
372 —Fall 2005 — 21

CSc 372

Comparative Programming
Languages

21 : Prolog — Lists

Christian Collberg

collberg+372@gmail.com

Department of Computer Science

University of Arizona

Copyright c© 2005 Christian Collberg

[1] 372 —Fall 2005 — 21

Prolog Lists

Haskell:
> 1 : 2 : 3 : []
[1,2,3]

Prolog:

?- L = .(a, .(b, .(c, [])))
L = [a, b, c] b

c
[]

a

Both Haskell and Prolog build up lists using cons-cells.

In Haskell the cons-operator is :, in Prolog ..
[2]

372 —Fall 2005 — 21

Prolog Lists. . .

?- L = .(a, .(.(1, .(2, [])), .(b, .(c, []))))
L = [a, [1, 2], b, c]

b

c
[]

a

1

[]2

Unlike Haskell, Prolog lists can contain elements of
arbitrary type.

[3] 372 —Fall 2005 — 21

Matching Lists – [Head | Tail]

A F A ≡ F variable subst.

[] [] yes
[] a no
[a] [] no
[[]] [] no
[a | [b, c]] L yes L=[a,b,c]

[a] [H | T] yes H=a, T=[]

[4]

collberg+372@gmail.com

372 —Fall 2005 — 21

Matching Lists – [Head | Tail]. . .

A F A ≡ F variable subst.

[a, b, c] [H | T] yes H=a,T=[b,c]

[a, [1, 2]] [H | T] yes H=a, T=[[1, 2]]

[[1, 2], a] [H | T] yes H=[1,2], T=[a]

[a, b, c] [X, Y, c] yes X=a, Y=c

[a, Y, c] [X, b, Z] yes X=a, Y=b, Z=c

[a, b] [X, c] no

[5] 372 —Fall 2005 — 21

Prolog Lists — Member

(1) member1(X, [Y|]) :- X = Y.
(2) member1(X, [|Y]) :- member1(X, Y).

(1) member2(X, [X|]).
(2) member2(X, [|Y]) :- member2(X, Y).

(1) member3(X,[Y|Z]) :- X = Y; member3(X,Z).

[6]

372 —Fall 2005 — 21

Prolog Lists — Member. . .

?- member(x, [a, b, c, x, f]).
yes

?- member(x, [a, b, c, f]).
no

?- member(x, [a, [x, y], f]).
no

?- member(Z, [a, [x, y], f]).
Z = a
Z = [x, y]
Z = f

[7] 372 —Fall 2005 — 21

Prolog Lists — Member. . .

fail

member1(x, [b|_])

x=b

succeed

member(x,[b,x,d])

(1) (2)

member1(x, [x|_])

x=x

(1)

member1(x,[_|[x,d]])

fail

member1(x, [a|_])

x=a

member1(x, [a, b, x, d])

member1(x, [_|[b,x,d]])

(1) (2)

[8]

372 —Fall 2005 — 21

Prolog Lists — Append

followed by

this one

makes

this one

append(L1, L2, L3).

this one

(1)append([], L, L)
(2)append([X|L1], L2, [X|L3]) :-

append(L1, L2, L3).

1. Appending L onto an empty list, makes L.

2. To append L2 onto L1 to make L3

(a) Let the first element of L1 be the first element of L3.
(b) Append L2 onto the rest of L1 to make the rest of L3.

[9] 372 —Fall 2005 — 21

Prolog Lists — Append. . .

fail

fail

succeed

(1) (2)

app([a|[b]],[1,2],[a|L3])

app([b],[1,2],L3’)

app([],L,L)

app([],L,L)

app([a, b], [1, 2], L)

(1) (2)

app([],[1,2],[1,2])

(1)

L=[a,b,1,2]

app([b|[]],[1,2],[b|L3’’])

[10]

372 —Fall 2005 — 21

Prolog Lists — Append. . .

app([a, b], [1, 2], L)

L=[a,b,1,2]

app([a|[b]],[1,2],[a|L3])

app([b]|[]],[1,2],[b|L3’])

app([],[1,2],[1,2])

?- L = [a | L3], L3 = [b | L3’], L3’ = [1,2].
L = [a,b,1,2], L3 = [b,1,2], L3’ = [1,2]

[11] 372 —Fall 2005 — 21

Prolog Lists — Using Append

1. append([a,b], [1,2], L)

What’s the result of appending [1,2] onto [a,b]?

