
University of Arizona, Department of Computer Science

CSc 372 — Assignment 3 — Due noon, Wed Oct 12 — 8%

Christian Collberg
September 23, 2005

1 Introduction

The purpose of this assignment is to work more with higher-order functions.

Every function you write for this assignment (except when explicitly noted) should be non-

recursive. I.e. functions will typically be implemented using higher-order functions such as
maps, folds, zips, etc.

You may freely introduce auxiliary functions if that makes your program cleaner. Also, feel free to introduce
local definitions (where-clauses) to make your code easier to read.

You will be graded primarily on correctness and style, not on the execution efficiency of your code.

All functions must be commented.

The first half of the assignment (A) you should solve individually. The second part (B) you can work on in
teams of two.

You should hand in three files (ass3A.hs ass3B.hs TEAM), one for each part, and one file that lists the
names and logins of the students in your team. Only one team member needs to hand in ass3B.hs.

2 A: Individual Problems

1. Write a function maxl xs that generates an error "empty list" if xs==[] and otherwise returns the
largest element of xs: [10 points]

maxl :: (Ord a) => [a] -> a

maxl xs = ...

> maxl [2,3,4,5,1,2]

5

> maxl []

Program error: empty list

2. Write a function mull xs m which returns a new list containing the elements of xs multiplied by m:
[10 points]

mull :: (Num a) => [a] -> a -> [a]

mull xs x = ...

1

> mull [1,2,3,4,5] 0.0

[0.0,0.0,0.0,0.0,0.0]

> mull [1,2,3,4,5] 2

[2,4,6,8,10]

> mull [2.0,4.0,6.0,8.0,10.0] 5

[10.0,20.0,30.0,40.0,50.0]

3. Write a function member x ys which returns True if x is an element of ys, False otherwise. [10 points]

member :: (Eq a) => [a] -> a -> Bool

member xs s = ...

> member [1,2,3] 4

False

> member [1,2,3,4.0,5] 4

True

> member [’a’,’b’,’x’,’z’] ’b’

True

4. Write a function setsub xs ys that takes two lists xs and ys as input, both lists representing sets. In
other words, xs and ys are unsorted lists that contain no duplicate elements. setsub xs ys returns
xs-ys, i.e. the list containing the elements in xs that are not in ys: [10 points]

setsub :: (Eq a) => [a] -> [a] -> [a]

setsub xs ys = ...

> setsub [1,2,3] []

[1,2,3]

> setsub [1,2,3] [3]

[1,2]

> setsub [1,2,3] [1,2,3]

[]

> setsub [] [1,2,3]

[]

> setsub [] []

[]

> setsub [True,False] [True]

[False]

5. In the definition of sumc below, use function composition to compute the sum of the cubes of all the
numbers divisible by 7 in a list xs of integers. [10 points]

sumc :: [Int] -> Int

sumc =

where cube x = ...

by7 x = ...

> sumc [7]

343

> sumc [7,14]

2

3087

> sumc [7,8,14]

3087

Note: In this case, I want the definition of sumc to look exactly as above.

3 B: Pixel Displays

Pixel displays are seen on busses, in airports, in shop windows, etc. They are often made up of rows of LEDs
(Light Emitting Diodes), and display their messages rotating, scrolling, flashing, etc.

To get an idea of what a pixel display looks like, download the files pixels1.txt,· · ·,pixels5.txt and
view.icn from the course web-site: http://www.cs.arizona.edu/~collberg/Teaching/372/2005/Assignments.
Then do the following:

> icont view.icn

> view pixels1.txt 30 100

> view pixels2.txt 30 100

...

The pixels*.txt-files show how a text should scroll, invert, etc. The view program is an Icon program that
simulates a pixel display. It takes a pixels*.txt file as input as well as two parameters delay and repeat

which sets the delay (in micro-seconds) and the number of times to repeat, respectively.

