Study a user's mobile behavior through both real and virtual worlds in spatial, temporal and social dimensions.
- Understand the role of social networks and geographical properties with large amounts of heterogeneous data
- Improve the development of locationbased services such as mobile marketing, disaster relief, traffic forecasting, and etc.

Mobile cloud computing

Some Challenges

- How to study human mobile behavior from high dimensional data from heterogeneous sources
- How to deduce human movement through sparse check-in data
- How to design location-based services to improve user's experience without sacrificing one's privacy

Potential Applications

- > Disaster Relief/Crisis Response
- Mobile Search/Recommendation
- Location Prediction

- Recommendation Systems
- Mobile Community Detection
- Location Privacy Protection
- Mobile Marketing

Some of Our Recent Findings

- Social-Historical Ties on Location-Based Social Networks (ICWSM'2012)
 - Are two types of ties equally important?
- Geo-Social Correlation (CIKM'2012)
 - Handling the Cold Start Problem
- Mobile Location Prediction in Spatio-Temporal Context in Next Location Prediction in 2012 Nokia Mobile Data Challenge Workshop, 3rd Prize
 - Together is better

Exploring Social-Historical on Location-Based Social Networks

Social-Historical Effect of Online Check-ins

Why is the prediction hard

Power-law distribution

(b) Power-law distribution of individual check-ins

Analyzing User's Historical Ties

Short Term Effect

- The historical tie strength decreases over time.
- The historical ties of the previous check-ins at airport, shuttle stop, hotel and restaurant have different strengths to the latest check-in of drinking coffee.

Modeling User's Historical Ties

Correspondences between language and LBSN modeling

Language Modeling		LBSN Modeling		
Corpus		Check-in collection		
Document		Individual check-ins		
	Paragraph		Monthly check-in sequence	
Document	Sentence	Check-in	Weekly check-in sequence	
Structure	Phrase	Structure	Daily check-in sequence	
	Word		Check-in location	

Power-law distribution
Short Term Effect

HPY (Hierarchical Pitman-Yor) Language Model

Modeling User's Social Ties

- Social Ties
- Common Check-ins

	Common check-ins
between friends	11.8306
between strangers	4.3226

Check-in Similarities

Users with friendship have higher check-in similarity than those without. Null hypothesis $H_{10}: S_{1F} \leq S_{1R}$, rejected at significant level $\alpha = 0.001$ with p-value of 2.6e-6.

Friend Similarity

HPY

Friends' Check-in Sequence

Social Model

$$p_{SH}^{i}(c_{n+1} = l) = \eta P_{H}^{i}(c_{n+1} = l) + (1 - \eta)P_{S}^{i}(c_{n+1} = l)$$

Experiment Results for Location Prediction

Experiment Results > MFC Most Frequent Check-in Model > MFT Most Frequent Time Model > Order-1 Order-1 Markov Model > Order-2 Order-2 Markov Model > HM **Historical Model** > SHM Social-Historical Model

Social-historical Tie Effect w.r.t. η

> When no historical information is considered, the prediction performs worst, suggesting that considering social information only is not enough to capture the check-in behavior.

> By gradually adding the historical information, the performance shows the following pattern: first increasing, reaching its peak value and then decreasing. Most of the time, the best performance is achieved at around $\eta = 0.7$. A big weight is given to historical ties, indicating that historical ties are more important than social ties.

ARIZONA STATE

Predicting New Check-Ins

Motivation

Geo-Social Correlations

Modeling Geo-Social Correlations

 $\geq P_u^t(l)$: the probability of a user *u* checking-in at a new location *l* at time *t*

$$P_{u}^{t}(l) = \Phi_{1}P_{u}^{t}(l|S_{\bar{F}\bar{D}}) + \Phi_{2}P_{u}^{t}(l|S_{F\bar{D}}) + \Phi_{3}P_{u}^{t}(l|S_{FD}) + \Phi_{4}P_{u}^{t}(l|S_{\bar{F}D}).$$
Geo-Social Correlation Strength

$$\Phi_{1} = f(\mathbf{w}^{T}\mathbf{f}_{u}^{t} + b), \ 0 \le \Phi_{1} \le 1$$

$$\Phi_{2} = (1 - \Phi_{1})\phi_{1}$$

$$\Phi_{3} = (1 - \Phi_{1})(1 - \phi_{1})\phi_{2}$$

$$\Phi_{4} = (1 - \Phi_{1})(1 - \phi_{1})(1 - \phi_{2})$$

Modeling Geo-Social Correlations

 $> P_u^t(l)$: the probability of a user *u* checking-in at a new location *l* at time *t*

$$P_{u}^{t}(l) = \Phi_{1}P_{u}^{t}(l|S_{\bar{F}\bar{D}}) + \Phi_{2}P_{u}^{t}(l|S_{F\bar{D}}) + \Phi_{3}P_{u}^{t}(l|S_{FD}) + \Phi_{4}P_{u}^{t}(l|S_{\bar{F}D}).$$

Geo-Social Correlation Probability

> **Geo-Social Correlation Probability Measures:**

1. Sim-Location Frequency (S.Lf) 2. Sim-User Frequency (S.Uf) $\sum s(u, v) N^t(l)$ $\frac{\sum_{v \in \mathcal{S}_x} \delta_v^t(l) s(u, v)}{\sum_{v \in \mathcal{S}_x} s(u, v)}$ $P_u^t(l|\mathcal{S}_x)$

$$= \frac{\sum_{v \in \mathcal{S}_x} s(u, v) N_v^{t}}{\sum_{v \in \mathcal{S}_x} s(u, v) N_v^t} \qquad P_u^t(l|\mathcal{S}_x) = \frac{\sum_v}{\sum_{v \in \mathcal{S}_x} s(u, v) N_v^t}$$