2. append([a,b],[1,2],[a,b,1,2])
Is [a,b,1,2] the result of appending [1,2] onto
[a,b]?

3. append([a,b], L, [a,b,1,2])

What do we need to append onto [a,b] to make
[a,b,1,2]?
What’s the result of removing the prefix [a,b] from
[a,b,1,2]?

[12]

372 —Fall 2005 — 21

Prolog Lists — Using Append. . .

4. append(L, [1,2], [a,b,1,2])

What do we need to append [1,2] onto to make
[a,b,1,2]?
What’s the result of removing the suffix [1,2] from
[a,b,1,2]?

5. append(L1, L2, [a,b,1,2])

How can the list [a,b,1,2] be split into two lists L1
& L2?

[13] 372 —Fall 2005 — 21

Prolog Lists — Using Append. . .

fail

fail

succeed

app([],[1,2],[1,2])

app([],L2’’’,[1,2])

(1)

(1)

app([],L,L)

app([],L,L)

(1)

app([a|[b]],L2,[a|[b,1,2]])

app([b],L2’,[b,1,2])

(2)

(2)

app([b|[]],L2’’,[b|[1,2]])

app([a, b], L, [a, b, 1, 2])

[14]

372 —Fall 2005 — 21

Prolog Lists — Using Append. . .

?- append(L1, L2, [a,b,c]).
L1 = []
L2 = [a,b,c] ;

L1 = [a]
L2 = [b,c] ;

L1 = [a,b]
L2 = [c] ;

L1 = [a,b,c]
L2 = [] ;

no

[15] 372 —Fall 2005 — 21

Prolog Lists — Using Append. . .

app([],[a,b,1,2]
[a,b,1,2])

succeed

app([],[b,1,2]
[b,1,2])

succeed

succeed

app([],[1,2],[1,2])

(1)

(1)

(2)

(2)

app(L1, L2, [a, b, 1, 2])

app([a|L1],L2,[a|[b,1,2]])

app(L1,L2’,[b,1,2])

app([b|L1’],L2’’,[b|[1,2]])

app(L1’,L2’’’,[1,2])

(1)

[16]

372 —Fall 2005 — 21

Prolog Lists — Reusing Append

member Can we split the list Y into two lists such that X is at
the head of the second list?

adjacent Can we split the list Z into two lists such that the
two element X and Y are at the head of the second list?

last Can we split the list Y into two lists such that the first
list contains all the elements except the last one, and X
is the sole member of the second list?

[17] 372 —Fall 2005 — 21

Prolog Lists — Reusing Append. . .

member(X, Y) :- append(, [X|Z], Y).
?- member(x,[a,b,x,d]).

adjacent(X, Y, Z) :- append(, [X,Y|Q], Z).
?- adjacent(x,y,[a,b,x,y,d]).

last(X, Y) :- append(, [X], Y).
?- last(x, [a,b,x]).

[18]

372 —Fall 2005 — 21

Prolog Lists — Reverse

reverse1 is known as naive reverse.

reverse1 is quadratic in the number of elements in the
list.

From The Art of Prolog, Sterling & Shapiro pp. 12-13,
203.

Is the basis for computing LIPS (Logical Inferences Per
Second), the performance measure for logic computers
and programming languages. Reversing a 30 element
list (using naive reverse) requires 496 reductions. A
reduction is the basic computational step in logic
programming.

[19] 372 —Fall 2005 — 21

Prolog Lists — Reverse. . .

reverse1 works like this:
1. Reverse the tail of the list.
2. Append the head of the list to the reversed tail.

reverse2 is linear in the number of elements in the list.

reverse2 works like this:
1. Use an accumulator pair In and Out

2. In is initialized to the empty list.
3. At each step we take one element (X) from the

original list (Z) and add it to the beginning of the In
list.

4. When the original list (Z) is empty we instantiate the
Out list to the result (the In list), and return this
result up through the levels of recursion.

