List Comprehensions

CSc 372

Comparative Programming Languages

13 : Haskell — List Comprehension

Christian Collberg
col1berg+372egmail.com

Department of Computer Science
University of Arizona

Generator Qualifiers

- Generate a number of elements that can be used in the expression part of the list comprehension. Syntax:
pattern <- list_expr
- The pattern is often a simple variable. The list_expr is often an arithmetic sequence.
$[\mathrm{n} \mid \mathrm{n}<-[1 . .5]] \Rightarrow[1,2,3,4,5]$
$[\mathrm{n} * \mathrm{n} \mid \mathrm{n}<-[1 . .5]] \Rightarrow[1,4,9,16,25]$
$[(n, n * n) \mid n<-[1 . .3]] \Rightarrow[(1,1),(2,4),(3,9)]$
- Haskell has a notation called list comprehension (adapted from mathematics where it is used to construct sets) that is very convenient to describe certain kinds of lists. Syntax:
[expr | qualifier, qualifier, ...]
In English, this reads:
"Generate a list where the elements are of the form expr, such that the elements fulfill the conditions in the qualifiers."
- The expression can be any valid Haskell expression.
- The qualifiers can have three different forms: Generators, Filters, and Local Definitions.

Filter Qualifiers

- A filter is a boolean expression that removes elements that would otherwise have been included in the list comprehension. We often use a generator to produce a sequence of elements, and a filter to remove elements which are not needed.
$[n * n \mid n<-[1 . .9]$, even $n] \Rightarrow[4,16,36,64]$
$[(n, n * n) \mid n<-[1 . .3], n<n * n] \Rightarrow[(2,4),(3,9)]$
- We can define a local variable within the list comprehension. Example:

$$
\left[n \star_{n} \mid n=2\right] \Rightarrow[4]
$$

- Earlier generators (those to the left) vary more slowly than later ones. Compare nested for-loops in procedural languages, where earlier (outer) loop indexes vary more slowly than later (inner) ones.

Pascal:
for $i:=1$ to 9 do
for j := 1 to 3 do print (i, j)

$$
\begin{aligned}
& {\left[(i, j) \mid i<-[1 . .9], \frac{\text { Haskell: }}{j<-[1 . .3]] \Rightarrow}\right.} \\
& {[(1,1),(1,2),(1,3) \text {, }} \\
& (2,1),(2,2),(2,3) \text {, } \\
& (9,1),(9,2),(9,3)]
\end{aligned}
$$

372-Fall $2005-13$ [6]

Qualifiers...

Qualifiers to the right may use values generated by qualifiers to the left. Compare Pascal where inner loops may use index values generated by outer loops.

Pascal:
or i := 1 to 3 do
for j := i to 4 do print (i, j)

Haskell:
(i,j) $\begin{aligned} & \quad \begin{array}{l}i<-[1, .3], \overline{j<-[i .} \\ (1,4),(1,2),(1,3),(1,4) \\ \\ (2,2),(2,3),(2,4), \\ (3,3),(3,4)]\end{array}\end{aligned}$
$n{ }^{*} \mathrm{n} \mid \mathrm{n}<-[1 . .10]$, even $\left.n\right] \Rightarrow[4,16,36,64,100]$

Example

- Define a function doublePos xs that doubles the positive elements in a list of integers.

In English:
"Generate a list of elements of the form $2 *$ x, where the $\mathrm{x}: \mathrm{s}$ are the positive elements from the list xs .

```
    In Haskell:
doublePos :: [Int] -> [Int]
doublePos xs = [2*x | x<-xs, x>0]
> doublePos [-1,-2,1,2,3]
        [2,4,6]
```

- Note that xs is a list-valued expression.

Example

- Define a function spaces n which returns a string of n spaces.

Example:
spaces 10
" "
Haskell:
spaces $\mathrm{n}=[$ [' , i <- [1..n]]

- Note that the expression part of the comprehension is of type Char.
- Note that the generated values of i are never used.
- Define a function factors n which returns a list of the integers that divide n . Omit the trivial factors 1 and n .

