CSc 372
Comparative Programming
Languages

15 : Haskell — Exercises

Christian Collberg

col I ber g+372@meai [. com

Department of Computer Science
University of Arizona

Copyright (© 2005 Christian Collberg

—Fall 2005 — 15 (1]

List Prefix

» Write a recursive function begi n xs ys that returns
true if xs is a prefix of ys. Both lists are lists of integers.
Include the type signature.

> begin [] []

True

> begin [1] []

Fal se

> begin [1,2] [1,2,3,4]
True

> begin [1,2] [1,1,2,3,4]
Fal se

> begin [1,2, 3,4] [1,2]

372 —Fall 2005 — 15 [2]

List Containment

» Write a recursive function subsequence xs ys that
returns true if xs occurs anywhere within ys. Both lists
are lists of integers. Include the type signature.

Hint: reuse begi n from the previous exercise.

> subsequence [] []

True

> subsequence [1] []

Fal se

> subsequence [1] [0, 1, 0]

True

> subsequence [1,2,3] [0,1,0,1, 2, 3, 5]
True

1 A P rl

Mystery

Consider the following function:

nystery :: [a] -> [[a]]

nystery [] = [[]]

nmystery (x:xs) = sets ++ (map (x:) sets)
where sets = nystery Xxs

® What would nystery [1, 2] return? nystery
[1,2,3]7

What does the funtion compute?

g 1 A P ra1

collberg+372@gmail.com

| foldr

Explain what the following expressions involving f ol dr

shorter

» Define a function short er xs ys that returns the

do: shorter of two lists.
1. foldr (:) [] xs
2. foldr (:) xs ys >1shorter [1,2] [1]
. foldr ((y ys ->ys ++ [y]) [] xs W vorter [1.2] [1,2.3]
[1,2]
—Fall 2005 — 15 (5] 372 —Fall 2005 — 15 [6]
stripEmpty merge

» Write function st ri pEnpty xs that removes all empty
strings from xs, a list of strings.

> stripEmpty ["", "Hello", "", "", "World!l'"]

["Hello","Worl d!'"]

> stripEmpty [""]

[]

> stripeEnmpty []

[]

— N = P r-1

N~

» Write function mer ge xs ys that takes two ordered
lists xs and ys and returns an ordered list containing
the elements from xs and ys, without duplicates

> nmerge [1, 2]
[1, 2, 3, 4]

> nmerge [1, 2, 3]
[1, 2, 3, 4]

> nmerge [1, 2]
[1, 2, 4]

[3, 4]
[3, 4]

[1, 2, 4]

— N = P rol

Function Composition

#® Rewrite the expression
map f (map g xs)
so that only a single call to map is used

—Fall 2005 — 15 [l

Reduce

» Let the Haskell function reduce be defined by

reduce f [] v
reduce f (Xx:xs) v

v
f x (reduce f xs v)

Reconstruct the Haskell functions length, append, filter,
and map using reduce. More precisely, complete the
following schemata (in the simplest possible way):

nyl engt h xs = reduce = Xxs

myappend xs ys = reduce __ xs

nyfilter p xs = reduce _ xs

mymap f xs = reduce = Xxs
372 —Fall 2005 — 15 [10]

372 Midterm 2004 — Problem 1

o Write a non-recursive function
[Bool] -> [Bool]

that turns all Tr ue values into Fal se, and Fal se
values into Tr ue. Example:

i nvert

> invert [True, Fal se]
[Fal se, True]

1 A P MM11

372 Midterm 2004 — Problem 2

N~

» Write a non-recursive function count p xs that takes
a predicate p and a list xs of elements (of arbitrary
type) as arguments and returns the number of elements
in the list that satisfies p:

> count even [1, 2, 3,4, 5]
2

» Ideally, you should define the function using
composition of higher-order functions from the standard
prelude!

