
University of Arizona, Department of Computer Science

CSc 372 — Assignment 8 — Due midnight, Wed Dec 7 — 10%

Christian Collberg
November 30, 2005

1 Introduction

The purpose of this assignment is improve your Icon programming skills. In particular, you will be using
Icon tables, lists, and sets, and do parsing with Icon’s string scanning procedures.

The program you will build will display arbitrary undirected graphs in a “nice” way using an iterative
algorithm. Graphs are common in many applications which makes such graph drawing programs very
useful. See, for example, http://www.graphviz.org which is installed on lectura as the dot program.

We will be grading on correctness and style. Every procedure should be adequately formatted and docu-
mented.

This assignment can be worked in teams of two.

2 A Graph Module [30 points]

The first step is to create a module graph.icn which will allow us to create new graphs. It has routines
for creating an empty graph, adding nodes to this graph, traversing the nodes and edges of the graph, and
printing it out. The routines that you need to implement are:

record GRAPH(nodes, edges)

procedure graph_create(n)

procedure graph_nodecount(g)

procedure graph_nodes(g)

procedure graph_edges(g, v)

procedure graph_addedge(g, u, v)

procedure graph_show(g)

Here is how you would use these routines to create a new graph:

g1 := graph_create(5)

graph_addedge(g1, 1, 2)

graph_addedge(g1, 2, 3)

graph_addedge(g1, 3, 4)

graph_addedge(g1, 4, 5)

1

Here’s how you’d get the number of nodes, traverse the nodes and edges, and print out the graph:

write("Number of nodes: ", graph_nodecount(g1));

write("Outgoing edges from node 2:")

every i := graph_edges(g1, 1) do writes(" ", i)

write("\nNodes:")

every i := graph_nodes(g1) do writes(" ", i)

write("")

graph_show(g1)

g6 := graph_read("g2.gdl")

graph_show(g6)

This testing code can be found in the file testgraph.icn, and the output should look like this:

> testgraph

Number of nodes: 5

Outgoing edges from node 2:

2

Nodes:

1 2 3 4 5

1: 2

2: 1 3

3: 2 4

4: 3 5

5: 4

Graph read from g2.gdl:

1: 2 3

2: 1 3

3: 1 2

graph read(file) reads a graph from a file in the following format:

3

1--2

1--3

2--3

The first number is the number of nodes. On subsequent lines the edges are listed, one per line. graph read(file)

should be implemented using Icon’s string scanning functions.

The graph should be represented as a record

record GRAPH(nodes, edges)

where nodes is simply a list of the nodes [1, 2, . . . , n]. edges is a table indexed by node number. For
every node i, edges[i] is a set of the outgoing edges from i. For example, if the graph contains the edges
1→ 2, 1→ 3, then edges[i] should be the set {2, 3}.

2

A template file graph.icn will be provided for you. The comments give more details with respect to
implementation and error handling.

3 A Graph Generation Module [30 points]

To have something cool to display, we next write the module graphgen.icn which generates common graph
types. We write routines to generate list, cycle, star, complete, and binary tree graphs. The list graph
routine has been give to you, the rest you have to write yourselves:

A simple link graph where every node n is connected

to node n+1.

procedure graphgen_List(n)

local g

g := graph_create(n)

every i := 1 to n-1 do

graph_addedge(g, i, i+1)

return g

end

A cycle graph where every node n is connected

to node n+1, and the last node is connected to

the first.

procedure graphgen_Cycle(n)

A star graph where node number 1 is connected to

every other node.

procedure graphgen_Star(n)

A complete graph where every node is connected to

every other node.

procedure graphgen_K(n)

A binary tree graph where every node n is connected

to nodes 2n and 2n+1, provided these exist.

procedure graphgen_BinTree(n)

There’s a test program testgraphgen.icn given to you that prints out each graph type:

write("\nList graph:")

g1 := graphgen_List(5)

graph_show(g1)

write("\nCycle graph:")

g2 := graphgen_Cycle(5)

graph_show(g2)

write("\nStar graph:")

3

g3 := graphgen_Star(5)

graph_show(g3)

write("\nK(5) graph:")

g4 := graphgen_K(5)

graph_show(g4)

write("\nBinTree graph:")

g5 := graphgen_BinTree(5)

graph_show(g5)

The output should be like this:

> make testgraphgen

> testgraphgen

List graph:

1: 2

2: 1 3

3: 2 4

4: 3 5

5: 4

Cycle graph:

1: 2 5

2: 1 3

3: 2 4

4: 3 5

5: 1 4

Star graph:

1: 2 3 4 5

2: 1

3: 1

4: 1

5: 1

K(5) graph:

1: 1 2 3 4 5

2: 1 2 3 4 5

3: 1 2 3 4 5

4: 1 2 3 4 5

5: 1 2 3 4 5

BinTree graph:

1: 2 3

2: 1 4 5

3: 1

4: 2

5: 2

4

A template file graphgen.icn will be provided for you.

