
372 —Fall 2005 — 22

CSc 372

Comparative Programming
Languages

22 : Prolog — The Database

Christian Collberg

collberg+372@gmail.com

Department of Computer Science

University of Arizona

Copyright c© 2005 Christian Collberg

[1] 372 —Fall 2005 — 22

Manipulating the Database

So far we have assumed that the Prolog database is
static, i.e. that it is loaded once with the program and
never changes thereafter.

This is not necessarily true; we can add or remove facts
and rules from the database at will.

This is not necessarily good programming practice, but
sometimes it is necessary and sometimes it makes for
elegant programs.

In a nutshell:
1. Allows us to program with side effects.
2. Justified under some circumstances.
3. Often inefficient.

[2]

372 —Fall 2005 — 22

Assert

assert(X) adds a clause to the database.
Not defined in gprolog!

asserta(X) adds a clause to the beginning of the
database.

assertz(X) adds a clause to the end of the database.

assert always succeeds, and backtracking does not
undo the assertion.

[3] 372 —Fall 2005 — 22

Assert. . .

assert can be used in machine learning programs,
program which learn new facts as they progress.
In some Prolog implementations you have to specify
whether a certain clause is dynamic (new clauses can
be added to the database during execution) or static:
:- dynamic(hanoi/5).

This means that we can add and remove clauses with
five arguments whose functor is hanoi.

[4]

collberg+372@gmail.com

372 —Fall 2005 — 22

Assert . . . – Example

Write a program that learns the addresses of places in
a city.

This program assumes a Manhattan-style city layout:
locations are given as the intersection of streets and
avenues.

?- loc(whitehorse, Ave, St).
Ave = 8, St = 11

?- loc(airport, Ave, St).
-- this airport
what avenue? 5.
what street? 32.
Ave = 5, St = 32

?- loc(airport, Ave, St).
Ave = 5, St = 32

[5] 372 —Fall 2005 — 22

Assert . . . – Example

location(whitehorse, 8, 11).
location(microsoft, 8, 42).
location(condomeria, 8, 43).
location(plunket, 7, 32).

% Do we know the location of X?
loc(X, Ave, Str) :- location(X, Ave, Str), !.

% if not, learn it!
loc(X, Ave, Street) :-

nonvar(X), var(Ave), var(Str),
write(’-- this ’), write(X), nl,
write(’what avenue? ’), read(Ave),
write(’what street? ’), read(Street),
assert(location(X, Ave, Str)).

[6]

372 —Fall 2005 — 22

Retract

retract(X) removes the first clause that matches X.

assert and retract behave differently on
backtracking. When we backtrack through assert
nothing happens. When we backtrack to retract
Prolog continues searching the database trying to find
another matching clause. If one is found it is removed.

If the argument to retract(clause(X)) contains
some uninstantiated variables they will be instantiated.

retract(X) fails when no matching clause can be
found.

[7] 372 —Fall 2005 — 22

Retract. . .

Backtracking does not undo the removal.

retractall(X) :-
retract(X), fail.

retractall(X) :-
retract((X :- Y))),
fail.

retractall().

[8]

372 —Fall 2005 — 22

Clause

clause(X, Y) finds all clauses in the database with
head X and body Y.

append([], X, X).
append([A|B],C,[A|D]) :-

append(B, C, D).

?- clause(append(X, Y, Z), T).
X=[], Y= 3, Z= 3, Y=true ;
X=[4| 5], Y= 6, Z=[4| 7],

Y=append(5, 6, 7) ;
no

[9] 372 —Fall 2005 — 22

Clause. . .

The goal clause(X, Y) instantiates X to the head of a
goal (the left side of :-) and Y to the body.

X can be just a variable (in which case it will match all
the clauses in the database), a fully instantiated
(ground) term, or a term which contains some
uninstantiated variables.

Note that a fact has a body true.

[10]

372 —Fall 2005 — 22

Clause. . .

List all the clauses whose head matches X.

list(X) :- clause(X, Y),
print(X, Y),
write(’.’), nl, fail.

list().

print(X, true) :- !, write(X).
print(X, Y) :- write((X :- Y))).

?- list(append(X, Y, Z)).
append([], 4, 4).
append([5| 6], 7,[5| 8]) :-

append(6, 8, 8).

