CSc 372

Comparative Programming Languages

11: Haskell - Higher-Order Functions

Christian Collberg
col1berg+372egmail.com

Department of Computer Science
University of Arizona

Copyright © 2005 Christian Collberg
-Fall 2005 - 11
[1]

- A function is Higher-Order if it takes a function as an argument or returns one as its result.
- Higher-order function aren't weird; the differentiation operation from high-school calculus is higher-order:

```
deriv :: (Float->Float) ->Float->Float
deriv f x = (f (x+dx) - f x)/0.0001
```

- Many recursive functions share a similar structure. We can capture such "recursive patterns" in a higher-order function.
- We can often avoid the use of explicit recursion by using higher-order functions. This leads to functions that are shorter, and easier to read and maintain.

372 -Fall 2005-11
[2]

Currying Revisited

- We have already seen a number of higher-order functions. In fact, any curried function is higher-order. Why? Well, when a curried function is applied to one of its arguments it returns a new function as the result.

> Uh, what was this currying thing?

- A curried function does not have to be applied to all its arguments at once. We can supply some of the arguments, thereby creating a new specialized function. This function can, for example, be passed as argument to a higher-order function.

Currying Revisited...

How is a curried function defined?

- A curried function of n arguments (of types $t_{1}, t_{2}, \cdots, t_{n}$) that returns a value of type t is defined like this:

```
fun :: }\mp@subsup{t}{1}{}-> t2 -> \cdots -> th -> 
```

- This is sort of like defining n different functions (one for each ->). In fact, we could define these functions explicitly, but that would be tedious:


```
fun}1\mp@subsup{a}{2}{}\cdots\mp@subsup{a}{n}{}=
fun2 :: tr c> m -> th -> t
fun}2\mp@subsup{a}{3}{}\mp@subsup{a}{3}{}\cdots\mp@subsup{a}{n}{}=
```


Currying Revisited.

Currying Revisited.

Duh, how about an example?

- Certainly. Lets define a recursive function get_nth n xs which returns the n :th element from the list xs :

```
get_nth 1 (x:_) = x
get_nth n (_:xs) = get_nth (n-1) xs
```

get_nth 10 "Bartholomew" \Rightarrow 'e'

- Now, let's use get_nth to define functions get_second, get_third, get_fourth, and get_fifth, without using explicit recursion:

```
get_second = get_nth 2 |get_fourth = get_nth 4
get_third = get_nth 3 get_fifth = get_nth 5
-Fall 2005 - 11
```


Patterns of Computation

Mappings

- Apply a function f to the elements of a list L to make a new list L^{\prime}. Example: Double the elements of an integer list.

Selections

- Extract those elements from a list L that satisfy a predicate p into a new list L^{\prime}. Example: Extract the even elements from an integer list.

> Folds

- Combine the elements of a list L into a single element using a binary function f. Example: Sum up the elements in an integer list.

```
get_fifth "Bartholomew" => 'h'
map (get_nth 3)
    ["mob","sea","tar","bat"] =
    "bart"
So, what's the type of get_second?
```

- Remember the Rule of Cancellation?
- The type of get_nth is Int -> [a] -> a.
- get_second applies get_nth to one argument. So, to get the type of get_second we need to cancel get_nth's first type: Iht| -> [a] -> $a \equiv[a] ~->~ a . ~$

372 -Fall 2005 - 11
[6]

The map Function

- map takes two arguments, a function and a list. map creates a new list by applying the function to each element of the input list.
- map's first argument is a function of type a -> b. The second argument is a list of type [a]. The result is a list of type [b].

```
map :: (a -> b) -> [a] -> [b]
map f [ ] = [ ]
map f (x:xs) = f x : map f xs
```

- We can check the type of an object using the : type command. Example: :type map.

```
map :: (a -> b) -> [a] -> [b]
map f [ ] = [ ]
map f (x:xs) = f x : map f xs
```

map $f[$] $=[$] means: "The result of applying the function f to the elements of an empty list is the empty list."
map $f(x: x s)=f x$: map $f x$ s means: "applying f to the list ($x: x s$) is the same as applying f to x (the first element of the list), then applying f to the list xs , and then combining the results."

The map Function. .

```
                Simulation:
map square [5,6] #
    square 5 : map square [6] #
    25 : map square [6] #
        25 : (square 6 : map square [ ]) #
        25 : (36 : map square [ ]) =>
            25 : (36 : [ ]) =>
        25 : [36] }
    [25,36]
```


The filter Function

- Filter takes a predicate p and a list L as arguments. It returns a list L^{\prime} consisting of those elements from L that satisfy p.
- The predicate p should have the type a -> Bool, where a is the type of the list elements.

```
                                    Examples:
filter even [1..10] }=>[2,4,6,8,10
filter even (map square [2..5]) }
    filter even [4,9,16,25] }=>\mathrm{ [4,16]
filter gt10 [2,5,9,11,23,114]
    where gt10 x = x > 10 }=> [11,23,114
```


The filter Function.

