CSc 372
Compar ative Programming
L anguages
12 : Haskell — Composing Functions

Christian Collberg

col I ber g+372@meai [. com

Department of Computer Science

University of Arizona

Copyright (© 2005 Christian Collberg

—Fall 2005 — 12 (1]

Composing Functions

We want to discover frequently occurring patterns of
computation. These patterns are then made into (often
higher-order) functions which can be specialized and
combined.map f Landfilter f L can be specialized
and combined:

double :: [Int] -> [Int]

double xs = map ((*) 2) xs

positive :: [Int] -> [Int]
positive xs = filter ((<) 0) xs

doubl ePos xs = map ((*) 2) (filter ((<) 0) xs)
? doubl ePos [2,3,0,-1, 5]
[4, 6, 10]

372 —Fall 2005 — 12 [2]

Composing Functions....

Functional composition is a kind of “glue” that is used to
“stick” simple functions together to make more powerful
ones.

In mathematics the ring symbol (o) is used to compose
functions:

(fog)(x) = f(g(z))

» In Haskell we use the dot (". ") symbol:

infixr 9 .
(.) :: (b->c) -> (a->b) -> (a->c)
(f . 9(x) =f(a(x))

— N = A~ 1l

Composing Functions...

(.) :: (b->c) -> (a->b) -> (a->c)
(f . 9)(x) = f(a(x))
f .9
a |a b clc
9 f
»# "." takes two functions f and g as arguments, and

returns a new function h as result.
g is a function of type a- >b.
f is a function of type b- >c.
h is a function of type a- >c.

© o o b

(f.g)(x) isthe same as z=g(x) followed by f (z) .

N~ — N = A~ r1

collberg+372@gmail.com

Composing Functions...

#® We use functional composition to write functions more
concisely. These definitions are equivalent:

doit x =f1 (f2 (f3 (f4 x)))
doit x = (f2 . f2 . 3. f4) x
doit =f1 . f2. f3 . f4

The last form of doit is preferred. doi t 's arguments are
implicit; it has the same parameters as the composition.

doit can be used in higher-order functions (the second
form is preferred):

? map (doit) xs
? mp (f2 . f2 . 3. f4) xs

—Fall 2005 — 12 (5]

Example: Splitting Lin&e

#® Assume that we have a function fi | | that splits a
string into filled lines:

fill :: string -> [string]
fill s = splitLines (splitWrds s)

o fill first splits the string into words (using
spl i t Wor ds) and then into lines:

splitWrds :: string -> [word]
splitLines :: [word] -> [line]

We can rewrite fi | | using function composition:

fill = splitLines . splitWrds

372 —Fall 2005 — 12 [6]

Precedence & Associativity

1. "." isright associative. l.e.
f.g.h.i.j =f.(g.(h.(i.j)))
2. "." has higher precedence (binding power) than any

other operator, except function application:
5+f.g6 =5+ (f. (g 6))
3. "." is associative:
f . (g. h =(f. g . h
4. "id" is"."’sidentity element,iieid . f =f =f
I d:
id:: a->a

The count Functigp

#® Define a function count which counts the number of
lists of length » in a list L:

count 2 [[1],[],[2,3],[4,5].[]1] = 2
Using recursion:
count :: Int ->1[[a]] -> Int
count _[] =0
count n (X:XS)
| length x ==n = 1 + count n Xs
| otherw se = count n xs
Using functional composition:

count’ n = length . filter (==n)

map | ength

N~ — N = A~ rol

The_count FUUC“QQ;;-

Theinit & | ast Functions

unt’ n = length . filter (==n) map | ength # | ast returns the last element of a list.
init returns everything but the last element of a list.
- What does count’ do?
Definitions:
LAl 1. 12,3, 14,51, L] |l ast = head . reverse
¢ map | ength
[1,0,2,2,0] init = reverse . tail reverse
filter (==2) Simulations:
[2,2] (1,2 3]reverse[3 2, 11 hea head
¢ | ength S
2 [1’2’3]reverse[3 2, 1]t ail [2’1]reverse[1 2]
 Note that
count’ n xs =length (filter (==n) (map | ength xs))
—Fall 2005 — 12 [9] 372 —Fall 2005 — 12 [10]
Theany Function conmai nt Revisited. ..
® any p xsreturns True ifp x == True for some x in # Let’s have another look at one simple (!) function,
XS: commai nt .
conmmai nt works on strings, which are simply lists of
any ==)0) [1,2,3,0,5] = True characters.

