Defining Functions

CSc 372

Comparative Programming Languages

5 : Haskell - Function Definitions

Christian Collberg

collberg+372egmail.com

Department of Computer Science
University of Arizona

-Fall 2005 - 5

[1]

Defining Functions. . .

- Here's the ubiquitous factorial function:

```
fact :: Int -> Int
fact n = if n == 0 then
    1
    else
    n * fact (n-1)
```

- The first part of a function definition is the type signature, which gives the domain and range of the function:

```
fact :: Int -> Int
```

- The second part of the definition is the function declaration, the implementation of the function:

```
fact n = if n == 0 then ...
```

- When programming in a functional language we have basically two techniques to choose from when defining a new function:

1. Recursion
2. Composition

- Recursion is often used for basic "low-level" functions, such that might be defined in a function library.
- Composition (which we will cover later) is used to combine such basic functions into more powerful ones.
- Recursion is closely related to proof by induction.
[2]

Defining Functions...

- The syntax of a type signature is

```
fun_name :: argument_types
```

fact takes one integer input argument and returns one integer result.

- The syntax of function declarations:
- if e_{1} then e_{2} else e_{3} is a conditional expression that returns the value of e_{2} if e_{1} evaluates to True. If e_{1} evaluates to False, then the value of e_{3} is returned.
Examples:

```
if True then 5 else 6 }\quad=>
if False then 5 else 6 }\quad=>
if 1==2 then 5 else 6 }\quad=>
5 + if 1==1 then 3 else 2 }=>
```

- Note that this is different from Java's or C's if-statement, but just like their ternary operator ? : :

```
int max = (x>y) ?x:y;
```


Guarded Equations

- An alternative way to define conditional execution is to use guards:

```
abs :: Int -> Int
abs n | n>= 0= n
    otherwise = -n
sign :: Int -> Int
sign n n<0 = - 1
    n==0=0
    otherwise = 1
```

- The pipe symbol is read such that.
- otherwise is defined to be True.
- Guards are often easier to read - it's also easier to verify that you have covered all cases.
- Example:

```
abs :: Int -> Int
abs n = if n>0 then n else -n
sign :: Int -> Int
sign n = if n<0 then -1 else
    if n==0 then 0 else 1
```

- Unlike in C and Java, you can't leave off the else-part!
[6]

372 -Fall 2005-5

Defining Functions. . .

- fact is defined recursively, i.e. the function body contains an application of the function itself.
- The syntax of function application is: fun_name arg. This syntax is known as "juxtaposition".
- We will discuss multi-argument functions later. For now, this is what a multi-argument function application ("call") looks like:

```
fun_name arg_1 arg_2 ... arg_n
```

- Function application examples:

fact 1	$\Rightarrow 1$
fact 5	$\Rightarrow 120$
fact $(3+2)$	$\Rightarrow 120$

Multi-Argument Functions

- A simple way (but usually not the right way) of defining an multi-argument function is to use tuples:

```
add :: (Int,Int) -> Int
add (x,y) = x+y
> add (40,2)
4 2
```

- Later, we'll learn about Curried Functions.

Layout

Function Application

- Function application ("calling a function with a particular argument") has higher priority than any other operator.
- In math (and Java) we use parenthses to include arguments; in Haskell no parentheses are needed.
$>\mathrm{f} a+\mathrm{b}$
means
$>$ (f a) + b
since function application binds harder than plus.

Function Application. .

