- E——— = > =

CSc 372

Compar ative Programming
L anguages
11 : Haskell — Higher-Order Functions

Christian Collberg

col I ber g+372@meai [. com

Department of Computer Science
University of Arizona

Copyright (© 2005 Christian Collberg

—Fall 2005 — 11 (1]

Higher-Order Functions

A function is Higher-Order if it takes a function as an
argument or returns one as its result.

Higher-order function aren’t weird; the differentiation
operation from high-school calculus is higher-order:

deriv :: (Float->Float)->Fl oat - >Fl oat
deriv f x = (f(x+dx) - f x)/0.0001

Many recursive functions share a similar structure. We
can capture such “recursive patterns” in a higher-order
function.

We can often avoid the use of explicit recursion by
using higher-order functions. This leads to functions
that are shorter, and easier to read and maintain.

372 —Fall 2005 — 11 [2]

Currying Revisit_e_o\l‘

We have already seen a number of higher-order
functions. In fact, any curried function is higher-order.
Why? Well, when a curried function is applied to one of
its arguments it returns a new function as the result.

Uh, what was this currying thing?

A curried function does not have to be applied to all its
arguments at once. We can supply some of the

arguments, thereby creating a new specialized function.

This function can, for example, be passed as argument
to a higher-order function.

1 A ‘~a rl

Currying Revisited_.j.

How is a curried function defined?
A curried function of n arguments (of types
ti,te,---,t,)that returns a value of type t is defined
like this:

fun :: t; ->tg -> ... ->t, ->1t

This is sort of like defining n different functions (one for
each - >). In fact, we could define these functions
explicitly, but that would be tedious:

fun; 11 tgo -> ... ->t, ->t
fun, as---a, = ---
fung :: tg -> ... ->t, ->t

fun2 ag---a, = ---

g 1 A ‘~a ra1

collberg+372@gmail.com

Cu_rrying Revisited.j.

Duh, how about an example?

Certainly. Lets define a recursive function get _nth n
xS which returns the n:th element from the list xs:

get nth 1 (x:) =X
get_ nth n (_.xs) = get_nth (n-1) xs

get _.nth 10 "Bart hol onew' = e

#® Now, let’'s use get _nt h to define functions
get second, get .t hird, get fourth, and
get fi fth, without using explicit recursion:

get second = get nth 2| get fourth = get nth 4
get third = get nth 3|get fifth = get nth 5

—Fall 2005 — 11 (5]

Cu_rrying Revisited.j.

get fifth "Barthol omew' = ’'h’

map (get_nth 3)
[Ilrmbll’llseall’lltarll’ll bat Il] :
"bart"
So, what'’s the type of get _second?

® Remember the Rule of Cancellation?
® Thetypeofget nthisint -> [a] -> a.

#® get second applies get _nt h to one argument. So, to
get the type of get _second we need to cancel
get nth'sfirsttype: I'it\ -> [a] -> a=[a] -> a.

372 —Fall 2005 — 11 [6]

Patterns of Computation

Mappings
» Apply a function f to the elements of a list L to make a

new list L’. Example: Double the elements of an integer
list.

Selections

» Extract those elements from a list L that satisfy a
predicate p into a new list L’. Example: Extract the even
elements from an integer list.

Folds

#® Combine the elements of a list L into a single element
using a binary function f. Example: Sum up the
elements in an integer list.

— N = r-1

The map Fur\jctio_r‘\&

» nmap takes two arguments, a function and a list. map
creates a new list by applying the function to each
element of the input list.

map’s first argument is a function of type a -> b. The
second argument is a list of type [a] . The result is a list
of type [b] .

mp :: (a->Db) ->[a] ->[Db]
map f [] =[]
map f (Xx:xs) =f x: mp f xs

#® We can check the type of an object using the : t ype
command. Example: : t ype nap.

— N = P rol

The map Func\‘tioni.‘:

mep :: (a->Db) ->[a] ->[b]
mpf [] =11
map f (x:xs)=f x : map f xs i nc [1.2,3, 4]
inc X = x + 1 \/
map inc [1,2,3,4 = [2, 3,4,5] ¢

[inc 1,inc 2,inc 3,inc 4

[2,3,4,5]

—Fall 2005 — 11 [9]

The map Func\‘tioni.‘:

mp :: (a->0b) ->[a] ->[b]
map f [] =[]
map f (Xx:xs) =f x: mp f xs

mapf[]1=[] means: “The result of applying the function f to
the elements of an empty list is the empty list.”

map f (x:xs) =fx: mapfxs means: “applying f to the list
(x: xs) is the same as applying f to x (the first

element of the list), then applying f to the list xs, and
then combining the results.”

372 —Fall 2005 — 11 [10]

The map Func\‘tioni.‘:

Simulation:
map square [5,6] =
square 5 : map square [6] =
25 . map square [6] =
25 : (square 6 : map square []) =
25 : (36 : map square []) =
25 : (36 : []) =
25 . [36] =
[25, 36]

Thef Il ter Functjgn

— N = P MM11

» Filter takes a predicate p and a list L as arguments. It
returns a list L’ consisting of those elements from L that

satisfy p.