((
any ((==)0) [1,2,3,4] = False
Using recursion:

any :: (a -> Bool) ->[a] -> Bool
any _ [] = Fal se
any p (x:xs) =] p x = True

| otherw se = any p xs
Using composition:

any p = or . mapp

[1,0,3 M (3

(53)0) [Fal se, True, Fal se] O True

— N = A~ M11

You are KoY now supposed to understand this!

From the conmai nt documentation:

[commai nt] takes a single string argument
containing a sequence of digits, and outputs the
same sequence with commas inserted after every
group of three digits, - - -

N~ — N = A~ Mo

cormai nt Rev|3|ted

Sample interaction:
commai nt "1234567"
1, 234, 567

conmei nt in Haskell:
maint = reverse . foldrl (\x y->x++","++y)
group 3 . reverse
where group n = takeWile (not.null)
map (take n).iterate (drop n)

—Fall 2005 — 12 [13]

cormai nt Rev|3|ted

"1234567"
¢ reverse
"7654321"
i iterate (drop 3) ?
['7654321","4321","1","","", ...] o
¢ map (take 3) u
p
['765","432","1",""",...]
takeWhile (not.null) 3
['765", "432", "1"]
¢ foldrl (\X y—>x++","++y)
"765,432,1"
Y reverse
"1,234,567"
372 —Fall 2005 — 12 [14]

cormai nt Rev|3|ted

mmai nt = reverse . foldrl (\x y->x++","++y)
group 3 . reverse
where group n = takeWile (not.null)
map (take n).iterate (drop n)

iterate (drop 3) s returns the infinite list of strings

[s, drop 3 s, drop 3 (drop 3 s),
drop 3 (drop 3 (drop 3 s)), ---]

map (take n) xss shortens the lists in xss to n
elements.

— N = A~ Mci

cormai nt Rev|3|ted

conmai nt = reverse . foldrl (\x y->x++","++y)
group 3 . reverse
where group n = takeWile (not.null)
map (take n).iterate (drop n)

o takeWiile (not.null) removes all empty strings
from a list of strings.

® foldrl (\x y->x++","++y) s takes a list of strings
s as input. It appends the strings together, inserting a
comma in between each pair of strings.

N~ — N = A~ Moel

Lambda Expron‘s

® (\x y->x++", " ++y) is called a lambda expression.

» Lambda expressions are simply a way of writing (short)
functions inline. Syntax:

\ argunents -> expression
#® Thus, commai nt could just as well have been written as

conmmaint = --. foldrl insert
where group n = ---
Insert x y = x++","++y
Examples:
squareAll xs = map (\ X -> X * X) XS
length = foldl’ (\n - ->n+1) O

—Fall 2005 — 12 [17]

Summary

The built-in operator " . " (pronounced “compose”)
takes two functions f and g as argument, and returns a
new function h as result.

The new functionh = f g combines the behavior
of f and g: applying h to an argument a is the same as
first applying g to a, and then applying f to this result.

» Operators can, of course, also be composed: ((+2)
(*3)) 3willreturn2 + (3 * 3) = 11.

372 —Fall 2005 — 12 [18]

Homework

® Write a function m d xs which returns the list xs
without its first and last element.

1. use recursion
2. useinit,tail,and functional composition.
3. usereverse,tail, and functional composition.

md[1,2 34,5 = [23,4]
md[] = ERROR
md[1] = ERROR
md[1,3] = []

N)) N

— N = A~ Maol

	Composing Functions
	Composing Functionsldots
	Composing Functionsldots
	Composing Functionsldots
	Example: Splitting Lines
	Precedence & Associativity
	The {	t count} Function
	The {	t count} Functionldots
	The {	t init} & {	t last} Functions
	The {	t any} Function
	{	t commaint} Revisitedldots
	{	t commaint} Revisitedldots
	{	t commaint} Revisitedldots
	{	t commaint} Revisitedldots
	{	t commaint} Revisitedldots
	Lambda Expressions
	Summary
	Homework

