- E——— = > =

CSc 372

Comparative Programming
Languages
22 . Prolog — The Database

Christian Collberg

col I ber g+372@meai [. com

Department of Computer Science

University of Arizona

Copyright (© 2005 Christian Collberg

—Fall 2005 — 22 (1]

Manipulating the Database

» So far we have assumed that the Prolog database is
static, i.e. that it is loaded once with the program and
never changes thereafter.

This is not necessarily true; we can add or remove facts
and rules from the database at will.

This is not necessarily good programming practice, but
sometimes it is necessary and sometimes it makes for
elegant programs.

In a nutshell:

1. Allows us to program with side effects.
2. Justified under some circumstances.
3. Often inefficient.

372 —Fall 2005 — 22 [2]

Assert

assert (X) adds a clause to the database.
Not defined in gprolog!

asserta(X) adds a clause to the beginning of the
database.

°

assert always succeeds, and backtracking does not
undo the assertion.

1 A gy rl

Assert. ..

assert z(X) adds a clause to the end of the database.

N~

#® assert can be used in machine learning programs,
program which learn new facts as they progress.

In some Prolog implementations you have to specify
whether a certain clause is dynamic (new clauses can
be added to the database during execution) or static:

.- dynam c(hanoi /5).

This means that we can add and remove clauses with
five arguments whose functor is hanoi .

1 A gy ra1

collberg+372@gmail.com

Assert ...— Example

Assert ...— Example

Write a program that learns the addresses of places in | ocati on(whi tehorse, 8, 11).
a City. | ocation(m crosoft, 8, 42).
This program assumes a Manhattan-style city layout: l'ocation(condoreria, 8, 43).
locations are given as the intersection of streets and I ocati on(pl unket, 7, 32).
avenues. _
% Do we know the | ocation of X?
Ave = 8, St =11 _ _
?- loc(airport, Ave, St). %if not, learn it!
-- this airport l oc(X, Ave, Street) :-
what avenue? 5. nonvar (X), var(Ave), var(Str),
what street? 32 wite(’-- this), wite(X), nl,
Ave = 5, St = 32 write(’what avenue? '), read(Ave),
Ave = 5, St = 32 assert(location(X, Ave, Str)).
—Fall 2005 — 22 (5] 372 —Fall 2005 — 22 (6]
Retract Retract. ..
retract (X) removes the first clause that matches X. # Backtracking does not undo the removal.
assert andretract behave differently on retractal | (X) : -
backtracking. When we backtrack through assert :
) retract(X), fail.
nothing happens. When we backtrack to r et r act retractal | (X) : -
Prolog continues searching the database trying to find j
. : - retract((X :- Y))),
another matching clause. If one is found it is removed. fail
» Ifthe argumenttoretract (cl ause(X)) contains retractall ().
some uninstantiated variables they will be instantiated.
retract (X) fails when no matching clause can be

found.

O AN gy r1

1 A gy rol

Clause Clause...
#® clause(X, Y) finds all clauses in the database with ® The goal cl ause(X, Y) instantiates X to the head of a
head X and body Y. goal (the left side of : -) and Y to the body.

Xcan be just a variable (in which case it will match all
the clauses in the database), a fully instantiated
(ground) term, or a term which contains some
uninstantiated variables.

append([], X, X).
append([A B],C [A D) :-
append(B, C, D).

?- clause(append(X, Y, 2), T). # Note that a fact has a body t r ue.
X=[], Y=23, Z=3, Y=true ;
X=[4] 5], Y=6, Z=[4| 7],

Y=append(5, 6, 7) ;

no
—Fall 2005 — 22 (9] 372 —Fall 2005 — 22 [10]
Clause... Clausal Representation of Data Structur
List all the clauses whose head matches X. # Normally we represent a data structure using a

combination of Prolog lists and structures.

list(X) :- clause(X, Y), # A graph can for example be represented as a list of

print(X, Y), od : ;
: o : ges, where each edge is represented by a binary
. wite(’.”), nl, fail. structure:
ist(.).
) [edge(a, b), edge(c,b), edge(a,d), edge(c,d)]
print(X, true) :- !, wite(X). » However, it is also possible to use clauses to represent
print(X, Y) - wite((X:-Y))). data structures such as lists, trees, and graphs.