[20]

372 —Fall 2005 — 21

Prolog Lists — Reverse. . .

reverse1([], []).
reverse1([X|Q], Z) :-

reverse1(Q, Y), append(Y, [X], Z).

reverse2(X, Y) :- reverse2(X, [], Y).
reverse2([X|Z], In, Out) :-

reverse(Z, [X|In], Out).
reverse2([], Y, Y).

[21] 372 —Fall 2005 — 21

Reverse – Naive Reverse

rev1([b,c,d],[d,c,b])

app([d],[c],[d,c])

rev1([c,d],[d,c]) app([d,c],[b],[d,c,b])

app([c],[b],[c,b])

app([d,c,b],[a],[d,c,b,a])

app([c,b],[a],[c,b,a])

app([b],[a],[b,a])

rev1([a,b,c,d],[d,c,b,a])

rev1([d],[d])

app([],[b],[b])app([],[c],[c]) app([],[a],[a])

app([],[d],[d])rev1([],[])

[22]

372 —Fall 2005 — 21

Reverse – Smart Reverse

D=[d,c,b,a]reverse2([a,b,c,d],D)

reverse2([b,c,d],[a],D)

reverse2([c,d],[b,a],D)

reverse2([d],[c,b,a],D)

reverse2([],[d,c,b,a],D)

reverse2([a,b,c,d],[],D)

[23] 372 —Fall 2005 — 21

Prolog Lists — Delete. . .

from this

list

to yield

this listthis one

delete(X, L1, L2).

delete

delete one Remove the first occurrence.

delete all Remove all occurrences.

delete struct Remove all occurrences from all levels of a
list of lists.

[24]

372 —Fall 2005 — 21

Prolog Lists — Delete. . .

?- delete one(x, [a, x, b, x], D).
D = [a, b, x]

?- delete all(x, [a, x, b, x], D).
D = [a, b]

?- delete all(x, [a, x, b, [c, x], x], D).
D = [a, b, [c, x]]

?- delete struct(x, [a, x, [c, x], v(x)], D).
D = [a, b, [c], v(x)]

[25] 372 —Fall 2005 — 21

Prolog Lists — Delete. . .

delete one

1. If X is the first element in the list then return the tail
of the list.

2. Otherwise, look in the tail of the list for the first
occurrence of X.

[26]

372 —Fall 2005 — 21

Prolog Lists — Delete. . .

delete all

1. If the head of the list is X then remove it, and remove
X from the tail of the list.

2. If X is not the head of the list then remove X from the
tail of the list, and add the head to the resulting tail.

3. When we’re trying to remove X from the empty list,
just return the empty list.

[27] 372 —Fall 2005 — 21

Prolog Lists — Delete. . .

Why do we test for the recursive boundary case
(delete all(X,[],[])) last? Well, it only happens
once so we should perform the test as few times as
possible.

The reason that it works is that when the original list
(the second argument) is [], the first two rules of
delete all won’t trigger. Why? Because, [] does not
match [H|T], that’s why!

[28]

372 —Fall 2005 — 21

Prolog Lists — Delete. . .

delete struct

1. The first rule is the same as the first rule in
delete all.

2. The second rule is also similar, only that we descend
into the head of the list (in case it should be a list),
as well as the tail.

3. The third rule is the catch-all for lists.
4. The last rule is the catch-all for non-lists. It states

that all objects which are not lists (atoms, integers,
structures) should remain unchanged.

[29] 372 —Fall 2005 — 21

Prolog Lists — Delete. . .

delete one(X,[X|Z],Z).
delete one(X,[V|Z],[V|Y]) :-

X \== V,
delete one(X,Z,Y).

delete all(X,[X|Z],Y) :- delete all(X,Z,Y).
delete all(X,[V|Z],[V|Y]) :-

X \== V,
delete all(X,Z,Y).

delete all(X,[],[]).

[30]

372 —Fall 2005 — 21

Prolog Lists — Delete. . .

(1) delete struct(X,[X|Z],Y) :-
delete struct(X, Z, Y).

(2) delete struct(X,[V|Z],[Q|Y]):-
X \== V,
delete struct(X, V, Q),
delete struct(X, Z, Y).

(3) delete struct(X, [], []).
(4) delete struct(X, Y, Y).