The display will look something like this:

In this assignment you will write a Haskell program that takes a specification for how a text should be
scrolled, etc, as input and produces a pixels*.txt file as output.

3.1 Templates

To start off, you can pick up a Haskell template ass3B-template.hs from http://www.cs.arizona.edu/
~collberg/Teaching/372/2005/Assignments. It contains, among other things, a function main s ops
that takes two arguments: a string s to be displayed and a list of functions ops (for scrolling, inverting, etc)
to be applied to the display. main will produce a string showing how the display is updated at each step.
Here’s an example where main produces a pixel display for the string "BUG", and then rotates it left twice:

3

? main "BUG" [left,left]

**** * * *****

* * * * *

* * * * *

**** * * *

* * * * * **

* * * * * *

**** *** *****

*** * * ***** *

* * * * *

* * * * *

*** * * * *

* * * * ** *

* * * * * *

*** *** ***** *

** * * ***** **

* * * * *

* * * * *

** * * * **

* * * * ** *

* * * * * *

** *** ***** **

Your task is to fill in the missing function definitions in the template.

3.2 Fonts

We start out be defining a type Pixels, which is a list of String, or, equivalently, a list of lists of Chars.
Objects of type Pixels will be used to build up our display.

type Pixels = [String]

Next, we define the “font”-description which gives the layout of each character of the alphabet:

font :: Char -> Pixels

font ’A’ = [" *** ",

"* *",

"* *",

"*****",

"* *",

"* *",

"* *"]

font ’B’ = ["**** ",

"* *",

"* *",

"**** ",

"* *",

"* *",

"**** "]

font ’ ’ = [" ",

" ",

" ",

" ",

" ",

" ",

" "]

An asterisk (’*’) represents a black pixel, and a blank (’ ’) represents a white. An incomplete font definition
(upper case characters only) can be found in the template.

4

3.3 Printing Pixels [10 points]

Our Haskell program will communicate with the display unit itself via text files. We therefore need to be
able to convert the pixel representation into the equivalent strings. pixelsToString converts a Pixel-object
[s1, s2, · · · , sn] (a list of Strings) to a string by appending s1, · · · , sn together with newlines (\n) in between:
"s1\ns2\n · · · \nsn\". Here is an example:

> pixelsToString (font ’A’)

" *** \n* *\n* *\n*****\n* *\n* *\n* *\n\n"

> putStr (pixelsToString (font ’A’))

* *

* *

* *

* *

* *

The function pixelListToString is similar. It takes a list of Pixels as argument, converts each argument
to a string (using pixelsToString), and then appends the strings together with an extra newline in between:

> pixelListToString [font ’A’, font ’B’]

" *** \n* *\n* *\n*****\n* *\n* *\n* *\n\n

\n**** \n* *\n* *\n**** \n* *\n* *\n**** \n\n\n\n"

> putStr (pixelListToString [font ’A’, font ’B’])

* *

* *

* *

* *

* *

* *

* *

* *

* *

(NOTE: In the first command above I had to split the result over two lines not to exceed the line length of
this page. Your function would put all its result on one line.)

5

Give definitions of pixelsToString and pixelListToString according to the signatures and examples
below. For clarity, the function results are given twice: both the way they will be printed on the screen
(left) and with newlines and spaces explicit (right). Remember that your function definitions should not use
recursion, just higher-order functions such as foldr, foldl, zip, map, etc.