The predicate p should have the type a - > Bool ,
where a is the type of the list elements.

Examples:
filter even [1..10] = [2,4,6,8,10]
filter even (map square [2..5]) =
filter even [4,9, 16, 25] = [4, 16]
filter gt10 [2,5,9, 11, 23, 114]
where gt10 x = x > 10 = [11, 23, 114]

N~ — N = P Mo

Thefilter Function...

#® We can define fi | t er using either recursion or list
comprehension.

Using recursion:

filter :: (a ->Bool) ->[a] -> [a]
filter - [] =[]
filter p (x:xs)
| p X =x: filter p xs
| otherwse = filter p xs
Using list comprehension:
filter :: (a ->Bool) ->[a] ->[a]

filter p xs =[x | x <- xs, p X]

—Fall 2005 — 11 [13]

Thefilter Function...

filter :: (a->Bool)->[a]->[a]
filter - [] =11
filter p (X:Xs) even

| px =x: filter p xs \ /

| otherwise = filter p xs

even 1, even 2,
even 3, even 4]

filter even [1,2,3,4] = [2,4]

[Fal se, True,
Fal se, True]

[2,4]

372 —Fall 2005 — 11 [14]

Thefilter Function...

doubl ePos doubles the positive integers in a list.

getEven :: [Int] -> [Int]
get Even xs = filter even xs
doublePos :: [Int] -> [Int]
doubl ePos xs = map dbl (filter pos xs)
where dbl x = 2 * x
pos x = x >0
Simulations:

get Even [1,2,3] = [2]

doubl ePos [1,2,3,4] =
map dbl (filter pos [1,2,3,4]) =
map dbl [2,4] = [4, 8]

— N = Mci

‘_f ol d Funct‘ionsw

A common operation is to combine the elements of a
list into one element. Such operations are called
reductions or accumulations.

Examples:
sum|[1,2,3,4,5] =
(1+(2+(3+(4+(5+0))))) =15
concat ["H',"i","!"] =
("H" ++ ("1 A+ ("I ")) = "HILT

»® Notice how similar these operations are. They both
combine the elements in a list using some binary
operator (+, ++), starting out with a “seed” value (0,

"y

N~ — N = P Moel

[1,2,3,4]

@~ — = =

f_oI d Functiqns.

» Haskell provides a function f ol dr (“fold right”) which
captures this pattern of computation.

» fol dr takes three arguments: a function, a seed value,
and a list.

Examples:

foldr (+) 0[1,2,3,4,5] = 15
foldr (++) "™ ["H","i","I"] = "H!"

foldr:
foldr :: (a->b->b) ->b ->Ja] ->b
foldr f z [] =z
foldr f z (x:xs) =1 x (foldr f z xs)
—Fall 2005 — 11 (17]

f_oI d Functiqns.

Note how the fold process is started by combining the
last element x,, with z. Hence the name seed.

foldr(®)z[x1 - Xn]=X1® X2® (- (X5, ®2))))

Several functions in the standard prelude are defined
using f ol dr:

and,or :: [Bool] -> Bool

and xs = foldr (&&) True xs

or xs = foldr (||) False xs

? or [True, Fal se, Fal se] =
foldr (||) False [True, Fal se, Fal se] =
True || (False || (False || False)) = True

372 —Fall 2005 — 11 [18]

f_oI d Functiqns.

Remember that f ol dr binds from the right:

foldr (+) 0[1,2,3] = (1+(2+(3+0)))

® There is another function f ol dl that binds from the left:

foldl (+) 01[1,2,3] = (((0+1)+2)+3)
In general:

foldl (®)z[X1 - Xpn]=(((Z®X1) BX2) D+ DXp)

— N = P Maol

f_oI d Functiqns.

Inthe case of (+) and many other functions
foldl (®)z[x;---x,] = foldr(®)z[xy---Xy]

» However, one version may be more efficient than the
other.

N~ — N = P mnl

fwol d Functipns.

@ @
PN L
x1 /69\ g \
® Ln
2 @ / ~—
— \\\ D T3
T3 \@ / \
N I
foldr & z [z1---zn] foldl @& z [z1--- 4]

—Fall 2005 — 11 [21]

Operator Sections

#® We've already seen that it is possible to use operators
to construct new functions:

(*2) - function that doubles its argument
(>2) - function that returns Tr ue for numbers > 2.

Such partially applied operators are know as operator
sections. There are two kinds:

QD
—
O

= b op a
4 * 2 =8
4 > 2 = True
" Bart" ++ n \nll

(op

(*2) 4
(>2) 4
(++ n \nll) n Bar t n

372 —Fall 2005 — 11 [22]

Operator Sections...

(aop) b=aophb
(3:) [1,2] =3: [1,21=183,1,2]
(0<) 5 =0<5 = True
(1/) = 1/5
Examples:

(+1) - The successor function.
(/2) — The halving function.