[31] 372 —Fall 2005 — 21

Prolog Lists — Delete. . .

d_s(x,[],Y)

d_s(x,[],[])

(3)

d_s(x, [], [])

(3)

d_s(x, [], Y)
(1)

(3)

d_s(x,[x],Q)

d_s(x,[],Y)

d_s(x,[],[])

(2)

(1)

(2)

d_s(x, [[x, [x]]], [Q|Y])

d_s(x, [x, [x]], Q)

d_s(x, [[x]], [Q|Y])

[[]]

(1)

d_s(x, [x, [x, [x]]], Y)

Y = [[[]]]

[32]

372 —Fall 2005 — 21

Sorting – Naive Sort

permutation(X,[Z|V]) :-
delete one(Z,X,Y),
permutation(Y,V).

permutation([],[]).

ordered([X]).
ordered([X,Y|Z]) :-

X =< Y,
ordered([Y|Z]).

naive sort(X, Y) :-
permutation(X, Y),
ordered(Y).

[33] 372 —Fall 2005 — 21

Sorting – Naive Sort. . .

This is an application of a Prolog cliche known as
generate-and-test.

naive sort

1. The permutation part of naive sort generates
one possible permutation of the input

2. The ordered predicate checks to see if this
permutation is actually sorted.

3. If the list still isn’t sorted, Prolog backtracks to the
permutation goal to generate an new permutation,
which is then checked by ordered, and so on.

[34]

372 —Fall 2005 — 21

Sorting – Naive Sort. . .

permutation

1. If the list is not empty we:
(a) Delete some element Z from the list
(b) Permute the remaining elements
(c) Add Z to the beginning of the list

When we backtrack (ask permutation to generate
a new permutation of the input list), delete one will
delete a different element from the list, and we will
get a new permutation.

2. The permutation of an empty list is the empty list.

Notice that, for efficiency reasons, the boundary case is
put after the general case.

[35] 372 —Fall 2005 — 21

Sorting – Naive Sort. . .

delete one Removes the first occurrence of X (its first
argument) from V (its second argument).

Notice that when delete one is called, its first
argument (the element to be deleted), is an
uninstantiated variable. So, rather than deleting a
specific element, it will produce the elements from
the input list (+ the remaining list of elements), one
by one:

?- delete one(X,[1,2,3,4],Y).
X = 1, Y = [2,3,4] ;
X = 2, Y = [1,3,4] ;
X = 3, Y = [1,2,4] ;
X = 4, Y = [1,2,3] ;
no.

[36]

372 —Fall 2005 — 21

Sorting – Naive Sort. . .

The proof tree in the next slide illustrates
permutation([1,2,3],V). The dashed boxes give
variable values for each backtracking instance:

First instance: delete one will select X=1 and Y=[2,3]. Y
will then be permuted into Y’=[2,3] and then (after
having backtracked one step) Y’=[3,2]. In other
words, we generate [1,2,3], [1,3,2].

Second instance: We backtrack all the way back up the tree
and select X=2 and Y=[1,3]. Y will then be permuted
into Y’=[1,3] and then Y’=[3,2]. In other words, we
generate [2,1,3], [2,3,1].

[37] 372 —Fall 2005 — 21

Sorting – Naive Sort. . .

Third instance: Again, we backtrack all the way back up the
tree and select X=3 and Y=[1,2]. We generate
[3,1,2], [3,2,1].

?- permutation([1,2,3],V).
V = [1,2,3] ;
V = [1,3,2] ;
V = [2,1,3] ;
V = [2,3,1] ;
V = [3,1,2] ;
V = [3,2,1] ;
no.

[38]

372 —Fall 2005 — 21

Permutations

.

.

.
. . . .

X’’=3

Y’’=[]

del_one(X’’,Y’,Y’’)

X=1

Y=[2,3]

X=2

Y=[1,3]

X=3

Y=[1,2]

del_one(X,[1,2,3],Y)

perm([],V’’)

V’’=[]

X’=2

Y’=[3]

X’=3

Y’=[2]

Y’=[3]

X’=3X’=1

Y’=[1]

X’=1

Y’=[2]

X’=2

Y’=[1]

perm(Y,[X’|V’])

perm(Y’,[X’’|V’’])del_one(X’,Y,Y’)

perm([1,2,3],[X|V]) [1,2,3],[1,3,2],[2,1,3],[2,3,1],...

V=[2,3],[3,2],[1,2],[2,1],...

