

An Optical Turing Machine for Native Network Processing of Modulated Data

Joe Touch USC/ISI IEEE CCW 2012

11/9/2012 1 Information Sciences Institute

Copyright USC/ISI. All rights reserved.

OTM Overview

- USC/ISI's OTM initiative
 - Revisits the assumptions of computation
 - Leverages native optical capabilities
 - Explore unification of comms and computation

Current Optical Computing

- Analog signal processing
 - Spatial Fourier transforms (lens/lens-like), holography, RF-like wave manipulation
 - Limited reconfigurability static functions
 - Limited composition
- Emerging digital approaches
 - Optical transistors (Miller, Nature Photonics '10), quantum dots
 - Low bandwidth still one bit per device

Optical Turing Machine USC/ISI New Research Initiative

- A new approach to computing
 - Optical computing...
 - of high-density (multibit) symbols that natively support high-speed, long-distance transmission
- A fundamental unification
 - Integrate computation and communication
 - from the communications viewpoint

Symbol Encoding

- Single bit per symbol
 - On/off keying (OOK), e.g., of power levels
 - Binary phase-shift keying (BPSK)
 - Binary polarizations
- Multibit encoding
 - Multilevel (multiple power levels)
 - Multiple phases (N-PSK, e.g., 4PSK, 16PSK)
- Multidimensional
 - Using more than one physical attribute
 - Implies multibit
 - *E.g.*, QAM (phase and power), OCDMA (phase, wavelength, polarization)

Supporting high speed

Computation

- favors electronics for processing
- electronics uses high parallelism for speed
- Communication
 - *requires* optics for distance
 - optics uses high bit density for speed

Copyright USC/ISI. All rights reserved.

Optics Assumptions

- Point-to-point fiber with packet switches
 - Shared channels are limited in range (LAN)
 - Distributed multiaccess requires phasealigned sources
 - Packet switching *is* coordinated multiaccess
- Serial channels
 - Parallel too hard to synchronize

Computation vs. Communication

• High-speed transmission

- Currently serial multibit optical encoding
- Parallel channels are too costly to synchronize
- High-speed computation
 - Currently parallel electronic binary encoding
 - Serial exceeds electronics
- Implication
 - Compute and transmit in different formats
 - Conversion is required ("OEO") and costly

Other Benefits of Optics Beyond transmission distance

- 60x faster per link
 - Optics: ~100 Gbaud * 4 bits/symbol (16 QAM)
 = 400 Gbps per link
 - Electronics: ~3.25 GHz * 2 bits/cycle (both edges)
 = 6.5 Gbps per link
- Supports similar integration
 - Concurrent streams using a single device (2 polarizations x 30 wavelengths)
 - 1/100 devices/chip but 60x streams per device
- Supports serial algorithms
 - Some functions can be simpler
 - 32-bit adder uses ~6 serial elements vs. >6,000 parallel

OEO vs. SBS

- Really <u>symbol-bit-symbol</u> (SBS) from multibit to on-off (OOK)
- Conversion is expensive in power, complexity, performance
 Transmit

- Native OOO
 - Avoid conversion; compute in transmission format

Transmit Compute Transmit

Back to Basics

Computation

- Use state to manage symbol (sequence) translation
- Communication
 - Exchanging symbols to manage (endpoint) state
- These are related
 - Both use state
 - Both "translate" symbols
- Hypothesis:
 - What if both could share one encoding?

Native Multibit-symbol Support

- Explore formats, value mappings
 - Phase, power, frequency, polarization dimensions
 - Direct increment vs. "hopscotch" strides
- Explore alternate logics
 - Transformational (vs. gated) functions
 - Serial/temporal asynchronous functions
- Potential for multidimensional encoding
 - vs. multivalued 1D encodings
 - e.g., concentric QAM vs. spiral QAM

Functions

Gated functions

- Input selects other input(s) or constants (power rails)
- Requires constants, *i.e.*, symbol generation
- Requires clocking

Transformational functions

- Change input signal(s) into output signal(s)
- Self-synchronizing

Copyright USC/ISI. All rights reserved.