(:[1) - The function that turns an element into a singleton
list.

More Examples:

? filter (0<) (map (+1) [-2,-1,0,1])
[1,2]

— N = P Hnl

t akeVhi | e & dropWhi l e

» We've looked at the list-breaking functions dr op &
t ake:
take 2 ["a’,’ b’ ,’C’
b

c'] =["a, b]
drop 2 ['a ,’b,'¢c] = |

o]

» takeWhil e and dr opWhi | e are higher-order
list-breaking functions. They take/drop elements from a
list while a predicate is true.

takeWiile even [2,4,6,5,7,4,1] =
[2, 4, 6]

dropWile even [2,4,6,5,7,4,1] =
[5,7,4,1]

N~ — N = P mal

takeWii |l e & dr QpV\h‘i*I e... takeWii |l e & dr QpV\h‘i*I e...

takeWhile :: (a->Bool) ->[a] -> [4] # Remove initial/final blanks from a string:
takeWhile p [] =1]
takeWhile p (Xx:xs) dropWhile ((==) ') "___H!" =
| p x = x : takeWile p xs THT
| otherwise = []
takeWhile ((/=) ') "H!'__" =
dropWiile :: (a->Bool) -> [a] -> [a] HT

dropWile p [] =1 1
dropWiile p (x:xs)

| p x = dropWile p xs
| otherw se = x:Xxs
—Fall 2005 — 11 [25] 372 —Fall 2005 — 11 [26]
Summary Summary. ..

Higher-order functions take functions as arguments, or
return a function as the result.

The standard prelude contains many useful
higher-order functions:

We can form a new function by applying a curried map fxs creates a new list by applying the function f to

function to some (but not all) of its arguments. This is
called partial application.

Operator sections are partially applied infix operators.

O AN ‘~a 71

N~

every element of a list xs.

filter p xs creates a new list by selecting only those
elements from xs that satisfy the predicate p (i.e. (p
x) should return Tr ue).

foldrfzxs reduces a list xs down to one element, by
applying the binary function f to successive
elements, starting from the right.

scanl/scanr fz xs perform the same functions as
fol dr/fol dl, butinstead of returning only the
ultimate value they return a list of all intermediate
results.

1 A ‘~a ol

Homework

Homework (a):
Define the map function using a list comprehension.

Template:
Homework (b):

#® Use map to define a function | engt hal | xss which
takes a list of strings xss as argument and returns a list
of their lengths as result.

Homework

1. Give a accumulative recursive definition of f ol dlI .
2. Define the m ni mum xs function using f ol dr .

3. Define a function sunsq n that returns the sum of the
squares of the numbers [1---n]|. Use map and f ol dr.

4. What does the function nyst er y below do?
nystery xs =

foldr (++) [] (map sing xs)
sing x = [X]

Examples:
Examples: mnimm[3,4,1,56,3] = 1
? lengthall ["Ay", "Caranba!"]
[2, 8]
—Fall 2005 — 11 [29] 372 —Fall 2005 — 11 [30]
Homework. .. Homewor k

Define a function zi pp f xs ys that takes a function
f and two lists xs=[X1, -+ ,X,] andys=[yq,---,Y,]
as argument, and returns the list
[f X1 yq1,---,f X, y,] asresult.

|[f the lists are of unequal length, an error should be
returned.

Examples:
ipp (+) [1,2,3] [4,5,6] = [5,7,9]

ipp (==) [1,2,3] [4,2,2] = [False, True, True]

ipp (==) [1,2,3] [4 2] = ERROR

— N = P 11

» DefineafunctionfilterFirst p xs thatremoves
the first element of xs that does not have the property

P.

Example:

filterFirst even [2,4,6,5,6,8,7] =
[2,4,6,6,8,7]

® UsefilterFirst todefineafunctionfilterLast p
xs that removes the last occurence of an element of xs
without the property p.

Example:

filterLast even [2,4,6,5,6,8,7] =
[2,4,6,5,6, 8]

N~ — N = ol

	Higher-Order Functions
	Currying Revisited
	Currying Revisitedldots
	Currying Revisitedldots
	Currying Revisitedldots
	Patterns of Computation
	The {	t map} Function
	The {	t map} Functionldots
	The {	t map} Functionldots
	The {	t map} Functionldots
	The {	t filter} Function
	The {	t filter} Functionldots
	The {	t filter} Functionldots
	The {	t filter} Functionldots
	{	t fold} Functions
	{	t fold} Functionsldots
	{	t fold} Functionsldots
	{	t fold} Functionsldots
	{	t fold} Functionsldots
	{	t fold} Functionsldots
	Operator Sections
	Operator Sectionsldots
	{	t takeWhile} & {	t dropWhile}
	{	t takeWhile} & {	t dropWhile}ldots
	{	t takeWhile} & {	t dropWhile}ldots
	Summary
	Summaryldots
	Homework
	Homework
	Homeworkldots
	Homework

