
Prolog Types

Prolog Arithmetic Expressions

Prolog Atoms

An infix expression is just shorthand for a structure: Atoms are similar to enums in C. Atoms start with a lower-case letter and can contain | ?- X = +(1, *(2, 3)).letters, digits, and underscore (_). $X = 1 + 2 \times 3$?-X = 1+2*3.?-X = hello. $X = 1 + 2 \times 3$ X = hello?-X is +(1,*(2,3)). $| ?- X = hE_{1009}.$ X = 7 $X = hE_{-1_099}$ | ?- X is 1+2*3. X = 7• $X = 1^{2}$ means "make the variable X and 1² the same". It looks like an assignment, but it's what we call unification. More about that later. [5] [6] -Fall 2005 - 17 372 — Fall 2005 — 17 **Prolog Variables Prolog Variables...** Variables start out uninstantiated, i.e. without a value. When a program backtracks over a variable instantiation, the variable again becomes Uninstantiated variables are written _number: uninstantiated. ?- write(X). ?- (X=sally; X=lisa), write(X), nl. _16 sally Once a Prolog variable has been instantiated (given a X = sally ? ;value), it will keep that value. lisa ?- X=sally. X = lisaX = sally?- X=sally, X=lisa. no

Prolog Programs Prolog Programs... A Prolog program consists of a database of facts and Prolog facts/rules can be overloaded, wrt their arity. rules: You can have a both a rule foo() and a rule foo(X): ?- [user]. ?- foo. likes(lisa,chocolate). foo. ves likes(lisa,X) :- tastes_like_chocolate(X). foo(hello). ?-foo(X). is read if. foo(bar,world). X = hellofoo(X,Y,Z) :-?- foo(X,Y). Is just an operator, like other Prolog operators. The Z is X + Y. X = barfollowing are equivalent: <ctrl-D> Y = world| ?- foo(1,2,Z).likes(lisa,X) :- boy(X),tastes_like_choc(X). 7 = 3:-(likes(lisa,X), (boy(X),tastes_like_chok(X))). [9] [10] -Fall 2005 - 17 372 — Fall 2005 — 17 **Standard predicates Standard predicates...**

- read(X) and write(X) read and write Prolog terms.
- In prints a newline character.

```
| ?- write(hello),nl.
hello
| ?- read(X), write(X), nl.
hello.
```

hello

write can write arbitrary Prolog terms:

Note that read(X) requires the input to be syntactically correct and to end with a period.

```
| ?- read(X).
foo).
uncaught exception: error
```

Unification/Matching	Backtracking			
 The =-operator tries to make its left and right-hand sides the same. This is called unification or matching. If Prolog can't make x and Y the same in X = Y, matching will fail. ?- X=lisa, Y=sally, X = Y. no ?- X=lisa, Y=lisa, Z = X, Z = Y. X = lisa Y = lisa Z = lisa We will talk about this much more later. 	 Prolog will try every possible way to satisfy a query. Prolog explores the search space by using backtracking, which means undoing previous computations, and exploring a different search path. 			
—Fall 2005 — 17 [13]	372—Fall 2005—17 [14]			
Backtracking	Māori Family Relationships			

```
Here's an example:
```

```
| ?- [user].
girl(sally).
girl(lisa).
pretty(lisa).
blonde(sally).
| ?- girl(X),pretty(X).
X = lisa
| ?- girl(X),pretty(X),blonde(X).
no
| ?- (X=lisa; X=sally), pretty(X).
X = lisa
```

We will talk about this much more later.

John Foster (in *He Whakamaarama – A New Course in Māori*) writes:

Relationship is very important to the Māori. Social seniority is claimed by those able to trace their whakapapa or genealogy in the most direct way to illustrious ancestors. Rights to shares in land and entitlement to speak on the marae may also depend on relationship. Because of this, there are special words to indicate elder or younger relations, or senior or younger branches of a family.

 Māori is the indigenous language spoken in New Zealand. It is a polynesian language, and closely related to the language spoken in Hawaii.