4 A Graph Drawing Module [40 points]

The final module is gdraw.icn which does the actual graph layout. It will be using the point.icn module
from the last assignment.

The basic idea of the algorithm can be seen from the main routine, which will be given to you:

procedure gdraw_layout(g, W, L, iters, tweak, delay)

local area, pos, disp, temperature, i

Make tweak global so we don’t have to carry it

around everywhere.

TWEAK := tweak

Will become smaller with each iteration so

that changes to the node positions will be

less and less.

temperature := W/10

Start with all nodes at random positions.

pos := point_randomList(graph_nodecount(g),W,L)

every i := 1 to iters do {

rdisp := gdraw_repulsiveForce(g, pos, W, L)

adisp := gdraw_attractiveForce(g, pos, W, L)

pos := gdraw_positionNodes(g, pos, rdisp, adisp, W, L, temperature)

temperature -:= W/10/iters

if delay>0 then

graph_draw(g, pos, W, L, delay)

}

return pos

end

The algorithm is iterative. It starts out by placing each node in a random position. In each iteration it
computes two forces acting on each node. These are given in the variables rdisp and adisp (both are lists
of POINTs, one per node). rdisp[i] is the repulsive force acting on node i. adisp[i] is the attractive

force acting on node i. Nodes that are attached with an edge attract each other. Nodes which are not
attached to each other try to push each other away. temperature gets smaller with each iteration, making
the movements of the nodes smaller and smaller, as they settle in on their final positions.

Your job is to implement the routines

procedure gdraw_repulsiveForce(g, pos, W, L)

procedure gdraw_attractiveForce(g, pos, W, L)

procedure gdraw_positionNodes(g, pos, rdisp, adisp, W, L, temp)

5

gdraw repulsiveForce(g, pos, W, L) takes the graph g and the current position pos as argument. pos

is a a list of POINTs, one per node, giving the current location of each node.disp is a a list of POINTs, one
per node, giving the current location of each node.

set dispv to (0,0) for all nodes v
for every node v do

for every node u 6= v do

∆← pos
v
− pos

u

∆normal ← normal(∆)
if ∆normal is < 0.01 set it to 0.01

disp
v
← disp

v
+ ∆/∆normal ∗ fr(g, W, L, ∆normal)

return disp

The normal routine is already implemented in the point module. fr is a “magic” function that is given to
you in gdraw.icn.

gdraw attractiveForce(g, pos, W, L) takes the same arguments and returns the same type of result as
gdraw repulsiveForce. Here’s the pseudo-code:

set dispv to (0,0) for all nodes v
for every node v do

for every edge (v, u) do

∆← pos
v
− pos

u

∆normal ← normal(∆)
if ∆normal is < 0.01 set it to 0.01

disp
v
← disp

v
−∆/∆normal ∗ fa(g, W, L, ∆normal)

disp
u
← disp

u
+ ∆/∆normal ∗ fa(g, W, L, ∆normal)

return disp

fa is another “magic” function that is given to you in gdraw.icn.

Finally, we’re implementing the function gdraw positionNodes(g, pos, rdisp, adisp, W, L, temp). It
takes the old position of the nodes pos and computes new ones, based on what gdraw repulsiveForce and
gdraw attractiveForce returned (rdisp and adisp). temp is the current “temperature” (how much we
want the nodes to move), a real number. Here’s the pseudo-code:

disp← rdisp+ adisp

for every node v do

posv ← pos
v

+ disp
v
/normal(disp

v
) ∗ temp

x← min(W/2, max(−W/2, pos
v
.x))

y ← min(L/2, max(−L/2, pos
v
.y))

pos
v
← (x, y)

return pos

The first line simply adds the results of gdraw repulsiveForce and gdraw attractiveForce together. (We
could tweak this, if we wanted to, by weighting the addition (multiplying adisp with some constant to make
the drawing prettier), but we won’t.) The two lines with min and max in them simply make sure that the
new x and y coordinates are inside the drawing window.

6

5 The Main Program

The main program has been written for you. It simply parses the command line, generates a graph (or reads
one from a file), and invokes the graph layout routine. Here is an example:

> main -g tree -n 10 -i 50 -d 0

-g tree -n 10 specifies to generate a binary tree with 10 nodes. -i 50 tells the program to run 50 iterations
and -d 0 to not display intermediate graphs. The result should look like this:

main -h will print out all options.

6 Submission and Assessment

The deadline for this assignment is midnight, Wed Dec 7. It is worth 10% of your final grade.

You should submit the assignment electronically using the Unix command

turnin cs372.8 point.icn graph.icn main.icn graphgen.icn gdraw.icn makefile README .

The README file should give the members of your team.

Don’t show your code to anyone, don’t read anyone else’s code, don’t discuss the details of

your code with anyone. If you need help with the assignment see the instructor or the TA.

7