[11] 372 —Fall 2005 — 22

Clausal Representation of Data Structures

Normally we represent a data structure using a
combination of Prolog lists and structures.
A graph can for example be represented as a list of
edges, where each edge is represented by a binary
structure:

[edge(a,b), edge(c,b), edge(a,d), edge(c,d)]

However, it is also possible to use clauses to represent
data structures such as lists, trees, and graphs.

It is usually not a good idea to do this, but sometimes it
is useful, particularly when we are faced with a static
data structure (one which does not change, or changes
very little).

[12]

372 —Fall 2005 — 22

Clauses as Data Structures – Lists

list(c).
list(h).
list(r).
list(i).
list(s).

process list :- list(X), process item(X), fail.
process list.

[13] 372 —Fall 2005 — 22

Clauses as Data Structures – Trees

t(node1, node2, phone(thompson, 2432), node3).
t(node2, nil, phone(adams, 5488), node4).
t(node3, nil, phone(white, 2432), nil).
t(node4, nil, phone(mcbride, 1781), nil).

[14]

372 —Fall 2005 — 22

Clauses as Data Structures – Trees. . .

node1
phone(thomson, 2432).

node3

phone(white, 2432).
node2

phone(adams, 5488).

node4

phone(mcbride,1781)

nilnil
nil

[15] 372 —Fall 2005 — 22

Clauses as Data Structures – Trees. . .

inorder(nil).
inorder(Node) :-

t(Node, Left, P, Right),
inorder(Left),
write(P), nl,
inorder(Right).

?- inorder(node1).
phone(adams,5488)
phone(mcbride,1781)
phone(thompson,2432)
phone(white,2432)

[16]

372 —Fall 2005 — 22

Clausal Representation. . .

In general it is a bad idea to represent data in this way.

Inserting and removing data has to be done using
assert and retract, which are fairly expensive
operations.

However, in Prolog implementations which support
clause indexing, storing data in clauses gives us a way
to access information directly, rather than through
sequential search.

The reason for this is that indexing uses hash tables to
access clauses.

[17] 372 —Fall 2005 — 22

Switches

From Prolog by Example, Coelho & Cotta.

In some cases it is a good idea to use global data rather
than passing it around as a parameter.

Assume we want to be able to switch between short
and long error messages. Instead of extending every
clause by an extra parameter (clumsy and inefficient)
we use a global switch.

The first clause in turnon will fire if the switch is
already turned on.

The first clause in turnoff fails if Switch was already
off.

The first clause in flip fails if Switch was turned off,
in which case the second clause fires and the switch is
turned on.

[18]

372 —Fall 2005 — 22

Switches. . .

turnon(Switch) :-
call(Switch), !.

turnon(Switch) :-
assert(Switch).

turnoff(Switch) :-
retract(Switch).

turnoff().

flip(Switch) :-
retract(Switch), !.

flip(Switch) :-
assert(Switch).

[19] 372 —Fall 2005 — 22

Switches. . .

turnon(terse mess).
.....

flip(terse mess).

message(C) :-
terse mes, write (’Error!’), nl, !.

message(C) :-
write (’We are sorry to...’),
write (’error has occurred near the symbol ’),
write(C), write(’. Please accept our...’),
nl, !.

[20]

372 —Fall 2005 — 22

Memoization

Many recursive program are extremely inefficient
because they solve the same subproblem several times.

In dynamic programming the idea is simply to store the
results of a computation in a table, and when we try to
solve the same problem again we retrieve the value
from the table rather than computing the value once
more.

There is a variation of dynamic programming known as
memoization.

[21] 372 —Fall 2005 — 22

Memoization – Towers of Hanoi

I’m sure you’ve heard of the Towers of Hanoi problem. It
is one first year computer science students are tortured
with to no end.

The problem is to move a number of disks from a peg A
to a peg B, using a peg C as intermediate storage.
Additionally, we are only allowed to put smaller disks
onto larger disks.

A recursive solution of the problem to move N disks
from A to B is as follows:
1. Move N − 1 disks from A to C.
2. Move the remaining (largest) disk from A to B.
3. Move the N − 1 disks from C to B.

[22]

372 —Fall 2005 — 22

Memoization – Towers of Hanoi. . .

B CA

[23] 372 —Fall 2005 — 22

Memoization – Towers of Hanoi. . .