3. Sim-Location Frequency & User Frequency (S.Lf.Uf)

$$P_u^t(l|\mathcal{S}_x) = \frac{\sum_{v \in \mathcal{S}_x} s(u, v) N_v^t(l)}{\sum_{v \in \mathcal{S}_x} s(u, v) N_v^t} \frac{\sum_{v \in \mathcal{S}_x} \delta_v^t(l)}{N_{\mathcal{S}_x}}$$

Dataset

Foursquare Dataset

Table 2: Statistical information of the dataset

Duration	Jan 1, 2011-July 31, 2011
No. of user	11,326
No. of check-ins	1,385,223
No. of unique locations	182,968
No. of links	47,164
No. of links	47,164

Table 3: Statistical information of the July data

Social Circle	No. of SCCs	Ratio
$S_{\overline{F}\overline{D}}$	34,523	44.50%
$S_{F\overline{D}}$	5,636	7.26%
S _{FD}	3,588	4.62%
$S_{\overline{F}D}$	39,423	50.82%
Others	1,672	2.2%
$S_{\overline{F}\overline{D}} \cup S_{F\overline{D}}$	35,277	45.47%
$S_{\overline{F}\overline{D}} \cup S_{FD}$	35,784	46.12%
$S_{F\overline{D}} \cup S_{FD}$	8,235	10.61%
$S_{\overline{F}\overline{D}} \cup S_{F\overline{D}} \cup S_{FD}$	36,486	47.03%

(a) The user distribution over the world.

(b) The user distribution over USA.

Experiments

Location Prediction Evaluation Metrics

	Single Measure	Various Measures
Equal Strength	EsSm	EsVm
Random Strength	RsSm	RsVm
Various Strength	VsSm	gSCorr

Effect of Geo-Social Correlation Strength and Probability Measures

Methods	Top-1	Top-2	Top-3
EsVm	17.88%	24.06%	27.86%
EsSm	16.20%	21.92%	25.43%
VsSm	16.49%	22.28%	25.92%
RsSm	14.93%	20.30%	23.70%
RsVm	15.23%	20.85%	24.50%
gSCorr	19.21%	25.19%	28.69%

Experiments

E

Effect of Different Geo-Social Circles

Methods	Top-1	Top-2	Тор-3
シンド	6.51%	8.31%	9.32%
	3.65%	4.75%	5.34%
E	18.37%	24.10%	27.34%
H	18.62%	24.44%	27.79%
N N	19.01%	24.95%	28.35%
	8.33%	10.79%	12.23%
1/23/F	19.21%	25.19%	28.69%

Mobile Location Prediction in Spatio-Temporal Context

Problem Statement

The probability of checking in at location / given the check-in time at t and latest check-in

$$p(v_{i} = l | t_{i} = t, v_{i-1} = l_{k})$$

=
$$p(t_{i} = t | v_{i} = l) p(v_{i} = l | v_{i-1} = l_{k})$$

Temporal Constraint

The probability of the i-th visit happening at time t, observing that the i-th visit location is l.

Spatial Prior

The probability of next visit at location I given the current visit at I_k

Historical Model

Temporal Constraint

5 10

Temporal Constraint:

$$p(t_i = t | v_i = l)$$

$$= p(h_i = h, d_i = d | v_i = l)$$

$$= p(h_i = h | v_i = l) p(d_i = d | v_i = l)$$
Hourly Constraint
Daily Constraint
h: Hour of the day, i.e., 10:00am, 3:00pm
d: Day of the week is a Monday Sunday

d: Day of the week, i.e., Monday, Sunday

Temporal Constraint

Temporal Constraint

Curve Fitting:

Location Prediction

5 1

Probability of visiting location I at time t with the latest visit at Ik

$$p(v_{i} = l | t_{i} = t, v_{i-1} = l_{k})$$

$$= p(v_{i} = l | v_{i-1} = l_{k})p(h_{i} = h | v_{i} = l)p(d_{i} = d | v_{i} = l)$$

$$= p(v_{i} = l | v_{i-1} = l_{k})N_{l}(h | \mu_{h}, \sigma_{h}^{2})N_{l}(d | \mu_{d}, \sigma_{d}^{2})$$
HPY Prior Gaussian Gaussian
HPY Prior Hour-Day Model (HPHD)

Experiments – Together is Better

Table 1: Location Prediction Results				
	Models	Correct No.	Accuracy	
	MFV	1148	0.3402	
Spatial-based	OMM	1466	0.4345	
spatial-based	\mathbf{FMM}	1583	0.4692	
	HP	1610	0.4772	
Temporal-based	MFH	1462	0.4333	
	MFD	1156	0.3426	
	MFHD	1538	0.4558	
Spatio-temporal	HPH	1680	0.4979	
	HPD	1583	0.4692	
	HPHD	1705	0.5053	

Rank 3rd among 21 participated teams in Nokia Mobile Competition

Some of Our Recent Findings

- Social-Historical Ties on Location-Based Social Networks (ICWSM'2012)
 - Are two types of ties equally important?
- Geo-Social Correlation (CIKM'2012)
 - Handling the Cold Start Problem
- Mobile Location Prediction in Spatio-Temporal Context in Next Location Prediction in 2012 Nokia Mobile Data Challenge Workshop, 3rd Prize
 - Together is better

Acknowledgments: The projects are, in part, sponsored by ONR grants.

THANK YOU