Māori Terms of Address

Māori	English
au	1
tipuna, tupuna	grandfather, grandmother, grandparent, ancestor
tiipuna	grandparents
matua taane	father
maatua	parents
раараа	father
whaea, maamaa	mother
whaea kee	aunt
kuia	grandmother, old lady
tuakana	older brother of a man, older sister of a woman
teina	younger brother of a man, younger sister of a woman

Māori	English
tungaane	woman's brother (older or younger)
tuahine	man's sister (older or younger)
kaumaatua	elder (male)
mokopuna	grandchild (male or female)
iraamutu	niece, nephew
taane	husband, man
hunaonga	daughter-in-law, son-in-law
tamaahine	daughter
tama	son
tamaiti	child (male or female)
tamariki	children
wahine	wife, woman
maataamua	oldest child

Māori Terms of Address...

[17]

Māori	English
pootiki	youngest child
koroheke, koro, koroua	old man
whaiapo	boyfriend, girlfriend ^a
kootiro	girl
tamaiti taane	boy
whanaunga	relatives

^aLiterally: "What you follow at night"

—Fall 2005 — 17

The Whanau

[18]

- A program to translate between English and Māori must take into account the differences in terms of address between the two languages.
- Write a Prolog predicate calls(X,Y,Z) which, given a database of family relationships, returns all the words that X can use to address or talk about Y.

1001

- ?- calls(aanaru, hata, Z).
 - Z = tuakana ;
 - Z = maataamua ;
 - no

372 - Fall 2005 - 17

```
?- calls(aanaru, rapeta, Z).
Z = teina ;
```

```
no
```

```
272 Fall 2005 17
```

[10]

Māori Terms of Address...

The Whanau...

The Whanau...

- Whanau is Māori for family.
- Below is a table showing an extended Māori family.

Name	Sex	Father	Mother	Spouse	Born
Hoone	male	unknown	unknown	Rita	1910
Rita	female	unknown	unknown	Hone	1915
Ranginui	male	unknown	unknown	Reremoana	1915
Reremoana	female	unknown	unknown	Ranginui	1916
Rewi	male	Hoone	Rita	Rahia	1935
Rahia	female	Ranginui	Reremoana	Rewi	1940
Hata	male	Rewi	Rahia	none	1957
Kiri	female	Rewi	Rahia	none	1959

[21]

Ν	lame	Sex	Father	Mother	Spouse	Born
Н	liniera	female	Rewi	Rahia	Pita	1960
A	anaru	male	Rewi	Rahia	none	1962
R	lapeta	male	Rewi	Rahia	none	1964
Μ	1ere	female	Rewi	Rahia	none	1965
P	lita	male	unknown	unknown	Hiniera	1960
Μ	loeraa	female	Pita	Hiniera	none	1986
Н	luia	female	Pita	Hiniera	none	1987
Ir	ihaapeti	female	Pita	Hiniera	none	1988

372 — Fall 2005 — 17

[22]

ne Whanau Program — Database Facts The Whanau Program — Database Facts.

 We start by encoding the family as facts in the Prolog database. 							
<pre>% person(name,</pre>	sex,	father	,mother	, spouse ,	birt	h-year).	
person(hoone, person(rita, person(ranginu person(reremoa	female, i,male,	unkn2, unkn3,	unkn6 , unkn7 ,	hoone, reremoan	1915 na,1915).).	
person(rewi, person(rahia, person(hata, person(kiri,	female, ra: male,	nginui, rewi,	reremoarahia,	ana, rita none,	1957)	1916).	

<pre>% person(name,</pre>	sex,	father	,mother,	birth-year).	
person(hiniera,	female,	rewi,	rahia,	pita,	1960).
person(anaru,	male,	rewi,	rahia,	none,	1962).
person(rapeta,	male,	rewi,	rahia,	none,	1964).
person(mere,	female,	rewi,	rahia,	none,	1965).
person(pita,	male,	unkn9,	unkn10,	hiniera	,1960).
person(moeraa,	female,	hinie	ra, pit	a, none,	1986).
person(huia,	female,	hinie	ra, pit	a, none,	1987).
person(irihaape	ti, femal	e,hinie	ra, pit	a, none,	1988).