- Here's a comparison between mathematical notations and Haskell:

Math	Haskell
$f(x)$	f x
$f(x, y)$	f x y
$f(g(x))$	$\mathrm{f} \quad(\mathrm{g} \mathrm{x})$
$f(x, g(y))$	$\mathrm{f} \quad \mathrm{x} \quad \mathrm{g} \mathrm{y})$
$f(x) g(y)$	f x * g y

Recursive Functions

Simple Recursive Functions

- Typically, a recursive function definition consists of a guard (a boolean expression), a base case (evaluated when the guard is True), and a general case (evaluated when the guard is False).

```
fact n =
    if n == 0 then }\Leftarrow\mathrm{ guard
    1
    else
        n * fact (n-1) \Leftarrow general case
```


Simulating Recursive Functions

- We can visualize the evaluation of fact 3 using a tree view, box view, or reduction view.
- The tree and box views emphasize the flow-of-control from one level of recursion to the next
- The reduction view emphasizes the substitution steps that the hugs interpreter goes through when evaluating a function. In our notation boxed subexpressions are substituted or evaluated in the next reduction.
- Note that the Haskell interpreter may not go through exactly the same steps as shown in our simulations. More about this later.
fact 3
if $3==0$ then 1
else 3 * fact (3-1)
fact 2
if $2==0$ then 1
else 2 * fact (2-1)
if $1==0$ then 1
else 1 * fact (1-1)
fact 0
if $0==0$ then 1
else ...
-Fall 2005 - 5
- This is a Tree View of fact 3.
- We keep going deeper into the recursion (evaluating the general case) until the guard is evaluated to True.

372 -Fall 2005 - 5

- When the guard is True we evaluate the base case and return back up through the layers of recursion.

Box View of fact 3


```
fact 3 }
if 3 == 0 then 1 else 3 * fact (3-1) }
if False then 1 else 3 * fact (3-1) }
3 * fact (3-1) =
3 * fact 2 }
3 * if 2 == 0 then 1 else 2 * fact (2-1) #
3 * if False then 1 else 2 * fact (2-1) =>
3 * (2 * fact (2-1)) =
3 * (2 * fact 1) =
3 * (2 * if 1 == 0 then 1 else 1 * fact (1-1))
    # ...
```


Reduction View of fact 3...

```
(2 * if 1 == 0 then 1 else 1 * fact (1-1)) m
(2 * if False then 1 else 1 * fact (1-1)) =>
(2 * (1 * fact (1-1))) =>
(2 * (1 * fact 0)) =>
(2 * (1 * if 0 == 0 then 1 else 0 * fact (0-1))) m
(2 * (1 * if True then 1 else 0 * fact (0-1))) =>
(2 * (1 * 1)) }
(2 * 1) }
2=>
```

- In the fact function the guard was $n==0$, and the recursive step was fact ($n-1$). I.e. we subtracted 1 from fact's argument to make a simpler (smaller) recursive case.
- We can do something similar to recurse over a list:

1. The guard will often be $n==[\quad$ (other tests are of course possible).
2. To get a smaller list to recurse over, we often split the list into its head and tail, head:tail.
3. The recursive function application will often be on the tail, f tail.

In English:

The length of the empty list [] is zero. The length of a non-empty list S is one plus the length of the tail of S.

$$
\begin{aligned}
& \text { In Haskell: } \\
& \text { len :: [Int] -> Int } \\
& \text { len } \mathrm{s}=\text { if } \mathrm{s}==\text { [] then } \\
& 0 \\
& \text { else } \\
& 1+\text { len (tail s) }
\end{aligned}
$$

- We first check if we've reached the end of the list $s==$ []. Otherwise we compute the length of the tail of s, and add one to get the length of s itself.

Tree View of len [5, 6, 7]

len : : [Int] -> Int
len $s=$ if $s==[$] then 0 else $1+l e n(t a i l$ s)

- Tree View of len
$[5,6,7]$

```
len s = if s == [ ] then 0 else 1 + len (tail s)
len [5,6] }
    if [5,6]==[ ] then 0 else 1 + len (tail [5,6]) =>
    1 + len (tail [5,6]) =>
    1 + len [6] }
    1 + (if [6]==[ ] then 0 else 1 + len (tail [6])) }
    1 + (1 + len (tail [6])) =>
    1 + (1 + len [ ]) m
    1 + (1 + (if [ ]== [ ] then O else 1+len (tail [ ]))) m
    1+(1+0))}=>1+1=>
```