The filter Function.

- We can define filter using either recursion or list comprehension.

Using recursion:

```
filter :: (a -> Bool) -> [a] -> [a]
filter - [] = []
filter p (x:xs)
    p x = x : filter p xs
    otherwise = filter p xs
        Using list comprehension:
filter :: (a -> Bool) -> [a] -> [a]
filter p xs = [x | x <- xs, p x]
```

—Fall 2005 - 11

- doublePos doubles the positive integers in a list.

```
getEven :: [Int] -> [Int]
getEven xs = filter even xs
doublePos :: [Int] -> [Int]
doublePos xs = map dbl (filter pos xs)
    where dbl x = 2 * x
                        pos x = x > 0
```

 Simulations:
 getEven $[1,2,3] \Rightarrow[2]$
doublePos $[1,2,3,4] \Rightarrow$
map dbl (filter pos $[1,2,3,4]) \Rightarrow$
map dbl $[2,4] \Rightarrow[4,8]$
filter :: (a->Bool)->[a]->[a]
filter - [] = []
filter p (x:xs)
$\mathrm{p} x=\mathrm{x}$: filter p xs
otherwise $=$ filter p xs
filter even $[1,2,3,4] \Rightarrow[2,4]$

372 -Fall 2005-11
[14]

fold Functions

- A common operation is to combine the elements of a list into one element. Such operations are called reductions or accumulations.

```
Examples:
sum [1,2,3,4,5] \equiv
        (1+(2+(3+(4+(5+0))))) =>15
concat ["H","i","!"] \equiv
    ("H" ++ ("i" ++ ("!" ++ ""))) = "Hi!"
```

- Notice how similar these operations are. They both combine the elements in a list using some binary operator (+, ++), starting out with a "seed" value (0 , " ").
- Haskell provides a function foldr ("fold right") which captures this pattern of computation.
- foldr takes three arguments: a function, a seed value, and a list.

Examples:

- Note how the fold process is started by combining the last element x_{n} with z . Hence the name seed.

$$
\text { foldr }(\oplus) \mathrm{z}\left[\mathrm{x}_{1} \cdots \mathrm{x}_{n}\right]=\left(\mathrm{x}_{1} \oplus\left(\mathrm{x}_{2} \oplus\left(\cdots\left(\mathrm{x}_{n} \oplus \mathrm{z}\right)\right)\right)\right)
$$

- Several functions in the standard prelude are defined using foldr:
and,or : $: \quad$ Bool] $->$ Bool
and xs $=$ foldr $(\& \&)$ True xs
or xs $=$ foldr $(\| \mid)$ False xs
? or [True,False,False] \Rightarrow
\quad foldr $(|\mid)$ False [True,False,False] \Rightarrow
\quad True $|\mid$ (False $| \mid$ (False || False)) \Rightarrow True
and,or : $: \quad$ Bool] $->$ Bool
and xs $=$ foldr $(\& \&)$ True xs
or xs $=$ foldr $(\| \mid)$ False xs
? or [True,False,False] \Rightarrow
\quad foldr $(|\mid)$ False [True,False,False] \Rightarrow
\quad True $|\mid$ (False $| \mid$ (False || False)) \Rightarrow True
and,or : $: \quad$ Bool] $->$ Bool
and xs $=$ foldr $(\& \&)$ True xs
or xs $=$ foldr $(\| \mid)$ False xs
? or [True,False,False] \Rightarrow
\quad foldr $(|\mid)$ False [True,False,False] \Rightarrow
\quad True $|\mid$ (False $| \mid$ (False || False)) \Rightarrow True
and,or : $: \quad$ Bool] $->$ Bool
and xs $=$ foldr $(\& \&)$ True xs
or xs $=$ foldr $(\| \mid)$ False xs
? or [True,False,False] \Rightarrow
\quad foldr $(|\mid)$ False [True,False,False] \Rightarrow
\quad True $|\mid$ (False $| \mid$ (False || False)) \Rightarrow True
and,or : $: \quad$ Bool] $->$ Bool
and xs $=$ foldr $(\& \&)$ True xs
or xs $=$ foldr $(\| \mid)$ False xs
? or [True,False,False] \Rightarrow
\quad foldr $(|\mid)$ False [True,False,False] \Rightarrow
\quad True $|\mid$ (False $| \mid$ (False || False)) \Rightarrow True
372 -Fall 2005-11
[18]

fold Functions...