11/9/2012 13 Information Sciences Institute

Current: Concentric QAM

- Uniform minimum distance between valid values
- Highly discontinuous Hamiltonian

OTM: Spiral QAM

- Value-independent transforms
- More continuous Hamiltonian

Select code and values creating a continuous Hamiltonian (path) via a constant transform

11/9/2012 14 Information Sciences Institute

New Models of Computation

- Extend logic for multibit optical symbols
 - What is required a group?
 - As in Boolean NAND or NOR, but with more than just binary values
 - *E.g.,* modulus integers under add/multiply
 - Non-ring functions vs. full λ -calculus
- Explore opportunities for Turing Machine variant
 - Minimal functions for completeness
 - Is computation possible with ephemeral I/O? (maximum look-forward/back within fixed ΔT)
 - Is computation possible with ephemeral state?

Exploring Functions: Electronics vs. Optics

Copyright USC/ISI. All rights reserved.

11/9/2012 16 Information Sciences Institute

Adder Complexity

Electronics

Optics

• Parallel look-ahead (electronic) adder

- Create, generate & propagate functions
 - $G_i = A_i B_i$
 - $P_i = A_i + B_i$
- Compute carries
 - $C_{i+1} = G_i + P_i C_i$
 - $C_4 = G_3 + P_3G_2 + P_3P_2G_1 + P_3P_2P_1G_0$
 - J^{th} element = OR of J groups of 1..J parts i.e., each element is $O(J^2)$
- Total complexity is O(N³) for N-bit width

• Serial (optical) adder

- Notation:
 - AND (adjacent), OR +, XOR ^
 - A, B = inputs; S = output
 - C = carry
- Generate sum, carry (optical adder)
 - $S_i = A_i \wedge B_i \wedge C_{i-1}$
 - $C_i = A_i B_i + (C_{i-1}(A_i \wedge B_i))$
- Total complexity is 6 (indep. of width)

USC Viterbi School of Engineering

Copyright USC/ISI. All rights reserved.

11/9/2012 17 Information Sciences Institute

Core Areas of Investigation

- Multivalue symbol transformations
 - Multibit logic/math (rings/groups – poss. beyond boolean)
 - Symbol transforms not gating
- Serialization
 - Serial logic/functions
 - Time-based (vs. space-based parallelism)
- Ephemeral state
 - Limited "lookback" (like USC/ISI Tetris router conveyor queues)

Potential Impact

- On-line processing
 - Data too large/high-capacity (or both) for off-line proc.
- Low-power
 - Processing without OEO/SBS conversion
- Examples:
 - Checksums / error coding and correction
 - Encryption and authentication
 - Packet filtering / virus scans
 - Transcoding
 - Data fusion (merging stream info.)
 - Data reduction (map/reduce)

Requirements

"Digital Transistor", Miller, *Nature Photonics* 2010

- 1. Cascadable
 - Stage N output drives stage N+1 input
- 2. Fan-Out
 - Output can drive at least 2 inputs
- 3. Logic-level restoration
 - Re-digitization
- 4. Input/output isolation
 - Immune to reflection
- 5. Absence of critical biasing
 - Robust to configuration variation
- 6. Logic level indep. of loss
 - Robust to signal weakness

ΟΤΜ

- 1. Digital (3) -> nonlinear
 - Requires re-digitization

2. Persistent -> multibit & serial

- Space-P. = transmittable
- Time-P. = storable
- 3. Asynchronous -> transformational
 - Functions transform inputs, not gate them

4. Turing-equivalent

- -> new math, alphabet, semantics
 - Recursive (operational induction) (1)
 - Time-Persistent
 - Group (two operations, etc.)
 - Conditionals
- 5. Robust? (4,5,6)
 - Stable under variation (vs. ECL?)

Copyright USC/ISI. All rights reserved.