1 A P IEEs)]

372 Midterm 2004 — Problem 3 _

» Write a non-recursive function bl end xs ys that takes
two lists of elements (of arbitrary type) as argument,
and returns a list where the elements have been taken
alternatingly from xs and ys:
> blend [1,2,3] [4,5, 6]

[1,4,2,5, 3, 6]

You can assume that xs and ys are of the same length.

—Fall 2005 — 15 [13]

372 Midterm 2004 — Problem 4

» Write a function adj pai r s that takes a list as argument

and returns the list of all pairs of adjacent elements.
Examples:

> adjpairs []

[]

> adj pairs [1]

[]

> adjpairs [1, 2]

[(1,2)]

> adjpairs [1, 2, 3]

[(1,2),(2,3)]

> adjpairs [1,2,3,4,5, 6]

[(1,2), (2,3), (3,4), (4,5, (5,6)]

® Give both a recursive and a non-recursive solution!

372 —Fall 2005 — 15 [14]

372 Midterm 2004 - Problem 5 _

Write a non-recursive function secti on f ¢ xs that
extracts a sublist of the list xs starting at position f and
which is ¢ elements long. Use 0-based indexing.
Assume that xs has at least f +c elements. Examples:

> section 0 1 [1,2,3,4,5]
[1]

> section 0 3 [1,2,3,4,5]
[1, 2, 3]

> section 1 3 [1,2,3,4,5]
[2,3, 4]

> section 4 1 [1,2,3,4,5]
[3]

1 A P Mci

372 Midterm 2004 — Problem 6 _

N~

® Given these Haskell function definitions

duh :: [Int] ->1Int ->[[Int]]
duh xs a = duh’ xs a []

duh” [] _ [] =11
duh’ [] _ xs = [xs]
duh’ (x:xs) a ys
| a == x = nut ys (duh’ xs a [])
| otherw se = duh’ xs a (ys ++ [Xx])
nut [] Xs = xs
nut xs ys = xs : ys

1 A P el

372 Midterm 2004 - Problem 6. ..

answer these questions:

1. Whatistheresultofnut [] [[1,2]]7
What istheresultofnut [2] [[1,2]]7
What is the most general type of nut ?

What is the result of duh [1, 2, 3] 17
What is the result of duh [1, 2, 3, 1,4] 1?

o~ wbd

—Fall 2005 — 15 [17]

372 Midterm 2004 — Problem 7

What are the results of these Haskell expressions?

1. filter p [[1],[1,2],[2,2,3],[1,2,3,4]]
where p xs = length xs > 2

2. filter (not . even . length) xs

where xs = [[1],[1,2],[1,2,3],[1,2,3,4]]
3. foldr (\ xsi ->1length xs + i) 0 xs
where xs =[[1],[1,2],[1,2,3],[1,2,3,4]]

4. iterate id 1
5. (fst. head . zip [1,2,3]) [4,5,6]

372 —Fall 2005 — 15 [18]

372 Final 2004 — Problem 1

#® Given these Haskell function definitions

nystery :: [a] -> [[a]]
nmystery xs = [take n xs,drop n xs]

where n = h xs
h:: [a] -> Int
h[] =0
h[] =20
h (_:_:xs) =1+ h xs

what does the expression
nystery [1, 2, 3, 4, 5]
return?

— N = P Maol

372 Final 2004 — Problem 2.

1. What is referential transparency? lllustrate with an Icon
procedure and a Haskell function.

2. Haskell is a lazy language. What does this mean?

N~ — N = P mnl

	List Prefix
	List Containment
	Mystery
	foldr
	shorter
	stripEmpty
	merge
	Function Composition
	Reduce
	372 Midterm 2004 -- Problem 1
	372 Midterm 2004 -- Problem 2
	372 Midterm 2004 -- Problem 3
	372 Midterm 2004 -- Problem 4
	372 Midterm 2004 -- Problem 5
	372 Midterm 2004 -- Problem 6
	372 Midterm 2004 -- Problem 6ldots
	372 Midterm 2004 -- Problem 7
	372 Final 2004 -- Problem 1
	372 Final 2004 -- Problem 2

