Toward Mobile Cloud Computing:
Data Analysis with Location-Based Social Network

Huan Liu

Joint Work with Huiji Gao and Jiliang Tang

DIVI - : : ' ARIZONA STATE
M Ll Data Mining and Machine Learning Lab %UNIVERSITY



Location-Based Social Networks (LBSNs)

® | ocation-Based Social Networking Sites
Foursquare, Facebook Places, Yelp
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A Location-Based Social Network Framework

Social Computing
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Essential Data from LBSN

» Check-in history with time stamps

» Social networks derived from check-
in locations

» User generated contents

» Interdependency of social networks
and locations
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Distinct Properties of LBSN Data

> Large-Scale Mobile Data
» Accurate Location Descriptions
> Explicit Social Friendships

> Significant Sparsity of Data
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Research Opportunities

» Study a user’s mobile behavior through
both real and virtual worlds in spatial,
temporal and social dimensions.

» Understand the role of social networks
and geographical properties with large
amounts of heterogeneous data

» Improve the development of location-

based services such as mobile
Social marketing, disaster relief, traffic
forecasting, and etc.

» Mobile cloud computing
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Some Challenges

» How to study human mobile behavior
from high dimensional data from
heterogeneous sources

» How to deduce human movement
through sparse check-in data

» How to design location-based services
Social to improve user’s experience without
sacrificing one’s privacy
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Potential Applications

> Disaster Relief/Crisis Response
> Mobile Search/Recommendation
» Location Prediction

» Recommendation Systems

» Mobile Community Detection

» Location Privacy Protection

» Mobile Marketing
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Some of Our Recent Findings
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e Social-Historical Ties on Location-Based Social
Networks (ICWSM’'2012)

— Are two types of ties equally important?

* Geo-Social Correlation (CIKM'2012)
— Handling the Cold Start Problem

* Mobile Location Prediction in Spatio-Temporal
Context in Next Location Prediction in 2012 Nokia
Mobile Data Challenge Workshop, 3™ Prize

— Together is better
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Exploring Social-Historical on Location-Based Social Networks

Exploring Social-Historical
on Location-Based Social Networks
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Social-Historical Effect of Online Check-ins

Historical Ties
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T3

T4

Friend A
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Why is the prediction hard

Number of check-ins at frequency f (log)
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(b) Power-law distribution of individual check-ins
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Analyzing User’s Historical Ties

« Short Term Effect

» The historical tie strength decreases
over time.

» The historical ties of the previous
check-ins at airport, shuttle stop, hotel
and restaurant have different strengths
to the latest check-in of drinking coffee.
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Modeling User’s Historical Ties

« Correspondences between language and LBSN modeling

Language Modeling LBSN Modeling
Corpus Check-in collection
Document Individual check-ins
Paragraph Monthly check-in sequence
Document | Sentence | Check-in | Weekly check-in sequence
Structure Phrase Structure Daily check-in sequence
Word Check-in location

 Power-law distribution HPY (Hierarchical Pitman-Yor)
 Short Term Effect Language Model
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Modeling User’s Social Ties

+» Social Ties
> Common Check-ins

Common check-ins
between friends 11.8306
between strangers 4.3226

» Check-in Similarities

Users with friendship have higher check-in similarity than those without.
Null hypothesis 740 :SUF <SR, rejected at significant level a = 0.001 with
p-value of 2.6e-6.

* Friend Similarity _
 Friends’ Check-in Sequence Social Model

* HPY i i i
Psp(Cp =) =nPy(c,,,=D+1-n)F(c,,, =)
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Experiment Results for Location Prediction

= Experiment Results
> MFC

Most Frequent Check-in Model
> MFT

Most Frequent Time Model
» Order-1

Order-1 Markov Model

» Order-2

Order-2 Markov Model

> HM

Historical Model

> SHM

Social-Historical Model
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Social-historical Tie Effect w.r.t. n

» When no historical information is considered, the prediction performs worst,
suggesting that considering social information only is not enough to capture the
check-in behavior.

» By gradually adding the historical information, the performance shows the
following pattern: first increasing, reaching its peak value and then decreasing. Most
of the time, the best performance is achieved at around n = 0.7. A big weight is given
to historical ties, indicating that historical ties are more important than social ties.
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Predlctlng New Check-Ins

Impossible to predict
relying on personal
history

\Q / COLD-START

I|m|ted contribution to
improve location
prediction performance

CHECK—INSJ

| EXTANT
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Motivation
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Geo-Social Correlations

Local

P (1|Sr5
o (11575 ) Correlation

N/ Ip,{(I|Syp ) Distant
L SFD ‘u w Correlation

t .
New Sz5  Pull[Sz5) Confounding
Check-in”

at location |

Unknown
> SFD / Put(l I SI_’D ) Effect

P = &1 PL(1|SEp) + D2 PL(1Skp)
+ ®3P, (I|Srp) + P4 P, (I|SFp).
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Modeling Geo-Social Correlations

> P'(l): the probability of a user u checking-in at a new location / at time ¢

Pi(1) =@)Pu(UISrp) {2IP.(USkp)
+t<rsm H{®IPL(UIS D)