V’=[3],[2],[3],[1],...

[39] 372 —Fall 2005 — 21

Sorting Strings

Prolog strings are lists of ASCII codes.

"Maggie" = [77,97,103,103,105,101]
aless(X,Y) :-

name(X,Xl), name(Y,Yl),
alessx(Xl,Yl).

alessx([],[|]).
alessx([X|],[Y|]) :- X < Y.
alessx([A|X],[A|Y]) :- alessx(X,Y).

[40]

372 —Fall 2005 — 21

Mutant Animals

From Prolog by Example, Coelho & Cotta.

We’re given a set of words (French animals, in our
case).

Find pairs of words where the ending of the first one is
the same as the beginning of the second.

Combine the words, so as to form new “mutations”.

[41] 372 —Fall 2005 — 21

Mutant Animals. . .

1. Find two words, Y and Z.

2. Split the words into lists of characters. name(atom,
list) does this.

3. Split Y into two sublists, Y1 and Y2.

4. See if Z can be split into two sublists, such that the
prefix is the same as the suffix of Y (Y2).

5. If all went well, combine the prefix of Y (Y1) with the
suffix of Z (Z2), to create the mutant list X.

6. Use name to combine the string of characters into a
new atom.

[42]

372 —Fall 2005 — 21

Mutant Animals. . .

mutate(M) :-
animal(Y), animal(Z), Y \== Z,
name(Y,Ny), name(Z,Nz),
append(Y1,Y2,Ny), Y1 \==[],
append(Y2, Z2, Nz), Y2 \== [],
append(Y1,Nz,X), name(M,X).

animal(alligator). /* crocodile*/
animal(tortue). /* turtle */
animal(caribou). /* caribou */
animal(ours). /* bear */
animal(cheval). /* horse */
animal(vache). /* cow */
animal(lapin). /* rabbit */

[43] 372 —Fall 2005 — 21

Mutant Animals. . .

?- mutate(X).
X = alligatortue ; /* alligator+ tortue */
X = caribours ; /* caribou + ours */
X = chevalligator ; /* cheval + alligator*/
X = chevalapin ; /* cheval + lapin */
X = vacheval /* vache + cheval */

[44]

372 —Fall 2005 — 21

Prolog So Far. . .

Lists are nested structures

Each list node is an object
with functor . (dot).
whose first argument is the head of the list
whose second argument is the tail of the list

Lists can be split into head and tail using [H|T].

Prolog strings are lists of ASCII codes.

name(X,L) splits the atom X into the string L (or vice
versa).

[45]

	Prolog Lists
	Prolog Listsldots
	Matching Lists -- {	t [Head | Tail]}
	Matching Lists -- {	t [Head | Tail]}ldots
	Prolog Lists --- Member
	Prolog Lists --- Memberldots
	Prolog Lists --- Memberldots
	Prolog Lists --- Append
	Prolog Lists --- Appendldots
	Prolog Lists --- Appendldots
	Prolog Lists --- Using Append
	Prolog Lists --- Using Appendldots
	Prolog Lists --- Using Appendldots
	Prolog Lists --- Using Appendldots
	Prolog Lists --- Using Appendldots
	Prolog Lists --- Reusing Append
	Prolog Lists --- Reusing Appendldots
	Prolog Lists --- Reverse
	Prolog Lists --- Reverseldots
	Prolog Lists --- Reverseldots
	Reverse -- Naive Reverse
	Reverse -- Smart Reverse
	Prolog Lists --- Deleteldots
	Prolog Lists --- Deleteldots
	Prolog Lists --- Deleteldots
	Prolog Lists --- Deleteldots
	Prolog Lists --- Deleteldots
	Prolog Lists --- Deleteldots
	Prolog Lists --- Deleteldots
	Prolog Lists --- Deleteldots
	Prolog Lists --- Deleteldots
	Sorting -- Naive Sort
	Sorting -- Naive Sortldots
	Sorting -- Naive Sortldots
	Sorting -- Naive Sortldots
	Sorting -- Naive Sortldots
	Sorting -- Naive Sortldots
	Permutations
	Sorting Strings
	 Mutant Animals
	Mutant Animalsldots
	Mutant Animalsldots
	Mutant Animalsldots
	Prolog So Farldots