Examples:

```
factors 5 []
factors 100 => [2,4,5,10,20,25,50]
                                    In Haskell:
factors :: Int -> [Int]
factors n = [i | i<-[2..n-1], n `mod` i == 0]
```


Example...

Pythagorean Triads:

- Generate a list of triples (x, y, z) such that $x^{2}+y^{2}=z^{2}$ and $x, y, z \leq n$.

```
triads n = [(x,y,z)|
    x<-[1..n], y<-[1..n], z<-[1..n],
    x^2 + y^2 == z^2]
```

triads $5 \Rightarrow[(3,4,5),(4,3,5)]$

Example - Making Change

Example - Making Change. . .

- Write a function change that computes the optimal (smallest) set of coins to make up a certain amount.

Defining available (UK) coins:

```
type Coin = Int
coins :: [Coin]
coins = reverse (sort [1,2,5,10,20,50,100])
                Example:
    change 23
    [20, 2, 1]
coins
    [100,50,20,10,5,2,1]
all_change 4
    [[2,2],[2,1,1],[1,2,1],[1,1,2],[1,1,1,1]]
```

—Fall 2005 - 13
[13]

- all_change returns all the possible ways of combining coins to make a certain amount.
- all_change returns shortest list first. Hence change becomes simple:

```
change amount = head (all_change amount)
```

- all_change returns all possible (decreasing sequences) of change for the given amount.

```
all_change :: Int -> [[Coin]]
all_change 0 = [[]]
all_change amount = [ c:cs |
    c<-coins, amount>=c,
    cs<-all_change (amount - c) ]
372-Fall 2005-13
                                [14]
```


Example - Making Change...

- all_change works by recursion from within a list comprehension. To make change for an amount amount we

1. Find the largest coin $\mathrm{c} \leq$ amount:
$\mathrm{c}<-\mathrm{coins}$, amount $>=\mathrm{c}$.
2. Find how much we now have left to make change for: amount - c.
3. Compute all the ways to make change from the new amount: cs<-all_change (amount - c)
4. Combine c and cs: c:cs.

Example - Making Change...

- If there is more than one coin $\mathrm{c} \leq$ amount, then $\mathrm{c}<-\mathrm{coins}$, amount>=c will produce all of them. Each such coin will then be combined with all possible ways to make change from amount - c.
- coins returns the available coins in reverse order. Hence all_change will try larger coins first, and return shorter lists first.

```
all_change :: Int -> [[Coin]]
all_change 0 = [[]]
all_change amount = [ c:cs |
    c<-coins, amount>=c,
    cs<-all_change (amount - c) ]
```

- A list comprehension [e|q] generates a list where all the elements have the form e, and fulfill the requirements of the qualifier q. q can be a generator $\mathrm{x}<-1$ ist in which case x takes on the values in list one at a time. Or, q can be a a boolean expression that filters out unwanted values.
- Show the lists generated by the following Haskell list expressions.

1. $[n * n \mid n<-[1 . .10]$, even $n]$
2. $[7 \mid n<-[1 . .4]]$
3. $[(x, y) \mid x<-[1 . .3], y<-[4 . .7]]$
4. $[(m, n) \mid m<-[1 . .3], n<-[1 . . m]]$
5. [j | i<-[1,-1,2,-2], i>0, j<-[1..i]]
6. $[a+b \mid(a, b)<-[(1,2),(3,4),(5,6)]]$

372 -Fall 2005 - 13
[18]

Homework

- Use a list comprehension to define a function neglist xs that computes the number of negative elements in a list xs .

```
neglist :: [Int] 年 Inmplate:
neglist n = ..
        Examples:
> neglist [1,2,3,4,5]
    0
neglist [1,-3,-4,3,4,-5]
    3
```

- Use a list comprehension to define a function gensquares low high that generates a list of squares of all the even numbers from a given lower limit low to an upper limit high.

```
gensquares :: Int Template: 
gensquares low high = [ .. | .. ]
Examples:
> gensquares 2 5
    [4, 16]
> gensquares 3 10
    [16, 36, 64, 100]
Examples:
> gensquares 25
[4, 16]
> gensquares 310
[16, 36, 64, 100]
```


Homework