2- list(append(X. Y, 2)) # |tis usually not a good idea to do this, but sometimes it
' append([], .4 ' _4’) _ ' is useful, particularly when we are faced with a static
append([5| 6], .7.[5] 8]) :- data structure (one which does not change, or changes

append(6, 8, _8). very little).

1 A gy MM11 g 1 A gy IEEs)]

. Clauses_as Data Structu[gs —/‘Lj_st‘s

ist(c).
i st(h).
ist(r).
ist(i).
i st(s).

rocesslist :- list(X), process.item X), fail.
rocess_|ist.

—Fall 2005 — 22 [13]

Clausesas Data Struc‘tuirg\s —/T'r:_ee‘s

t (nodel, node2, phone(thonpson, 2432), node3).
t (node2, nil, phone(adans, 5488), node4).

t (node3, nil, phone(white, 2432), nil).

t (node4, nil, phone(nctbride, 1781), nil).

372 —Fall 2005 — 22 [14]

Clauses as Data Stru\cture‘g\— Tre:_es. ..

nodel
phone(t honson, 2432).

node2 node3
phone(adans, 5488). phone(white, 2432).

ni | node4 ni | ni |
phone(ntbri de, 1781)

Clauses as Data Stru\cture‘g\— Tre:_es. ..

i norder(nil).
i nor der (Node) : -
t (Node, Left, P, Right),
i norder (Left),
wite(P), nl,
i norder (Ri ght).

?- inorder(nodel).
phone(adans, 5488)
phone(ntbri de, 1781)
phone(t honpson, 2432)
phone(whi te, 2432)

Clausal Representation. ..

Ingeneralitis a bad idea to represent data in this way.

Inserting and removing data has to be done using
assert andretract, which are fairly expensive
operations.

However, in Prolog implementations which support
clause indexing, storing data in clauses gives us a way
to access information directly, rather than through
sequential search.

The reason for this is that indexing uses hash tables to
access clauses.

—Fall 2005 — 22 [17]

S\iyitches

e

From Prolog by Example, Coelho & Cotta.

In some cases itis a good idea to use global data rather
than passing it around as a parameter.

Assume we want to be able to switch between short
and long error messages. Instead of extending every
clause by an extra parameter (clumsy and inefficient)
we use a global switch.

® The first clause in t ur non will fire if the switch is
already turned on.

The first clause in t ur nof f fails if Swi t ch was already
off.

Thefirstclause in f i p fails if Swi t ch was turned off,
in which case the second clause fires and the switch is

turned on.
372 —Fall 2005 — 22 [18]

Switches. ..

turnon(Switch) :-
call (Switch), !.

turnon(Switch) :-
assert (Swi tch).

turnoff(Switch) :-
retract (Switch).

turnoff ().

flip(Swtch) :-
retract(Switch), !.

flip(Switch) :-

assert (Swi tch).

1 A gy Mal

Switches. ..

turnon(terse_nmess).

flip(terse_ness).

nessage(C : -
tersenes, wite ("Error!’), nl, I.

nessage(C) : -
wite ("W are sorry to...’),
wite ('error has occurred near the synbol '),
wite(C, wite(’. Please accept our...’),
nl, !.

g 1 A gy nl

ff Memoization |

Many recursive program are extremely inefficient

because they solve the same subproblem several times.

In dynamic programming the idea is simply to store the
results of a computation in a table, and when we try to
solve the same problem again we retrieve the value
from the table rather than computing the value once

more.
There is a variation of dynamic programming known as
memoization.
—Fall 2005 — 22 [21]

Memoization —Towers _of Hanoi

|I'm sure you've heard of the Towers of Hanoi problem. It
is one first year computer science students are tortured
with to no end.

#® The problem is to move a number of disks from a peg A
to a peg B, using a peg C as intermediate storage.
Additionally, we are only allowed to put smaller disks
onto larger disks.

A recursive solution of the problem to move N disks
from A to B is as follows:
1. Move N — 1 disks from A to C.
2. Move the remaining (largest) disk from A to B.
3. Move the N — 1 disks from C to B.

372 —Fall 2005 — 22 [22]

Memoization — Towers of Hanoi. .

A B C

1 A gy rHnl

Memoization — Towers of Hanoi. .