—Fall 2005 — 17

[22]

[24]

Whanau — Auxiliary predicates

 We introduce some auxiliary predicates to extract information from the database.

% Auxiliary predicates gender(X, G) :- person(X, G, _, _, _, _). othergender(male, female). othergender(female, male). female(X) :- gender(X, female). male(X) :- gender(X, male).

—Fall 2005 — 17

[25]

Whanau — Family Relationships...

Some of the following are left as an exercise:

```
% Is X older than Y?
older(X,Y) :-
    person(X, _, _, _, _, Xyear),
    person(Y, _, _, _, _, Yyear),
    Yyear > Xyear.
```

% Is Y a sibling of X of the gender G? sibling(X, Y, G) :- <left as an exercise>.

% Is Y one of X's older siblings of gender G? oldersibling(X,Y,G) :- <left as an exercise>.

% Is Y one of X's older/younger siblings of either gender? oldersibling(X,Y) :- <left as an exercise>. youngersibling(X,Y) :- <left as an exercise>.

Whanau — Family Relationships

 We next write some predicates that computes common family relationships.

% Is Y the <operator> of X? wife(X, Y) :- person(X, male, _, _, Y, _). husband(X, Y) :- person(X, female, _, _, Y, _). spouse(X, Y) :- wife(X, Y). spouse(X, Y) :- husband(X, Y). parent(X, Y) :- person(X, _, Y, _, _, _). parent(X, Y) :- person(X, _, Y, _, _, _). son(X, Y) :- person(Y, male, X, _, _, _). son(X, Y) :- person(Y, male, _, X, _, _). daughter(X, Y):- person(Y, female, X, _, _, _). daughter(X, Y):- person(Y, female, _, X, _, _). child(X, Y) :- daughter(X, Y)

372 — Fall 2005 — 17

[26]

Whanau — Family Relationships...

% Is Y an ancestor of X of gender G? ancestor(X,Y,G) :- <left as an exercise>.

% Is Y an older relative of X of gender G? olderrelative(X,Y,G) :- ancestor(X, Y, G). olderrelative(X,Y,G) :- ancestor(X, Z, _), sibling(Y, Z, G).

% Is Y a sibling of X of his/her opposite gender? siblingofothersex(X, Y) :- <left as an exercise>.

The Whanau Program — Calls

We can now finally write the predicate calls(X,Y,T) which computes all the ways T in which X can address Y.

```
% Me.
calls(X, X, au).
% Parents.
calls(X,Y,paapaa) :- person(X, _,Y, _, _, _).
calls(X,Y,maamaa) :- person(X, _, _,Y, _, _).
% Oldest/youngest sibling of same sex.
calls(X, Y, tuakana) :-
gender(X, G),
eldestsibling(X, Y, G).
calls(X, Y, teina) :-
gender(X, G),
youngestsibling(X, Y, G).
```

The Whanau Program — Calls...

[30]

```
% Siblings of other sex.
calls(X, Y, tungaane) :- <left as an exercise>.
calls(X, Y, tuahine) :- <left as an exercise>.
calls(X, Y, tipuna) :- <left as an exercise>.
% Sons and daughters.
calls(X, Y, tama) :- <left as an exercise>.
calls(X, Y, tamahine) :- <left as an exercise>.
% Oldest/youngest child.
calls(X, Y, maataamua) :- <left as an exercise>.
calls(X, Y, pootiki) :- <left as an exercise>.
% Child-in-law.
calls(X, Y, hunaonga) :- <left as an exercise>.
% Grandchild.
calls(X, Y, mokopuna) :- <left as an exercise>.
```

372 — Fall 2005 — 17

—Fall 2005 — 17

[29]

Readings and References

Read Clocksin-Mellish, Chapter 2.