3.4 Appending Pixels [10 points]

Next, we need to define operations to compose larger pixel displays from smaller ones. We start by defining
an operation appendPixels xs ys which puts two pixels-objects together horizontally:

appendPixels :: Pixels -> Pixels -> Pixels

pixelsToString(appendPixels(font ’A’)(font ’B’)) appendPixels(font ’A’)(font ’B’)

*** ****

* ** *

* ** *

* ** *

* ** *

* *****

[" *** **** ",

"* ** *",

"* ** *",

"********* ",

"* ** *",

"* ** *",

"* ***** "]

The concatPixels function is similar to appendPixels but takes a list of Pixels as argument. The
messageToPixels function (which has already been defined for you), finally, converts a message (a string
of uppercase letters) into a pixel object, inserting an extra space between each character. Here are the
signatures and some examples:

concatPixels :: [Pixels] -> Pixels messageToPixels :: String -> Pixels

pixelsToString(concatPixels[font ’A’,font ’B’]) pixelsToString(messageToPixels "BUG")
*** ****

* ** *

* ** *

* ** *

* ** *

* *****

**** * * *****

* * * * *

* * * * *

**** * * *

* * * * * **

* * * * * *

**** *** *****

3.5 Pixel Operations [15 points]

Next, we define the operations we want to be able to perform on the display. The most common operations
are rotation (left, right, up, and down) and inversion (changing all white pixels to black and vice versa).
We can also flip a picture upside-down, or turn it backwards. For example, here are the results of rotating
the character ’A’ up two pixels, rotating the character ’B’ left one pixel, flipping an ’A’ upside-down, and
turning a ’B’ backwards:

6

pixelsToString (up (up (font ’A’))) pixelsToString (left (font ’B’))
* *

* *

* *

* *

* *

*** *

**

**

*** *

**

**

*** *
pixelsToString (upsideDown (font ’A’)) pixelsToString (backwards (font ’B’))

* *

* *

* *

* *

* *

* *

* *

* *

* *

All pixel operations have the type Pixels -> Pixels:

type PixelOp = Pixels -> Pixels

up, down, left, right, invert, upsideDown, backwards :: PixelOp

i.e. they convert Pixels into Pixels. Your task is to provide non-recursive definitions of invert, up,

down, left, right, upsideDown, and backwards. It is suggested that you use the functions map, ++,

init, last, head, tail, and reverse from the standard prelude.

3.6 Main Functions [10 points]

Now we’re ready to put it all together. The function main s fs defined below takes two arguments as input:
a string s to be displayed and a list of functions fs to be applied to the display. mainFile performs the
same operation as main but writes the result to a file.

main :: String -> [PixelOp] -> String

main s fs = pixelListToString (appColl (messageToPixels s) (id:fs))

mainFile :: String -> String -> [PixelOp] -> Dialogue

mainFile file s fs = writeFile file (main s fs) abort done

All that’s left (for you) to do is to provide a definition of the apply-collect-function appColl pixels ops

function. It takes two arguments: the first argument is the pixel-object to be manipulated, the second
argument is a list of operations (such as invert, up, down, etc.) that are to be applied to the object.
The result is a list of Pixels representing all the updates that have to be performed on the display. Hence,
appColl is a higher-order function with this signature:

appColl :: Pixels -> [PixelOp] -> [Pixels]

appColl pixels ops = · · ·

We can express the functionality of appColl a bit more formally like this:

7

appColl p [f1, · · · , fn] = [

f1 p,

f2(f1 p),
f3(f2(f1 p)),

· · ·
fn(fn−1(· · · (f2(f1 p)) · · ·))

]

As a final example, assume that we’re starting out with a pixel-object p. We can then use appColl to
compute the result (and all intermediate results) of scrolling to the left twice, and up once:

appColl p [left,left,up] ⇒ [left p, left(left p), up(left(left p))]

You may use recursion to define appColl.

3.7 Application [5 points]

Write a 0-argument function cool that displays a message (such as your name) using a combination of
effects. Feel free to implement your own special effects, in addition to the ones (up, invert, etc.) we’ve
already defined.

4 Submission and Assessment

The deadline for this assignment is noon, Wed Oct 12. It is worth 8% of your final grade.

You should submit the assignment electronically using the Unix command

turnin cs372.3 ass3A.hs ass3B.hs TEAM .

Don’t show your code to anyone, don’t read anyone else’s code, don’t discuss the details of

your code with anyone. If you need help with the assignment see the instructor or the TA.

8