GecnS@cial Correlation Strength

rrrrrrrrrrr

D :f(W fu—l—b), 0< P <1
Py =(1—P1)¢1

3 = (1 —P1)(1 — ¢1)92

Py =(1—P1)(1 —¢1)(1 — ¢2)
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Modeling Geo-Social Correlations

> P! (]): the probability of a user u checking-in at a new location / at time t

N

PL(l) = ®1[PL(1|Spp) + ®2PL(1|Skp)
+ @3 Py (I|Skp)|+ PalPy(1|Spp)
Geo-Social Correlation Probability

» Geo-Social Correlation Probability Measures:
1. Sim-Location Frequency (S.Lf) 2. Sim-User Frequency (S.Uf)

> ves, S(u, v)N(1) > ves, oh (1) s(u, v)
> ves, S(u, v)NE quesx s(u,v)
3. Sim-Location Frequency & User Frequency (S.Lf.Uf)
> es, S V)N X, s, 00 ()
ZUESQ; s(u, V)N Ns,
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» Foursquare Dataset
Table 2: Statistical information of the dataset
Duration Jan 1, 2011-July 31, 2011 - " SN
No. of user 11,326 ; &W a"g- I
No. of check-ins 1,385,223 B A Y
No. of unique locations 182,968 3 oy k VTN
No. of links 47,164 ) w}" S e
Table 3: Statistical information of the July data |
Social Circle No. of SCCs Ratio (@) The ser distribution over the world
$:5 34,523 44.50% -
SFZ_) 5,636 7.26%
SFD 3,588 4.62%
SIED 39,423 50.82%
Others 1,672 2.2%
Sﬁﬁ U SFE 35,277 45.47%
Sﬁf) U SFD 35,784 46.12%
S5 U Sep 8,235 U P sy
Sﬁﬁ U SF5 U SFD 36,486 47.03%
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Experiments

> Location Prediction Evaluation Metrics

Single Measure| Various Measures
Equal Strength EsSm EsVm
Random Strength RsSm RsVm
Various Strength VsSm gSCorr

> Effect of Geo-Social Correlation Strength and Probability Measures

Methods Top-1 Top-2 Top-3
EsVm 17.88% 24.06% 27.86%
EsSm 16.20% 21.92% 25.43%
VsSm 16.49% 22.28% 25.92%
RsSm 14.93% 20.30% 23.70%
RsVm 15.23% 20.85% 24.50%
gSCorr 19.21% 25.19% 28.69%
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> Effect of Different Geo-Social Circles

Methods Top-1 Top-2 Top-3
6.51% 8.31% 9.32%
3.65% 4.75% 5.34%
18.37% 24.10% 27.34%
18.62% 24.44% 27.79%
19.01% 24.95% 28.35%
8.33% 10.79% 12.23%
19.21% 25.19% 28.69%

| |
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Mobile Location Prediction in Spatio-Temporal Context

Moblle Location Prediction In
Spatio-Temporal Context
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Problem Statement

The probability of checking in at location / given the check-in time at t and latest check-in

pv, =1t =ty =1)
=[p(t, = t1v, = Jp(v, =11 v =1,]

Temporal Constraint Spatial Prior
The probability of the i-th The probability of next
visit happening at time t, visit at location | given
observing that the i-th the current visit at |,
visit location is |I. H|Stor|Ca| Model
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Temporal Constraint

Temporal Constraint:

p(t, =t]v,=1)

=plh =hd; =d|v, =)
=plh=h|v,=0)p(d, =d|v, =)

Hourly Constraint Daily Constraint

h: Hour of the day, i.e., 10:00am, 3:00pm
d: Day of the week, i.e., Monday, Sunday
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Temporal Constraint

Compute p(h h\v —l) and p(d, = d

v, =1)

» Distribution of a user’s visits at a specific location in 24 hours.

(user id: 013; place id: 3)
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Temporal Constraint
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Location Prediction

Probability of visiting location | at time t with the latest visit at |,

p(vi =l|ti =1,V =lk)

=p(v, =/
=p(v, =1

Vi, =l)p(h=hlv,=D)pld, =d|v, =)
Vi =L )N,(h] ﬂhaaj)Nz(d | ﬂdagj)

HPY Prior Gaussian Gaussian
HPY Prior Hour-Day Model (HPHD)

Ml
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Experiments — Together is Better

+* Results

Table 1: Location Prediction Results

Models | Correct No. | Accuracy
MFEV 1148 0.3402
Spatial-based L :1466 ()'4345
FMM 1583 0.4692
HP 1610 0.4772
MFH 1462 0.4333
Temporal-based MFED 1156 0.3426
MFHD 1538 0.4558
HPH 1680 0.4979
Spatio-temporal HPD 1583 0.4692
HPHD 1705 0.5053

Rank 3 among 21 participated teams in Nokia Mobile Competition
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Some of Our Recent Findings
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e Social-Historical Ties on Location-Based Social
Networks (ICWSM’'2012)

— Are two types of ties equally important?

* Geo-Social Correlation (CIKM'2012)
— Handling the Cold Start Problem

* Mobile Location Prediction in Spatio-Temporal
Context in Next Location Prediction in 2012 Nokia
Mobile Data Challenge Workshop, 3™ Prize

— Together is better
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