:- op(100, xfx, to).

hanoi(1, A, B, C, [A to B]).
hanoi(N, A, B, C, Ms) :-

N > 1,
N1 is N-1,
hanoi(N1, A, C, B, M1),
hanoi(N1, C, B, A, M2),
append(M1, [A to B|M2], Ms).

go(N, Moves) :-
hanoi(N, a, b, c, Moves).

[24]

372 —Fall 2005 — 22

Memoization – Towers of Hanoi. . .

?- go(2,M).
M = [a to c, a to b, c to b]

?- go(3,M).
M = [a to b, a to c, b to c,

a to b, c to a, c to b,
a to b]

?- go(4,M).
M = [a to c, a to b, c to b,

a to c, b to a, b to c,
a to c, a to b, c to b,
c to a, b to a, c to b,
a to c, a to b, c to b]

[25] 372 —Fall 2005 — 22

Memoization – Towers of Hanoi. . .

hanoi(1, A, B, C, [A to B]).
hanoi(N, A, B, C, Ms) :-

N > 1, R is N-1,
lemma(hanoi(R, A, C, B, M1)),
hanoi(N1, C, B, A, M2),
append(M1, [A to B|M2], Ms).

lemma(P) :- call(P),
asserta((P :- !)).

go(N, Pegs, Moves) :-
hanoi(N, A, B, C, Moves),
Pegs=[A, B, C].

[26]

372 —Fall 2005 — 22

Memoization – Towers of Hanoi. . .

hanoi(1, 3, 5, 4, [3 to 5]) :- !.
hanoi(2, 3, 4, 5,

[3 to 5, 3 to 4, 5 to 4]) :- !.
hanoi(3, 3, 5, 4,

[3 to 5, 3 to 4, 5 to 4,
3 to 5, 4 to 3, 4 to 5,
3 to 5]) :- !.

[27] 372 —Fall 2005 — 22

Example – Gensym

From Programming in Prolog, Clocksin & Mellish.

If we want to store data between different top-level
queries, then using the database is our only option.

In the following example we want to generate new
atoms.

In order to make this work, gensym has to store the
number of atoms with a given prefix that it has
generated so far. The clause current num(Root,
Num) is used for this purpose. There is one
current num clause for each kind of atom that we
generate.

[28]

372 —Fall 2005 — 22

Example – Gensym. . .

gensym(Root, Atom) :-
get num(Root, Num),
name(Root, Name1),
int name(Num, Name2),
append(Name1, Name2, Name),
name(Atom, Name).

get num(Root, Num) :-
retract(current num(Root, Num1)),
!, Num is Num1 + 1,
asserta(current num(Root, Num)).

get num(Root, 1) :-
asserta(current num(Root, 1)).

[29] 372 —Fall 2005 — 22

Example – Gensym. . .

int name(Int, List) :- int name(Int, [], List).
int name(I, Sofar, [C|Sofar]) :-

I<10, !, C is I+48.
int name(I, Sofar, List) :-

Tophalf is I/10, Bothalf is I mod 10,
C is Bothalf + 48,
int name(Tophalf, [C|Sofar], List).

?- gensym(chris, A).
A = chris1

?- gensym(chris, A).
A = chris2

?- gensym(chris, A).
A = chris3

[30]

372 —Fall 2005 — 22

Readings and References

Read Clocksin-Mellish, Chapter 6.

[31]

	Manipulating the Database
	Assert
	Assertldots
	Assert ldots -- Example
	Assert ldots -- Example
	Retract
	Retractldots
	Clause
	Clauseldots
	Clauseldots
	Clausal Representation of Data Structures
	Clauses as Data Structures -- Lists
	Clauses as Data Structures -- Trees
	Clauses as Data Structures -- Treesldots
	Clauses as Data Structures -- Treesldots
	Clausal Representationldots
	Switches
	Switchesldots
	Switchesldots
	Memoization
	Memoization -- Towers of Hanoi
	Memoization -- Towers of Hanoildots
	Memoization -- Towers of Hanoildots
	Memoization -- Towers of Hanoildots
	Memoization -- Towers of Hanoildots
	Memoization -- Towers of Hanoildots
	Example -- Gensym
	Example -- Gensymldots
	Example -- Gensymldots
	Readings and References