11/9/2012 20 Information Sciences Institute

Re-digitization Challenge

- Reduce noise
 - Reduce variation in encoding domain here phase, shown as angle
- Restore separation
 - Resolve overlap
- Restore signal level
 - Reamplify here, power, shown as distance from origin

Copyright USC/ISI. All rights reserved.

Recent and Current Work

- Design of an all-optical IP packet router
 - Variable length messages (packets)
 - All-optical processing:
 - 1. ✓→Decrement hopcount
 - 2. ✓ Match destination address to forwarding table
 - 3. \rightarrow Recompute the IP checksum
 - 4. ✓ Merge packets sent to the same output port

1. Hopcount Decrement

McGeehan et al., JLT 2003

Serial unsigned decrement

- Least-significant bit (LSB) first input
- Invert (S=0 becomes 1) until S=1
- Invert that bit (S=1 becomes 0)
- Copy remaining bits
- Uses electronic control
 - Replace with laser, switch as RS flip-flop
- Multibit version:
 - LSS (symbol) input
 - S=0 becomes N-1 until S>0
 - S>0 becomes value-1
 - Copy remaining S

USC Viterbi School of Engineering

Copyright USC/ISI. All rights reserved.

11/9/2012 23 Information Sciences Institute

Hopcount Refinement

- Update to optical S/R FF
 - Previous design used electronic S/R FF
 - 2003 JLT paper
 - Set/reset:

- Optical FF design
 - Does not rely on phase interference
 - Extends beyond OOK/2PSK to symbol-encoding
- Extend to multibit encoding

Optical S/R FF

Simulation (2010 REU students)

- Compare variable seed vs. variable pump
- Implementation pending

Single-bit to multibit

- Invert becomes "-1" or "+(N-1)"
- S/R FF trigger becomes ">0"

Copyright USC/ISI. All rights reserved.

11/9/2012 26 Information Sciences Institute

Hauer et al., JLT 2003

Bit-subset groups share next-hops

Information Sciences Institute

4. Merging – Tetris Touch et al., US Pat. 2012

- Conveyor queues
 Variable speed
- Current results:
 - Better than backshift (Harai)
 - -<4 packets delay</p>
 - Batch scheduled

Copyright USC/ISI. All rights reserved.

Next Shifting Region ·

11/9/2012 28 Information Sciences Institute

Tetris vs. NICT Comparison

- Simulation analysis 32x32 switch @100% aggregate load
 - Tetris (shift-forward) vs. NICT (shift-backward) optical vs. VOQ-based electronic approaches

11/9/2012 29 Information Sciences Institute

Current work

Ones-complement sum

- Symmetric carry-out cascades to all other bits
- Typically implemented using twos-complement
 - OSUM(*x*, *y*, *N*) = *x* + *y* + (carry(*x* + *y*) >> *N*)
- Same design for one-bit and multibit

Native Parallelized Checksum Touch/Parham 1996

Serial Checksum

Copyright USC/ISI. All rights reserved.

11/9/2012 30 Information Sciences Institute

Multibit Half-Adder

- Extends modulus-adder(*Bogoni et al., 2009*)
 - Needs native carry-out that generates reusable values
 - Student poster award at OIDA Data Center Workshop

Half-Adder to Full-Adder

• Cascade adders – requires multibit design

Binary full-adder

Multi-bit full-adder NB: final Co cannot occur

- Native design
 - Using PPLN/PPSI devices
 - No need for cascade of multiple devices

11/9/2012 32 Information Sciences Institute

Current Research Goals

- Implement/integrate
 - Hopcount decrement
 - IP checksum
 - Tetris aggregator (shift/merge)
- Design
 - Multibit symbol redigitizer
 - Multibit symbol functions

OTM Summary

- New approach to computation
 - Designed to native constraints of transmission
 - First-principles revision to new domain
- Symbol-based
 - Concurrent coding, function, and physical realization
- Collaborators:
 - Prof. Alan Willner, USC EE/Systems
 - Ph.D. students: Mortezza Ziyadi, Salman Khaleghi, Mohammed Reza Chitgarha