- Remember that foldr binds from the right:
- In the case of (+) and many other functions

$$
\text { foldl }(\oplus) \mathrm{z}\left[\mathrm{x}_{1} \cdots \mathrm{x}_{n}\right]=\text { foldr }(\oplus) \mathrm{z}\left[\mathrm{x}_{1} \cdots \mathrm{x}_{n}\right]
$$

- However, one version may be more efficient than the other.

foldr $\oplus \mathrm{z}\left[x_{1} \cdots x_{n}\right]$

- We've already seen that it is possible to use operators to construct new functions:
(*2) - function that doubles its argument
(>2) - function that returns True for numbers >2.
- Such partially applied operators are know as operator sections. There are two kinds:
(*2) 4
$\binom{$ op a) $b=b}{=4 * 2=8}$
(>2) $4=4>2=$ True
(++ "\n") "Bart" = "Bart" ++ "\n"
372 -Fall 2005-11
[22]
takeWhile \& dropWhile
- We've looked at the list-breaking functions drop \& take:
take 2 ['a', ' $\left.b^{\prime}, c^{\prime} c^{\prime}\right] \Rightarrow\left[{ }^{\prime} \mathrm{a}^{\prime},{ }^{\prime} \mathrm{b}^{\prime}\right]$
drop 2 ['a','b','c'] \Rightarrow ['c']
- takeWhile and dropWhile are higher-order list-breaking functions. They take/drop elements from a list while a predicate is true.

```
takeWhile even [2,4,6,5,7,4,1] }
    [2,4,6]
dropWhile even [2,4,6,5,7,4,1] }
    [5,7,4,1]
```

```
takeWhile :: (a->Bool) -> [a] -> [a]
takeWhile p [ ] = [ ]
takeWhile p (x:xs)
        p x = x : takeWhile p xs
        otherwise = [ ]
dropWhile :: (a->Bool) -> [a] -> [a]
dropWhile p [ ] = [ ]
dropWhile p (x:xs)
    p x = dropWhile p xs
    otherwise = x:xs
```

- Remove initial/final blanks from a string:

```
dropWhile ((==) '`') "'ьчьHi!" =
    "Hi!"
takeWhile ((/=) '`') "Hi!`七几" =
    "Hi!"
```

[26]

Summary

- Higher-order functions take functions as arguments, or return a function as the result.
- We can form a new function by applying a curried function to some (but not all) of its arguments. This is called partial application.
- Operator sections are partially applied infix operators.
- The standard prelude contains many useful higher-order functions:
map fxs creates a new list by applying the function f to every element of a list xs.
filter p xs creates a new list by selecting only those elements from x that satisfy the predicate p (i.e. (p x) should return True).
foldr $f z$ xs reduces a list xs down to one element, by applying the binary function f to successive elements, starting from the right.
scanl/scanr $f \mathrm{zxs}$ perform the same functions as foldr/foldl, but instead of returning only the ultimate value they return a list of all intermediate results.

Homework

Homework

Homework (a):

- Define the map function using a list comprehension.

- Use map to define a function lengthall xss which takes a list of strings xss as argument and returns a list of their lengths as result.

Examples:

```
? lengthall ["Ay", "Caramba!"]
    [2,8]
```


Homework...

- Define a function zipp f xs ys that takes a function f and two lists $\mathrm{xs}=\left[\mathrm{x}_{1}, \cdots, \mathrm{x}_{n}\right]$ and $\mathrm{ys}=\left[\mathrm{y}_{1}, \cdots, \mathrm{y}_{n}\right]$ as argument, and returns the list
[$f \mathrm{x}_{1} \mathrm{y}_{1}, \cdots, \mathrm{f} \mathrm{x}_{n} \mathrm{y}_{n}$] as result.
- If the lists are of unequal length, an error should be returned.

```
            Examples:
zipp \((+)[1,2,3][4,5,6] \Rightarrow[5,7,9]\)
zipp (==) [1, 2, 3] [4,2,2] \(\Rightarrow\) [False, True, True]
ipp (==) \([1,2,3][4,2] \Rightarrow\) ERROR
```

1. Give a accumulative recursive definition of foldl.
2. Define the minimum xs function using foldr.
3. Define a function sumsq n that returns the sum of the squares of the numbers $[1 \cdots n]$. Use map and foldr.
4. What does the function mystery below do?
```
mystery xs =
        foldr (++) [] (map sing xs)
sing x = [x]
minimum [3,4,1,5,6,3] # 巵
```

372 -Fall 2005 - 11
[30]

Homework

- Define a function filterFirst p xs that removes the first element of x s that does not have the property p .
filterFirst even $\frac{\text { Example: }}{[2,4,6,5,6,8,7] \Rightarrow} \Rightarrow$ $[2,4,6,6,8,7]$
- Use filterFirst to define a function filterLast p $x s$ that removes the last occurence of an element of $x s$ without the property p .

> Example:
filterLast even $[2,4,6,5,6,8,7] \Rightarrow$ $[2,4,6,5,6,8]$