N~

:- op(100, xfx, to).

hanoi (1, A, B, C, [Ato B]).
hanoi (N, A, B, C, M) :-
N> 1,
NL is N1,
hanoi (N1, A, C, B, M),
hanoi (N1, C, B, A, M),
append(ML, [A to Bl M], Ms).

go(N, Moves) :-

hanoi (N, a, b, c, Mbves).

1 A gy Al

Memoization — Towe‘rs of Hanoi. .

?- go(2,M.
M=[]atoc, atob, cto b]

?- go(3, M.
M=[]atob, atoc, btoc,
atob, ctoa, ctob,
ato b]

?- go(4, M.
M=J]atoc, atob, cto b,

atoc, btoa, bto c,

atoc, atob, ¢cto b,

ctoa btoa, ¢ to b,

atoc, atob, cto b]
—Fall 2005 — 22 [25]

Memoization — Towe‘rs of Hanoi. -

hanoi (1, A, B, C, [Ato B]).
hanoi (N, A, B, C, M) :-
N>1 Ris NI,
| enma(hanoi (R, A, C, B, M)),
hanoi (N1, C, B, A M),
append(ML, [A to Bl M], Ms).

lemma(P) :- call (P),
asserta((P :- 1)).

go(N, Pegs, Moves) :-
hanoi (N, A, B, C, Moves),
Pegs=[A, B, (.

372 —Fall 2005 — 22 [26]

Memoization — Towe‘rs of Hanoi. .

hanoi (1, 3, 5, 4, [3to 5]) :- I.
hanoi (2, 3, 4, 5,
[3to 5 3to 4 5to 4]) :-
hanoi (3, 3, 5, /4,
[3to 5 3to 4 5 to A4,
3to 5 4to 3, 4to 5,
3to 5]) :- 1!,

— N = e 71

Example — Gensym

e

From Programming in Prolog, Clocksin & Mellish.

|f we want to store data between different top-level
queries, then using the database is our only option.

In the following example we want to generate new
atoms.

In order to make this work, gensymhas to store the
number of atoms with a given prefix that it has
generated so far. The clause current _nun(Root ,
Num) is used for this purpose. There is one
cur r ent _numclause for each kind of atom that we
generate.

N~ — N = e ol

Example — Gensym. ..

gensym(Root, Atom -
get _num(Root, Nun),
name(Root, Nanel),
i nt _name(Num Nane2),
append(Nanel, Nanme2, Nane),
name(At om Nane).

get _num(Root, Nunm) : -
retract (current _nun{Root, Numl)),
', Numis Nunml + 1,
asserta(current _nunm Root, Num)).
get nun{Root, 1) :-
asserta(current _num Root, 1)).

—Fall 2005 — 22 [29]

Example — Gensym. ..

int _name(Int, List) :- int_name(Int, [], List).
i nt _nanme(l, Sofar, [C] Sofar]) :-
| <10, !, Cis |+48.

i nt _name(l, Sofar, List) :-
Tophal f is 1/10, Bothalf is | nod 10,
Cis Bothalf + 48,
I nt _name(Tophal f, [C|] Sofar], List).

?- gensyn(chris, A).

A = chrisil
?- gensyn(chris, A).
A = chris2
?- gensyn(chris, A.
A = chris3
372 —Fall 2005 — 22 [30]

Readings and References

#» Read Clocksin-Mellish, Chapter 6.

— N = e 11

	Manipulating the Database
	Assert
	Assertldots
	Assert ldots -- Example
	Assert ldots -- Example
	Retract
	Retractldots
	Clause
	Clauseldots
	Clauseldots
	Clausal Representation of Data Structures
	Clauses as Data Structures -- Lists
	Clauses as Data Structures -- Trees
	Clauses as Data Structures -- Treesldots
	Clauses as Data Structures -- Treesldots
	Clausal Representationldots
	Switches
	Switchesldots
	Switchesldots
	Memoization
	Memoization -- Towers of Hanoi
	Memoization -- Towers of Hanoildots
	Memoization -- Towers of Hanoildots
	Memoization -- Towers of Hanoildots
	Memoization -- Towers of Hanoildots
	Memoization -- Towers of Hanoildots
	Example -- Gensym
	Example -- Gensymldots
	Example -- Gensymldots
	Readings and References

